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Plan for today

We will describe the statistics of very short objects on a random
surface of large genus.

Two main results.

▶ Petri-Mirzakhani: lengths of short closed geodesics on a
random hyperbolic surface.

▶ Masur-Rafi-Randecker: lengths of short saddle connections on
a random translation surface.

Common tool: method of factorial moments combined with large
genus volume asymptotics.



Poisson distributions and factorial moments

Let N be a random variable with values in N0 = {0, 1, 2, . . . }.

We say N is Poisson distributed with mean λ > 0 if

P(N = k) =
λk

k!
e−λ for all k ∈ N0.

Define the falling factorial of N of order r by

(N)r = N(N − 1) · · · (N − r + 1), r ≥ 1.

If E[(N)r ] exists, it is called the rth factorial moment of N.

For Poisson variables these are much simpler than the ordinary
moments E[N r ]. We will now compute them explicitly.



Factorial moments of a Poisson variable

Let N ∼ Poisson(λ), and fix r ≥ 1. Then

E[(N)r ] =
∞∑
k=0

(k)r · P(N = k).

For k < r we have (k)r = 0, so

E[(N)r ] =
∞∑
k=r

k!

(k − r)!
· λ

k

k!
e−λ = e−λ

∞∑
k=r

λk

(k − r)!
.

Let m = k − r . Then

E[(N)r ] = e−λ
∞∑

m=0

λm+r

m!
= e−λλr

∞∑
m=0

λm

m!
= e−λλreλ = λr .

So for all r ≥ 1,
E[(N)r ] = λr .



Method of factorial moments: one random variable

The method of factorial moments says the inverse is also true.

Theorem (Method of factorial moments, one variable)

Let Ng be random variables on probability spaces (Ωg ,Pg ) and let
λ > 0. Assume that for every r ∈ N,

lim
g→∞

Eg [(Ng )r ] = λr .

Then Ng converges in distribution to a Poisson random variable of
mean λ.

So to prove a Poisson limit, it is enough to compute asymptotics of

Eg [Ng (Ng − 1) · · · (Ng − r + 1)]

for all r .



A simple model: sum of independent trials

Let X1, . . . ,Xn be independent Bernoulli random variables with

P(Xi = 1) = p, P(Xi = 0) = 1− p.

Set
N = X1 + · · ·+ Xn,

so N is the number of successes in n independent trials, that is

N ∼ Bin(n, p).

We want to understand the factorial moments

(N)r = N(N − 1) · · · (N − r + 1),

and see why they are much easier to compute than the usual
moments E[N r ].



Combinatorial meaning of (N)r

Fix r ≥ 1. Expand

(N)r = N(N − 1) · · · (N − r + 1)

in terms of the Xi . Each Xi is either 0 or 1, hence

(N)r =
∑

(i1,...,ir )
distinct

Xi1Xi2 · · ·Xir .

because each ordered r–tuple (i1, . . . , ir ) of distinct indices
contributes 1 if all Xij = 1, and 0 otherwise.

That is, (N)r is the number of ordered r–tuples of distinct successes
among the n trials.



Computing the factorial moments

Take expectations and use linearity:

E[(N)r ] = E

 ∑
(i1,...,ir )
distinct

Xi1 · · ·Xir

 =
∑

(i1,...,ir )
distinct

E[Xi1 · · ·Xir ].

By independence,

E[Xi1 · · ·Xir ] = P(Xi1 = · · · = Xir = 1) = pr .

The number of ordered r–tuples of distinct indices in {1, . . . , n} is

n(n − 1) · · · (n − r + 1).

Hence
E[(N)r ] = n(n − 1) · · · (n − r + 1) pr .



From binomial to Poisson via factorial moments

Let Nn ∼ Bin(n, pn), and suppose

n pn −→ λ > 0 as n → ∞.

For fixed r ≥ 1,

E[(Nn)r ] = n(n − 1) · · · (n − r + 1) prn.

=

(
n(n − 1) · · · (n − r + 1)

nr

)
(npn)

r .

As n → ∞, npn −→ λ and

n(n − 1) · · · (n − r + 1)

nr
−→ 1, =⇒ E[(Nn)r ] −→ λr .

By the method of factorial moments, Nn converges in distribution
to a Poisson random variable with mean λ.



Joint factorial moments

There is also a joint version of this.

Let (N1,g , . . . ,Nk,g ) be a vector of random variables. For a multi
index (r1, . . . , rk) set

(N1,g )r1 · · · (Nk,g )rk .

Theorem (Method of moments, joint version)

Let (N1,g , . . . ,Nk,g ) be random vectors taking values in Nk
0 .

Assume there exist λ1, . . . , λk > 0 such that for all r1, . . . , rk ∈ N,

lim
g→∞

Eg

[
(N1,g )r1 · · · (Nk,g )rk

]
= λr1

1 · · ·λrk
k .

Then (N1,g , . . . ,Nk,g ) converges in distribution to a vector of
independent Poisson variables with means (λ1, . . . , λk).



Random hyperbolic surfaces and Weil-Petersson volumes

For g ≥ 0 and n ≥ 0, let Mg ,n(L) be the moduli space of
hyperbolic surfaces of genus g with n geodesic boundary
components of lengths L = (L1, . . . , Ln).

The Weil–Petersson volume of Mg ,n(L) is denoted by

Vg ,n(L) = VolWP(Mg ,n(L)).

Mirzakhani showed that Vg ,n(L) is a polynomial in L21, . . . , L
2
n with

coefficients given by intersection numbers of Chern classes of
tautological line bundles.

These polynomials satisfy recursion relations that allow one to
compute all volumes in principle and to study their asymptotics as g
tends to infinity.



Key Volume Estimates

Theorem (Mirzakhani)

For any fixed n ≥ 0:

Vg−1,n+2

Vg ,n
= 1 +

3− 2n

π2
· 1
g
+ O

( 1

g2

)
.

Theorem (Mirzakhani)

Let g , n ∈ N and x1, . . . , xn ∈ R+ be small compared to g. Then

Vg ,n(2x1, . . . , 2xn)

Vg ,n
=

n∏
i=1

sinh(xi )

xi
·
(
1 + O

( 1

g

))
.



Counting short closed geodesics

Fix 0 ≤ a < b. For a hyperbolic surface X ∈ Mg let

Ng ,[a,b](X ) =
∣∣{γ primitive closed geodesic on X | ℓX (γ) ∈ [a, b]}

∣∣.
So Ng ,[a,b] is a random variable on (Mg ,Pg ), where

Pg (A) =
1

Vg

∫
A
d VolWP .

We are interested in the joint behavior of

Ng ,[a1,b1], . . . ,Ng ,[ak ,bk ]

for disjoint intervals [ai , bi ].



The Petri-Mirzakhani theorem

Define

λ[a, b] =

∫ b

a

et + e−t − 2

2t
dt.

Theorem (Petri and Mirzakhani)

Let [a1, b1], . . . , [ak , bk ] ⊂ R+ be disjoint intervals. Then, as
g → ∞, the random vector(

Ng ,[a1,b1], . . . ,Ng ,[ak ,bk ]

)
converges in distribution to a vector of independent Poisson random
variables with means λ[ai , bi ].

So the bottom part of the length spectrum of a random hyperbolic
surface looks like a Poisson point process on (0,∞) with intensity

et + e−t − 2

2t
dt.



Strategy of Petri–Mirzakhani

Fix an interval [a, b] ⊂ (0,∞). We split moduli space into two parts:

Mg = Mgen
g ⊔Mexc

g .

On the generic part Mgen
g every geodesic of length in [a, b] is:

▶ simple,

▶ disjoint from any other such geodesic, and

▶ nonseparating.

On the exceptional part Mexc
g at least one of these fails

(intersections, separating curves, too many short curves, etc.).

They show:

Eg [(Ng ,[a,b])r ] = Eg

[
(Ng ,[a,b])r1Mgen

g

]
+ o(1)

and compute the main term using Mirzakhani’s volume formulas.



First factorial moment on the generic set

Start with r = 1 on the generic set. By Mirzakhani’s integration
formula, the contribution of nonseparating curves to the expectation
can be written as

Eg

[
Ng ,[a,b]1Mgen

g

]
=

1

Vg ,0

∫ b

a
Φg (t) dt + O

( 1

g

)
,

where

Φg (t) =
t

2
Vg−1,2(t, t).

We now use the two key volume estimates:

Vg−1,2

Vg ,0
= 1+O

( 1

g

)
,

Vg−1,2(t, t)

Vg−1,2
=

(sinh(t/2)
t/2

)2(
1+O

( 1

g

))
,

where in the second line we applied

Vg−1,2(2x1, 2x2)

Vg−1,2
=

sinh(x1)

x1

sinh(x2)

x2

(
1 + O

( 1

g

))
with x1 = x2 = t/2.



Computing the intensity for r = 1

We have

Φg (t)

Vg ,0
=

t

2
· Vg−1,2(t, t)

Vg−1,2
· Vg−1,2

Vg ,0
=

t

2
·
(sinh(t/2)

t/2

)2(
1+O

( 1

g

))
.

A short computation:

t

2

(sinh(t/2)
t/2

)2
=

t

2
· 4 sinh

2(t/2)

t2
=

2

t
sinh2(t/2)

=
2

t

et + e−t − 2

4
=

et + e−t − 2

2t
.

So
Φg (t)

Vg ,0
=

et + e−t − 2

2t

(
1 + O

( 1

g

))
,

and hence

Eg

[
Ng ,[a,b]1Mgen

g

]
=

∫ b

a

et + e−t − 2

2t
dt+O

( 1

g

)
= λ[a, b]+O

( 1

g

)
.



Higher factorial moments on the generic set

For r ≥ 1, on the generic set Mgen
g an ordered r–tuple counted by

(Ng ,[a,b])r = N(N − 1) . . . (N − r + 1)

is exactly an ordered r–tuple of disjoint, simple, nonseparating
primitive curves, each of length in [a, b].

Mirzakhani’s integration formula then gives

Eg

[
(Ng ,[a,b])r1Mgen

g

]
=

1

Vg ,0

∫
[a,b]r

Φ
(r)
g (t1, . . . , tr ) dt1 · · · dtr+O

( 1

g

)
,

where, for nonseparating configurations,

Φ
(r)
g (t1, . . . , tr ) =

t1 · · · tr
2r

Vg−r ,2r (t1, . . . , tr ).



Higher factorial moments, continued

Applying the multi–boundary volume estimate with xi = ti/2,

Vg−r ,2r (t1, . . . , tr )

Vg−r ,2r
=

r∏
i=1

(sinh(ti/2)
ti/2

)2(
1 + O

( 1

g

))
,

and
Vg−r ,2r

Vg ,0
= 1 + O

( 1

g

)
,

we obtain

Φ
(r)
g (t1, . . . , tr )

Vg ,0
=

r∏
i=1

ti
2

(sinh(ti/2)
ti/2

)2(
1 + O

( 1

g

))
.

Each factor equals eti+e−ti−2
2ti

, as in the r = 1 computation.



Factorial moments and the Poisson limit

Integrating over [a, b]r we get

Eg

[
(Ng ,[a,b])r1Mgen

g

]
=

∫
[a,b]r

r∏
i=1

eti + e−ti − 2

2ti
dt1 · · · dtr + O

( 1

g

)

=
(∫ b

a

et + e−t − 2

2t
dt
)r

+ O
( 1

g

)
= λ[a, b]r + O

( 1

g

)
.

On the exceptional set Mexc
g the Weil–Petersson volume is o(Vg ,0)

and the contribution to the factorial moments is o(1). Hence

lim
g→∞

Eg [(Ng ,[a,b])r ] = λ[a, b]r for all r ≥ 1.

The same argument with several disjoint intervals gives a vector of
independent Poisson variables.



An application: the systole

Let sys(X ) be the length of the shortest closed geodesic on X .

Then

Pg

(
sys(X ) ≤ ϵ

)
= Pg

(
Ng ,[0,ϵ] ≥ 1

)
= 1− Pg

(
Ng ,[0,ϵ] = 0

)
.

By Petri and Mirzakhani’s theorem,

lim
g→∞

Pg

(
sys(X ) ≤ ϵ

)
= 1− e−λ[0,ϵ] ∼ ϵ2

2
as ϵ → 0.

In particular, the distribution of the systole converges and the
expected systole tends to a positive constant.



Random translation surfaces in the principal stratum

Let Hg be the principal stratum of area one translation surfaces of
genus g , that is

Hg = Hg (1, . . . , 1),

where there are 2g − 2 simple zeros.

We endow Hg with the Masur–Veech measure µMV . Its total
volume

Vol(Hg ) = µMV (Hg )

is finite. We consider the probability measure

Pg (A) =
1

Vol(Hg )

∫
A
dµMV .

A random translation surface of genus g is an element (X , ω) ∈ Hg

chosen according to Pg .



Counting short saddle connections

Let ℓω(α) denote the flat length of a saddle connection α on (X , ω).
As mentioned in the last class, different features of the surface
appear at different scales.

It turns out the first saddle connections appear at the scale 1/g .
Hence, we define

Ng ,[a,b](X , ω) =
∣∣∣{saddle connections α

∣∣∣ ℓω(α) ∈ [a/g , b/g ]
}∣∣∣.

Again, for disjoint intervals [ai , bi ] ⊂ R+ we consider the vector

Ng ,[a1,b1], . . . ,Ng ,[ak ,bk ].

The analogue of the Petri-Mirzakhani theorem is: these counts
converge to independent Poisson variables, but now with a different
intensity function.



The Masur-Rafi-Randecker theorem

Theorem (Masur, Rafi and Randecker)

Let [a1, b1], . . . , [ak , bk ] ⊂ R+ be disjoint intervals. Then, as
g → ∞, the random vector(

Ng ,[a1,b1], . . . ,Ng ,[ak ,bk ]

)
: Hg → Nk

0

converges in distribution to a vector of independent Poisson
variables with means

λ[ai , bi ] = 8π(b2i − a2i ), i = 1, . . . , k .

In particular, the expected number of saddle connections of length
in [a/g , b/g ] on a random surface in Hg tends to 8π(b2 − a2).



Consequences for the shortest saddle connection

Let ℓmin(X , ω) be the length of the shortest saddle connection on
(X , ω).

Then
Pg

(
ℓmin(X , ω) < ϵ/g

)
= 1− Pg

(
Ng ,[0,ϵ] = 0

)
.

By the theorem,

lim
g→∞

Pg

(
ℓmin < ϵ/g

)
= 1−e−λ[0,ϵ] = 1−e−8πϵ2 ∼ 8πϵ2 as ϵ → 0.

So the typical shortest saddle connection has length on the order of
1/g and its distribution has an explicit limit law.



Generic and non generic subsets of Hg

Fix 0 < a1 < b1 ≤ · · · ≤ ak < bk and let B = maxi bi .

Non generic set HNG ⊂ Hg = Hg (1, . . . , 1):

▶ surfaces with a loop (saddle connection from a zero to itself) of
length at most B

g , or

▶ surfaces with two short saddle connections of length at most B
g

sharing a zero (including short homologous saddle connections).

Define the generic set by

HGen = Hg∖HNG .

Using Siegel–Veech constants one shows

Vol(HNG )

Vol(Hg )
= O

( 1

g

)
,

Vol(HGen)

Vol(Hg )
−→ 1.

So we can first do all factorial moment calculations on HGen.



The combinatorial cover Ĥ

Fix integers r1, . . . , rk ≥ 1 and put

K = r1 + · · ·+ rk .

For each (X , ω) ∈ HGen, consider ordered lists

Γi = (αi ,1, . . . , αi ,ri )

of disjoint oriented saddle connections with lengths in the interval[
ai
g
,
bi
g

]
.

Let Ĥ be the set of tuples

Ĥ =
{
(X , ω, Γ)

∣∣ (X , ω) ∈ HGen, Γ = (Γ1, . . . , Γk)
}
.



Simultaneous collapsing

On HGen we can simultaneously collapse all these saddle connections
to obtain:

Φ : Ĥ → Mr1,...,rk × H ′ ×
k∏

i=1

Ari
ai ,bi

,

where:

▶ H ′ = Hg (2, . . . , 2, 1, . . . , 1) has K zeros of order 2 and the rest
of order 1,

▶ Mr1,...,rk encodes the combinatorics of which zeros are paired,

▶ Aai ,bi ⊂ R2 is the annulus with inner radius ai/g and outer
radius bi/g .

The map Φ is:

▶ locally measure preserving in period coordinates, and

▶ 3K–to–1 (each double zero can be opened in 3 different ways).



Local Jacobian and volume of Ĥ

The area of an annulus Aai ,bi is

Area(Aai ,bi ) = π
(b2i
g2

−
a2i
g2

)
=

π

g2
(b2i − a2i ).

One obtains the volume estimate (for large g):

Vol(Ĥ) = 3K Vol(H ′
Gen)

(
1+K ·O(1/g)

)
·
k∏

i=1

[
π(b2i − a2i )

g2

]ri
·|Mr1,...,rk |.

Here |Mr1,...,rk | is the number of ways to choose and label the
endpoints of the K saddle connections:

|Mr1,...,rk | =
(2g − 2)!

(2g − 2− 2K )!
.



Ratio of volumes: how many double zeros?

We now compare the volume of the auxiliary stratum H ′ to that of
the principal stratum:

H ′ = Hg (2, . . . , 2, 1, . . . , 1), Hg = Hg (1, . . . , 1).

By the large genus asymptotics of Masur–Veech volumes (Aggarwal,
Chen–Möller–Sauvaget–Zagier and others), we have

Vol(H ′)

Vol(Hg )
=

(
4

3

)K

·
(
1 + O

( 1

g

))
,

and the same holds with HGen and H ′
Gen in place of Hg and H ′:

Vol(H ′
Gen)

Vol(HGen)
=

(
4

3

)K

·
(
1 + O

( 1

g

))
.

Intuitively: each time we turn two simple zeros into one double zero,
the volume grows by a factor asymptotic to 4/3.



Factorial moments on the generic set

Recall
Yg ,r1,...,rk = (Ng ,[a1,b1])r1 · · · (Ng ,[ak ,bk ])rk

counts ordered lists of saddle connections in the given windows.

On HGen, each choice of K oriented saddle connections gives rise to
2K different choices of orientations for Γ, hence

EGen

(
Yg ,r1,...,rk

)
=

1

Vol(HGen)
· 1

2K

∫
Ĥ
1 dµ.

Using the volume of Ĥ we just computed, we get

EGen

(
Yg ,r1,...,rk

)
=

Vol(H ′
Gen)

Vol(HGen)
· 3

K

2K
· (2g − 2)!

(2g − 2− 2K )!

·
k∏

i=1

[
π(b2i − a2i )

g2

]ri
·
(
1 + K · O(1/g)

)
.



Extracting the constant 8π(b2i − a2i )

As g → ∞, we have

Vol(H ′
Gen)

Vol(HGen)
→

(
4

3

)K

.

Next, the combinatorial factor satisfies

(2g − 2)!

(2g − 2− 2K )!
∼ (2g)2K .

Putting everything together:

lim
g→∞

EGen

(
Yg ,r1,...,rk

)
=

(
4

3

)K

· 3
K

2K
· (2g)2K ·

k∏
i=1

(π(b2i −a2i )

g2

)ri
=

k∏
i=1

(
8π(b2i − a2i )

)ri .
Thus, for each i ,

λ[ai , bi ] = 8π(b2i − a2i )

is the limiting factorial moment parameter.



From factorial moments to the length spectrum

For disjoint intervals [ai , bi ], the mixed factorial moments factorize:

lim
g→∞

EGen

[
(Ng ,[a1,b1])r1 · · · (Ng ,[ak ,bk ])rk

]
=

k∏
i=1

(
8π(b2i − a2i )

)ri .
The method of factorial moments then implies:

▶ For each fixed interval [ai , bi ], Ng ,[ai ,bi ] converges in law to
Poisson with parameter λ[ai , bi ] = 8π(b2i − a2i ).

▶ For disjoint intervals, the limiting Poisson variables are
independent.

Finally, one checks that replacing HGen by all of Hg does not change
the limit, since Vol(HNG )/Vol(Hg ) → 0.



Similarities between hyperbolic vs flat

Both use the method of factorial moments and Poisson
approximation.

Both rely on precise large genus asymptotics of volumes of moduli
spaces.

In both cases the dominant contribution comes from very simple
configurations of disjoint short objects.

The method should work whenever these conditions are present. For
example:

▶ Are there similar Poisson laws for quadratic differentials, in
particular for the principal stratum Qg (1, 1, ..., 1)?

▶ Can one describe the joint limit of short closed geodesics in
H(1, 1, ..., 1)?



Thank you


