
Learning and Optimization in Multiagent Decision-Making Systems
Lecture Notes: Computational Methods for MDPs (based on lectures of S. Kakade and R. Srikant)
Instructor: Rasoul Etesami

Consider the infinite horizon MDP (S, A, P, r,γ) with discount factor γ ∈ [0, 1). Recall that
there exists an optimal deterministic stationary policy π∗ with value function V ∗ : S→ R+ which
satisfies the Bellman optimality equations:

V ∗(s) =max
a∈A

�

r̄(s, a) + γ
∑

s′∈S

Ps,s′(a)V
∗(s′)

�

=: T (V ∗)(s).

Recall that the Bellman optimality operator T : R|S|→ R|S| satisfies the following properties:

(i) Contraction: T is a contraction in the ℓ∞-norm with contraction factor γ, i.e., for any
V, V ′ ∈ R|S|, we have

∥T (V)− T (V ′)∥∞ ≤ γ∥V − V ′∥∞.

(ii) Monotonicity: T is monotone, i.e., for any V, V ′ ∈ R|S|, if V (s)≤ V ′(s) for all s ∈ S, then

T (V)(s)≤ T (V ′)(s) for all s ∈ S.

(iii) Shift: For any c ∈ R, we have

T (V + c1) = T (V) + γc1,

where 1 ∈ R|S| is the all-one vector.

All the above properties are also true for the Bellman operator Tπ : R|S|→ R|S| associated
with any policy π.

Suppose that for any a ∈ A and s, s′ ∈ S, we have access to the expected reward r̄(s, a) and
the transition probability Ps,s′(a) = P(S1 = s′ | S0 = s, A0 = a). Our goal is to develop efficient
algorithms for finding an optimal stationary policy π∗. Recall that V ∗, the value function of π∗,
is the unique fixed point of the Bellman optimality operator, i.e.,

T (V ∗) = V ∗.

Using this as our key insight, we present two computational techniques to find the optimal policy.

Value Iteration Method

The value iteration algorithm is summarized in Algorithm 1.

Theorem 55. Running the value iteration algorithm (Algorithm 1) for n iterations, we have:

∥Vn − V ∗∥∞ ≤
γn

1− γ
∥V1 − V0∥∞, and ∥Vπn

− V ∗∥∞ ≤
2γn

1− γ
∥V1 − V0∥∞.

In particular, to ensure that ∥Vπn
− V ∗∥∞ < ϵ, it suffices to choose

n≥
log (∥V1 − V0∥∞) + log(2)− log(ϵ(1− γ))

log
�

1
γ

� .

38

Algorithm 1 Value Iteration
1: Input: Infinite horizon MDP (S, A, P, r,γ), number of iterations n> 0, initial estimate V0
2: Output: Estimate Vn ∈ R|S| and policy πn
3: for k← 0 to n− 1 do
4: Vk+1← T (Vk)
5: end for
6: πn← greedy policy with respect to Vn

Proof: Using the triangle inequality, we have:

∥Vn − V ∗∥∞ ≤ ∥Vn+1 − Vn∥∞ + ∥Vn+2 − Vn+1∥∞ + · · ·+ ∥Vn+ℓ − Vn+ℓ−1∥∞ + ∥V ∗ − Vn+ℓ∥∞
≤ (γn + γn+1 + γn+2 + · · ·+ γn+ℓ−1)∥V1 − V0∥∞ + γn+ℓ∥V ∗ − V0∥∞

≤
γn

1− γ
∥V1 − V0∥∞ + γn+ℓ∥V ∗ − V0∥∞.

Notice that the left-hand side of the above inequality does not depend on ℓ. Taking limit ℓ→∞,
we have

∥Vn − V ∗∥∞ ≤
γn

1− γ
∥V1 − V0∥∞.

Next, we bound the performance of the resulting greedy policy πn. Notice that by definition,
we have T (Vn) = Tπn(Vn) and Tπn(Vπn

) = Vπn
. Recall that Tπn is a contraction in the ℓ∞-norm

with contraction factor γ. We have:

∥Vn − Vπn
∥∞ ≤ ∥T (Vn)− Tπn(Vπn

)∥∞ + ∥Vn − T (Vn)∥∞
= ∥Tπn(Vn)− Tπn(Vπn

)∥∞ + ∥T (Vn)− Vn∥∞
≤ γ∥Vn − Vπn

∥∞ + γn∥V0 − V1∥∞,

which implies:

∥Vn − Vπn
∥∞ ≤

γn

1− γ
∥V0 − V1∥∞.

Using the triangle inequality, we get:

∥Vπn
− V ∗∥∞ ≤ ∥Vn − Vπn

∥∞ + ∥Vn − V ∗∥∞ ≤
2γn

1− γ
∥V1 − V0∥∞.

□

Notice that the value iteration algorithm converges in finitely many iterations; however, the
number of iterations required might be large. More specifically, if

2γn

1− γ
∥V1 − V0∥∞ < δ,

then we have Vπn
= V ∗, where πn is a greedy deterministic policy with respect to Vn, and

δ := min
π,π′ deterministic

Vπ ̸=Vπ
′

∥Vπ − Vπ
′
∥∞.

39

Hence, the value iteration algorithm converges after at most

n=

log
�

δ(1−γ)
2∥V1−V0∥∞

�

log(γ)

many iterations.

Policy Iteration Method

The value iteration algorithm estimates the optimal value function and then uses this estimate
to generate a policy. In the policy iteration algorithm, we directly estimate the policy at each
iteration. Consider any policy π0, and let Vπ0 denote its value function. Recall that Vπ0 is the
unique fixed point of the Bellman operator Tπ0 , and in particular,

Vπ0 = (I − γPπ0)−1 r̄π0 .

Let π1 denote the greedy policy with respect to Vπ0 , i.e., for any state s ∈ S we have:

T (Vπ0)(s) = r̄(s,π1(s)) + γ
∑

s′∈S

Ps,s′(π1(s))V
π0(s′) = Tπ1(Vπ0)(s).

One may expect π1 to be closer to the optimal policy than π0. We will show that this is
indeed the case. The policy iteration algorithm uses π1 as the input to the next iteration and
repeats the same process. This is summarized in Algorithm 2.

Algorithm 2 Policy Iteration
1: Input: Infinite horizon MDP (S, A, P, r,γ), number of iterations n> 0, initial policy π0
2: Output: Policy πn
3: for k← 0 to n− 1 do
4: πk+1← greedy policy with respect to Vπk , i.e., Tπk+1(Vπk) = T (Vπk)
5: end for

Theorem 56. The policy iteration algorithm (Algorithm 2) generates a sequence of policies {πk}
such that their value functions improve monotonically:

Vπk ≤ Vπk+1 , ∀k ≥ 0.

If at any iteration k, we have Vπk = Vπk+1 , then πk is an optimal policy and Vπk = V ∗.

Proof: We prove the convergence of the above algorithm to the optimal policy. Notice that it is
enough to show improvement at each iteration, i.e., Vπk ≤ Vπk+1 for all k (component-wise). In
particular, if Vπk = Vπk+1 , then Vπk is the fixed point of the Bellman optimality operator T , and
πk must be an optimal policy. This is because if Vπk = Vπk+1 for some k, we have

T (Vπk) = Tπk+1(Vπk) = Tπk+1(Vπk+1) = Vπk+1 = Vπk .

To show improvement, observe that

Vπk = Tπk(Vπk)≤ T (Vπk) = Tπk+1(Vπk).

40

By monotonicity of the Bellman operator Tπk+1 , we have:

Vπk ≤ Tπk+1(Vπk)≤ (Tπk+1)2(Vπk)≤ · · · ≤ (Tπk+1)m(Vπk).

Taking the limit as m→∞, we get:

Vπk ≤ lim
m→∞

(Tπk+1)m(Vπk) = Vπk+1 .

□

Policy Gradient Method

For a distribution µ over states, define:

V (µ) := Es0∼µ[V (s0)],

where we slightly overload notation. Consider a class of parametric policies {πθ | θ ∈ Rd}. The
optimization problem of interest is:

max
θ∈Rd

Vπθ (µ).

In many settings, one of the most practically effective methods is gradient ascent, which takes
the form of

θ k+1 = θ k +ηk∇θVπθk (µ)

One immediate issue is that if the policy class {πθ} consists of deterministic policies, then
Vµ(πθ) will, in general, not be differentiable. This motivates us to consider policy classes that
are stochastic, which permit differentiability.
Example (softmax policies): It is instructive to explicitly consider a “tabular” policy representa-
tion, given by the softmax policy:

πθ (a | s) =
exp(θs,a)

∑

a′∈A exp(θs,a′)
,

where the parameter space is θ ∈ R|S||A|. Note that (the closure of) the set of softmax policies
contains all stationary and deterministic policies.
Example (Linear softmax policies): For any state-action pair (s, a), suppose we have a feature
mapping φs,a ∈ Rd . Let us consider the policy class:

πθ (a | s) =
exp(θ⊤φs,a)

∑

a′∈A exp(θ⊤φs,a′)
,

with θ ∈ Rd .

Advantages and the State-Action Visitation Distribution

Let us first introduce the concept of an advantage.

Definition 57. The advantage Aπ(s, a) of a policy π is defined as:

Aπ(s, a) :=Qπ(s, a)− Vπ(s).

Note that for the optimal policy π∗, we have Aπ
∗
(s, a)≤ 0,∀s, a.

41

Definition 58. The discounted state visitation distribution dπs0
is defined by:

dπs0
(s) = (1− γ)

∞
∑

t=0

γt Pr(st = s | s0),

where Pr(st = s | s0) is the state visitation probability using policy π starting from s0. We also
write dπµ (s) = Es0∼µ[d

π
s0
(s)].

By construction, observe that for any function f : S × A→ R,

E

�∞
∑

t=0

γt f (st , at)

�

=
1

1− γ
Es∼dπµ
Ea∼π(·|s)[f (s, a)].

The following lemma is a fundamental tool in the convergence analysis of direct policy search
methods.

Lemma 59 (Performance Difference Lemma). For all policies π, π′ and distributions µ,

Vπ(µ)− Vπ
′
(µ) = Eµ,π

�∞
∑

t=0

γtAπ
′
(st , at)

�

=
1

1− γ
Es∼dπµ
Ea∼π(·|s)

�

Aπ
′
(s, a)

�

.

Proof: Fix a state s as the initial state. We can write

Vπ(s)− Vπ
′
(s) = Eπ

�∞
∑

t=0

γt r(st , at)

�

− Vπ
′
(s)

= Eπ

�∞
∑

t=0

γt
�

r(st , at) + γVπ
′
(st+1)− Vπ

′
(st)

�

�

= Eπ

�∞
∑

t=0

γt
�

r(st , at) +E[Vπ
′
(st+1) | st , at]− Vπ

′
(st)

�

�

= Eπ

�∞
∑

t=0

γtAπ
′
(st , at)

�

,

where the second equality holds using a telescoping sum, and the last step uses the tower property
of expectations and the definition of the Q-function function and the advantage function because
Es′∼P(·|s,a)[r(s, a) + γVπ

′
(s′) | s, a] = Qπ

′
(s, a). The proof is completed by applying linearity of

expectation over the starting state distribution µ:

Vπ(µ)− Vπ
′
(µ) = Es∼µ

�

Vπ(s)− Vπ
′
(s)
�

= Eµ,π

�∞
∑

t=0

γtAπ
′
(st , at)

�

.

□

In order to be able to use the policy gradient method, we need to be able to provide an
expression for the gradient of the value function with respect to policy parametrization. The
following lemma provides such characterizations.

Theorem 60 (Policy gradients). The following are expressions for the policy gradient∇θVπ
θ
(µ):

42

REINFORCE:

∇θVπθ (µ) = (1− γ)E

��∞
∑

t=0

γt r(st , at)

��∞
∑

t=0

∇θ logπθ (at | st)

��

.

Action-value expression:

∇θVπθ (µ) = E

� T
∑

t=0

∇θ logπθ (at | st)Q
πθ (st , at)

�

=
1

1− γ
Es∼d

πθ
µ ,a∼πθ (·|s)

[Qπθ (s, a)∇θ logπθ (a | s)]

Advantage expression:

∇θVπθ (µ) =
1

1− γ
Es∼d

πθ
µ ,a∼πθ (·|s)

[Aπθ (s, a)∇θ logπθ (a | s)]

Proof: Let τ = {(s0, a0), (s1, a1), (s2, a2), . . .} denote a sample trajectory generated under the
policy πθ , whose unconditional distribution Pr(τ) under policy πθ with starting distribution µ is:

Pr(τ) = µ(s0)πθ (a0 | s0)P(s1 | s0, a0)πθ (a1 | s1)P(s2 | s1, a1)πθ (a2|s2) (14)

Define the discounted total reward of the trajectory τ as:

R(τ) := (1− γ)
∞
∑

t=0

γt r(st , at).

We have:

∇θVπθ (µ) =∇θ
∑

τ

R(τ)Pr(τ) =
∑

τ

R(τ)∇θPr(τ) =
∑

τ

R(τ)Pr(τ)∇θ logPr(τ)

Now using the trajectory probability (14) and taking log and derivative:

∇θ logPr(τ) =
∞
∑

t=0

∇θ logπθ (at | st)

Thus:

∇θVπθ (µ) =
∑

τ

R(τ)Pr(τ)
∞
∑

t=0

∇θ logπθ (at | st) = E

�

R(τ)
∞
∑

t=0

∇θ logπθ (at | st)

�

,

which completes the proof of the first (REINFORCE) expression.
For the second claim, for any state s0,

43

∇θVπθ (s0) =∇θ
∑

a0

πθ (a0 | s0)Q
πθ (s0, a0)

=
∑

a0

∇πθ (a0 | s0)Q
πθ (s0, a0) +

∑

a0

πθ (a0 | s0)∇Qπθ (s0, a0)

=
∑

a0

πθ (a0 | s0)∇ logπθ (a0 | s0)Q
πθ (s0, a0)

+
∑

a0

πθ (a0 | s0)∇

�

(1− γ)r(s0, a0) + γ
∑

s1

P(s1 | s0, a0)V
πθ (s1)

�

=
∑

a0

πθ (a0 | s0)∇ logπθ (a0 | s0)Q
πθ (s0, a0)

+ γ
∑

a0,s1

πθ (a0 | s0)P(s1 | s0, a0)∇Vπθ (s1)

= Eπθ ,P [Q
πθ (s0, a0)∇ logπθ (a0 | s0)] +Eπθ ,P [∇Vπθ (s1)]

By linearity of expectation and applying the same reasoning recursively:

∇θVπθ (s0) = Eπθ ,P [Q
πθ (s0, a0)∇ logπθ (a0 | s0)] +Eπθ ,P [Q

πθ (s1, a1)∇ logπθ (a1 | s1)] + · · ·

= Eπθ ,P

�∞
∑

t=0

Qπθ (st , at)∇ logπθ (at | st)

�

.

This completes the proof of the second claim.
The proof of the last claim is identical to the second claim after we realize that

Eπθ ,P [V
πθ (st)∇θ logπθ (at | st)] = 0 ∀t,

and using the definition of the advantage function Aπθ (st , at) =Qπθ (st , at)− Vπθ (st). □

Natural Policy Gradient

Let us consider direct tabular parametrization, i.e., θ(s,a) = π(a|s). Then, using the last
expression for the gradient of the value function in the above theorem, we have

�

∇θVπ(µ)
�

(s,a) =
1

1−γdπµ (s)A
π(s, a). Now, assume an estimate πt of the optimal policy. Motivated by the mirror

descent in static optimization, we update our policy in the next iteration as

πt+1 = arg max
π:
∑

a π(a|s)=1∀s

�

(π−πt)′∇Vπ
t
(µ) +

1
η

∑

s

dπ
t

µ (s)KL
�

π(·|s)∥πt(·|s)
�

�

.

Using
�

∇θVπ
t
(µ)
�

(s,a) =
1

1−γdπ
t

µ (s)A
πt
(s, a) in the above optimization problem, obtaining πt+1

reduces to solving

max
π:
∑

a π(a|s)=1∀s

¨

1
1− γ

∑

s,a

dπ
t

µ (s)A
πt
(s, a)(π(a|s)−πt(a|s)) +

1
η

∑

s

dπ
t

µ (s)KL
�

π(·|s)∥πt(·|s)
�

«

=
∑

s

dπ
t

µ (s) max
π:
∑

a π(a|s)=1

�

1
1− γ

∑

a

Aπ
t
(s, a)(π(a|s)−πt(a|s)) +

1
η

KL
�

π(·|s)∥πt(·|s)
�

�

.

44

Now, for any fixed s, the solution to each inner maximization can be calculated in a closed-form
to obtain πt+1(·|s). Therefore, the Natural Policy Gradient (NPG) updates take the form:

π(t+1)(a | s) =
π(t)(a | s)exp

�

η
A(t)(s,a)

1−γ

�

Zt(s)
,

where the normalizing factor Zt(s) is given by:

Zt(s) =
∑

a∈A
π(t)(a | s)exp

�

η
A(t)(s, a)

1− γ

�

.

Lemma 61. [Improvement lower bound for NPG] For the iterates π(t) generated by the NPG
updates, we have for all starting state distributions µ:

Vπ
(t+1)
(µ)− Vπ

(t)
(µ)≥

(1− γ)
η
Es∼µ [log Zt(s)]≥ 0.

Proof: First, we show that log Zt(s)≥ 0. To see this, observe:

log Zt(s) = log
∑

a

π(t)(a | s)exp

�

η
A(t)(s, a)

1− γ

�

.

By Jensen’s inequality applied to the concave function log x , we have:

log Zt(s)≥
∑

a

π(t)(a | s) logexp

�

η
A(t)(s, a)

1− γ

�

=
η

1− γ

∑

a

π(t)(a | s)A(t)(s, a) = 0.

Now, apply the performance difference lemma:

Vπ
(t+1)
(µ)− Vπ

(t)
(µ) =

1
1− γ
Es∼d(t+1)

µ

�

∑

a

π(t+1)(a | s)A(t)(s, a)

�

.

Using the NPG update expression, we rewrite this as:

=
1
η
Es∼d(t+1)

µ

�

∑

a

π(t+1)(a | s) log

�

π(t+1)(a | s)Zt(s)
π(t)(a | s)

��

.

This is:
=

1
η
Es∼d(t+1)

µ

�

KL(π(t+1)
s ∥π(t)s) + log Zt(s)

�

.

Since KL divergence is non-negative:

≥
1
η
Es∼d(t+1)

µ
[log Zt(s)] .

Using the fact that d(t+1)
µ ≥ (1− γ)µ componentwise and log Zt(s)≥ 0, we get:

Es∼d(t+1)
µ
[log Zt(s)]≥ (1− γ)Es∼µ[log Zt(s)].

Thus:
Vπ

(t+1)
(µ)− Vπ

(t)
(µ)≥

(1− γ)
η
Es∼µ[log Zt(s)]≥ 0.

This concludes the proof. □

45

Theorem 62 (Global convergence for Natural Policy Gradient Ascent). For the softmax pol-
icy class, suppose we run the NPG updates using a starting distribution µ ∈ ∆(S) and with
initial parameters θ (0) = 0. Fix η > 0. Then, for all T > 0, we have:

Vπ
(T)
(µ)≥ Vπ

∗
(µ)−

log |A |
ηT

−
1

(1− γ)2T
.

Proof: Since π∗ and µ are fixed, we use d∗ as shorthand for dπ
∗

µ ; we also use πs as shorthand
for the vector π(· | s). By the performance difference lemma, we have:

Vπ
∗
(µ)− Vπ

(t)
(µ) =

1
1− γ
Es∼d∗

�

∑

a

π∗(a | s)A(t)(s, a)

�

.

Using the closed-form update rule of NPG, we rewrite this as:

=
1
η
Es∼d∗

�

∑

a

π∗(a | s) log

�

π(t+1)(a | s)Zt(s)
π(t)(a | s)

��

=
1
η
Es∼d∗

�

KL(π∗s∥π
(t)
s)− KL(π∗s∥π

(t+1)
s) + log Zt(s)

�

.

Hence:
Vπ

∗
(µ)− Vπ

(t)
(µ) =

1
η
Es∼d∗

�

KL(π∗s∥π
(t)
s)− KL(π∗s∥π

(t+1)
s) + log Zt(s)

�

.

By applying Lemma 61 with d∗ as the starting state distribution, we have:
1
η
Es∼d∗ [log Zt(s)]≥

1
1− γ

�

Vπ
(t+1)
(d∗)− Vπ

(t)
(d∗)

�

,

which gives us a bound on Es∼d∗ [log Zt(s)].
Using the above equation and the fact that Vπ

(t+1)
(µ)≥ Vπ

(t)
(µ) by Lemma 61, we have:

Vπ
∗
(µ)− Vπ

(T−1)
(µ)≤

1
T

T−1
∑

t=0

�

Vπ
∗
(µ)− Vπ

(t)
(µ)
�

≤
1
ηT

T−1
∑

t=0

Es∼d∗
�

KL(π∗s∥π
(t)
s)− KL(π∗s∥π

(t+1)
s)

�

+
1
ηT

T−1
∑

t=0

Es∼d∗ [log Zt(s)]

≤
Es∼d∗

�

KL(π∗s∥π
(0)
s)
�

ηT
+

1
(1− γ)T

T−1
∑

t=0

�

Vπ
(t+1)
(d∗)− Vπ

(t)
(d∗)

�

=
Es∼d∗

�

KL(π∗s∥π
(0)
s)
�

ηT
+

Vπ
(T)
(d∗)− Vπ

(0)
(d∗)

(1− γ)T

≤
log |A |
ηT

+
1

(1− γ)2T
.

The proof is completed using the fact that Vπ
(T)
(µ)≥ Vπ

(T−1)
(µ).

□

Remark 13. Setting η= (1−γ)2 log |A |, we see that NPG finds an ϵ-optimal policy in a number
of iterations that is at most:

T ≤
2

(1− γ)2ϵ
,

which has no dependence on the number of states or actions, despite the non-concavity of the
underlying optimization problem.

46

Multi-armed Bandit and Upper Confidence Bound (UCB) Algorithm

We consider the stochastic K-armed bandit problem:

• There are K arms.

• Each arm i yields i.i.d. rewards bounded in [0,1] with unknown mean µi .

• Let µ∗ =maxi µi be the best mean reward.

• Define the gap ∆i = µ∗ −µi ≥ 0.

Let T be the time horizon. The goal is to minimize the expected regret:

R(T) = Tµ∗ −E

� T
∑

t=1

rat

�

=
K
∑

i=1

∆i E[Ni(T)],

where:

• at is the arm selected at time t,

• rat
is the reward at time t,

• Ni(T) is the number of times arm i is pulled up to time T .

UCB Algorithm

At each round t, the UCB algorithm selects the arm:

at = argmax
i

�

µ̂i(t) +

√

√2 log t
Ni(t)

�

,

where:

• Ni(t) is the number of times arm i has been played by time t.

• µ̂i(t) =
∑t

k=0 rak
1{ak=i}

Ni(t)
is the empirical mean of arm i up to time t,

Proof of Regret Bound

Step 1: Concentration Inequality

We use Hoeffding’s inequality. For n i.i.d. samples X1, . . . , Xn ∈ [0, 1] with mean µ:

Pr

 �

�

�

�

�

1
n

n
∑

j=1

X j −µ

�

�

�

�

�

≥ ε

!

≤ 2 exp(−2nε2).

Let the confidence radius be:

ci(t) =

√

√2 log t
Ni(t)

.

By taking n = Ni(t) and ε = ci(t) in the above Hoeffding’s inequality, with high probability
1− 2

t4 , the empirical mean satisfies:

|µ̂i(t)−µi| ≤ ci(t).

47

Step 2: When Is a Suboptimal Arm Selected?

Suppose arm i is suboptimal (∆i > 0), and it is selected at time t. Then:

µ̂i(t) + ci(t)≥ µ̂i∗(t) + ci∗(t),

where i∗ is the optimal arm. Assuming the concentration bounds hold for both i and i∗ (which
by union bound happens with probability at least 1− 4

t4), we have:

µ̂i∗(t)≥ µ∗ − ci∗(t), µ̂i(t)≤ µi + ci(t).

So:
µi + 2ci(t)≥ µ∗⇒ 2ci(t)≥∆i .

Solving:

2

√

√2 log t
Ni(t)

≥∆i ⇒ Ni(t)≤
8 log t

∆2
i

.

Thus, if Ni(t)>
8 log T
∆2

i
, arm i will not be selected again (with high probability).

Step 3: Bounding Expected Pulls

We split E[Ni(T)] into:

E[Ni(T)]≤
8 log T

∆2
i

+
T
∑

t=1

Pr(concentration fails at time t).

Each failure has probability ≤ 4
t4 (from Hoeffding’s inequality with union bound), so:

T
∑

t=1

4
t4
≤
π4

90
< 8.

So:
E[Ni(T)]≤

8 log T

∆2
i

+ 8.

Step 4: Total Regret

Substituting into the regret formula:

R(T) =
∑

i:∆i>0

∆i ·E[Ni(T)]≤
∑

i:∆i>0

�

8 log T
∆i

+ 8∆i

�

.

Thus, the regret satisfies:

R(T) = O

∑

i:∆i>0

log T
∆i

!

This is a logarithmic-in-T regret, which is order-optimal for stochastic bandits.

48

Episodic Reinforcement Learning (RL)

We consider a finite-horizon episodic MDP:

M = (S ,A , P, r, H),

with:

• State space S , action spaceA .

• Unknown transition kernel P(s′ | s, a).

• Known reward function r(s, a) ∈ [0,1].

• Horizon length H, and K episodes.

Therefore, in each episode, we are dealing with a finite horizon MDP of the form

max
{πℓ}H−1

ℓ=0

E[
H−1
∑

ℓ=0

r(Sℓ, Aℓ)],

where for simplicity, we assume the reward function r(s, a) is deterministic, and γ = 1. Note
that in the finite horizon MDP, the optimal policy is not necessary stationary and is Markovian of
the form {πℓ}H−1

ℓ=0 .
Recall how to solve finite horizon MDP by solving the Bellman optimality equations:

V ∗H(s) = 0 ∀s

V ∗k (s) =max
a

�

r(s, a) +E[V ∗k+1(s
′)|sk = s, ak = a]

	

k = 0,1, . . . , H − 1.

Here, optimal value function is V ∗0 and the optimal policy is a Markovian deterministic policy.
Note that in RL, the goal is to solve this MDP without knowing the transition matrix P(·|·, ·).

Each episode consists of running the MDP from 0 to H, and we repeat each episode with a new
policy. Let k denote the kth episode started from some initial state sk

0, and let πk = (πk
0, . . . ,πk

H−1)
be the policy used in episode k. The goal is to achieve a regret defined by:

R(K) =
K
∑

k=1

�

V ∗0 (s
k
0)− Vπ

k

0 (s
k
0)
�

,

where V ∗0 is the optimal value function.

Upper Confidence Reinforcement Learning (UCRL) Algorithm

At the end of each episode k, do the following:

1. Estimate Transitions

For each (s, a), compute empirical transition probability:

P̂k(s
′ | s, a) =

Nk(s, a, s′)
max{1, Nk(s, a)}

,

where Nk(s, a) is the total number of times (s, a) was visited during the fixed episode k, and
Nk(s, a, s′) is the number of times during episode k that the MDP transitioned from s to s′ when
action a was taken in state s.

49

2. Construct Confidence Intervals

In episode k+ 1, compute a confidence set Ck,δ around P̂k for transition probabilities as

Ck,δ =
�

P : ∥P(· | s, a)− P̂k(· | s, a)∥1 ≤ fδ(Nk(s, a)) ∀s, a
	

,

where fδ(Nk(s, a)) is chosen such that P∗ ∈ Ck,δ∀k, with probability at least 1−δ. In particular,
one can take

fδ(Nk(s, a)) =

√

√

√2 log
�

2S2AN2
k (s, a)/δ

�

max{1, Nk(s, a)}
. (15)

3. Optimistic Policy Update

Update the policy to πk+1 = (πk+1
0 , . . . ,πk+1

H−1), where πk+1 = arg maxπmaxP∈Ck,δ
Vπ0 (s

k+1
0). Run

policy πk+1 in episode k+ 1, collect trajectory, and update statistics.

Remark 14. Note the similarity between UCRL and MAB, where we optimistically choose the
best policy within a confidence set, which is called “optimism in the face of uncertainty".

Regret Sketch

Step 1: Optimism

With high probability, the true MDP lies in the confidence set. More precisely:

Lemma 63. Let P∗ be the true (unknown) transition matrix of the MDP. By choosing fδ(·) as in
(15), with probability at least 1−δ, we have P∗ ∈ Ck,δ, ∀k.

Thus, with high probability, the policy computed using the optimistic model achieves:

Vπk
0 (s

k
0)≥ V ∗0 (s

k
0)− errork.

Step 2: Decomposition

The regret decomposes into:

R(K) =
K
∑

k=1

�

V ∗0 (s
k
0)− Vπk

0 (s
k
0)
�

≤
K
∑

k=1

H−1
∑

h=0

bonusk(s
k
h, ak

h),

where each bonus is controlled by fδ(Nk(s, a)).
Finally, using some martingale analysis, we can bound the total number of visits to uncertain

state-action pairs, and in particular each bonusk(sk
h, ak

h) with high probability. Combining all the
components, one can show the following result.

Theorem 64. With high probability 1−δ := 1− 1p
K
, the regret of the UCRL is bounded by

R(K) = Õ
�

H
3
2 S
p

AK
�

,

where Õ hides the logarithmic factors.

50

