Conformal Invariance in 2D Lattice Models Part 2: Random Cluster Model

Hao Wu (THU)

Part 1: Bernoulli Percolation Part 2: Random Cluster Model Part 3: Ising Model

< 同 ト < 三 ト < 三 ト

Bernoulli percolation vs. FK-percolation

Bernoulli percolationFK percolationIndependent percolationGependent percolation• FKG inequality• True for $q \ge 1$ • Phase transition• True for $q \ge 1$ • Critical value : $p_c = p_{sd}$ • True for $q \ge 1$ • Subcritical : exp. decay• True for $q \ge 1$.

Continuity of PT

• True for $1 \le q \le 4$.

< ロ > < 同 > < 回 > < 回 >

• False for q > 4

FK-percolation—definition

Fortuin and Kasteleyn

FK-percolation : also called random-cluster model. It is a generalization of Bernoulli percolation where there is dependence between edges.

- G = (V, E) is a finite graph
- configuration $\omega \in \{0, 1\}^E$, $o(\omega)$, $c(\omega)$, $k(\omega)$
- edge-parameter $p \in [0, 1]$, cluster-parameter q > 0

FK-percolation on G is the probability measure defined by

$$\phi_{p,q,G}[\omega] \propto p^{o(\omega)} (1-p)^{c(\omega)} q^{k(\omega)}.$$

< 回 > < 回 > < 回 >

FK-percolation—boundary conditions

Fix a partition ξ of ∂G , and identify the vertices in ∂G that belong to the same component of ξ . FK-percolation on *G* with parameters (*p*, *q*) and boundary conditions ξ is the probability measure :

$$\phi_{p,q,G}^{\xi}[\omega] \propto p^{o(\omega)} (1-p)^{c(\omega)} q^{k(\omega,\xi)}.$$

FK-percolation—boundary conditions

Fix a partition ξ of ∂G , and identify the vertices in ∂G that belong to the same component of ξ . FK-percolation on *G* with parameters (*p*, *q*) and boundary conditions ξ is the probability measure :

$$\phi_{\boldsymbol{p},\boldsymbol{q},\boldsymbol{G}}^{\xi}[\omega] \propto \boldsymbol{p}^{\boldsymbol{o}(\omega)}(1-\boldsymbol{p})^{\boldsymbol{c}(\omega)}\boldsymbol{q}^{k(\omega,\xi)}.$$

- wired-b.c. : $\phi_{p,q,G}^1$
- free-b.c. : $\phi_{p,q,G}^0$
- Dobrushin-b.c.
- induced by a config. outside G

イロト イ理ト イヨト イヨト

FK-percolation—boundary conditions

Fix a partition ξ of ∂G , and identify the vertices in ∂G that belong to the same component of ξ . FK-percolation on *G* with parameters (*p*, *q*) and boundary conditions ξ is the probability measure :

$$\phi_{oldsymbol{
ho},oldsymbol{q},oldsymbol{G}}^{\xi}[\omega] \propto oldsymbol{p}^{o(\omega)}(1-oldsymbol{
ho})^{c(\omega)}oldsymbol{q}^{k(\omega,\xi)}.$$

- wired-b.c. : $\phi_{p,q,G}^1$
- free-b.c. : $\phi_{p,q,G}^0$
- Dobrushin-b.c.
- induced by a config. outside G

Domain Markov Property

Suppose $G' \subset G$, for any $\psi \in \{0, 1\}^{E(G) \setminus E(G')}$,

$$\phi_{m{p},m{q},m{G}}^{\xi}[X\,|\,\omega_{m{e}}=\psi_{m{e}},orall m{e}\in m{E}(m{G})\setminusm{E}(m{G}')]=\phi_{m{p},m{q},m{G}'}^{\psi^{\xi}}[X].$$

Theorem (FKG Inequality)

Fix $p \in [0, 1]$, $q \ge 1$, a finite graph G and some boundary conditions ξ . For any two increasing events A and B, we have

$$\phi_{\boldsymbol{\rho},\boldsymbol{q},\boldsymbol{G}}^{\xi}[\boldsymbol{A}\cap\boldsymbol{B}]\geq\phi_{\boldsymbol{\rho},\boldsymbol{q},\boldsymbol{G}}^{\xi}[\boldsymbol{A}]\phi_{\boldsymbol{\rho},\boldsymbol{q},\boldsymbol{G}}^{\xi}[\boldsymbol{B}].$$

< ロ > < 同 > < 回 > < 回 >

Theorem (FKG Inequality)

Fix $p \in [0, 1]$, $q \ge 1$, a finite graph G and some boundary conditions ξ . For any two increasing events A and B, we have

$$\phi_{p,q,G}^{\xi}[A \cap B] \ge \phi_{p,q,G}^{\xi}[A]\phi_{p,q,G}^{\xi}[B].$$

- Given two proba. measures μ₁, μ₂, we write μ₁ ≤_{st} μ₂, if μ₁[A] ≤ μ₂[A] for all increasing event A.
- A proba. measure μ strictly positive if $\mu[\omega] > 0$ for all ω .

Theorem (Holley inequality)

Let μ_1, μ_2 be strictly positive probability measures on the finite state space such that

$$\mu_{\mathbf{2}}[\boldsymbol{\omega}^{\boldsymbol{e}}]\mu_{\mathbf{1}}[\eta_{\boldsymbol{e}}] \geq \mu_{\mathbf{2}}[\boldsymbol{\omega}_{\boldsymbol{e}}]\mu_{\mathbf{1}}[\eta^{\boldsymbol{e}}], \quad \forall \boldsymbol{e} \in \boldsymbol{E}, \forall \eta \leq \boldsymbol{\omega}.$$

Then $\mu_1 \leq_{st} \mu_2$.

FKG Inequality : consequences

Corollary (Monotonicity)

Fix $p \le p'$ and $q \ge 1$, a finite graph G and some b.c. ξ . We have $\phi_{p,q,G}^{\xi} \le_{st} \phi_{p',q,G}^{\xi}$.

Corollary (Comparison between boundary conditions)

Fix $p \in [0, 1]$ and $q \ge 1$, a finite graph G. For any b.c. $\xi \le \psi$, we have $\phi_{p,q,G}^{\xi} \le_{st} \phi_{p,q,G}^{\psi}$. In particular, for any b.c. ξ , we have $\phi_{p,q,G}^{0} \le_{st} \phi_{p,q,G}^{\xi} \le_{st} \phi_{p,q,G}^{1}$.

Corollary (Finite-energy property)

Fix $p \in [0, 1]$ and $q \ge 1$, a finite graph G, and some b.c. ξ , we have

$$\frac{p}{p+(1-p)q} \leq \phi_{p,q,G}^{\xi} \left[\omega(f) = 1 \, | \, \omega(e) = \psi(e) \, \forall e \in E(G) \setminus \{f\} \right] \leq p.$$

Bernoulli percolation vs. FK-percolation

Bernoulli percolation FK percolation Independent percolation dependent percolation FKG inequality • True for $q \ge 1$ Phase transition • True for q > 1• Critical value : $p_c = p_{sd}$ • True for $q \ge 1$.

- Subcritical : exp. decay
- Continuity of PT

- True for q > 1.
- True for $1 \le q \le 4$.

< ロ > < 同 > < 回 > < 回 >

• False for q > 4

Let ξ_n be a sequence of b.c. The sequence $\phi_{p,q,\Lambda_n}^{\xi_n}$ is said to converge to the infinite-volume measure $\phi_{p,q}$ if

$$\lim_{n} \phi_{p,q,\Lambda_n}^{\xi_n}[\mathbf{A}] = \phi_{p,q}[\mathbf{A}],$$

for any event A depending only on the status of finitely many edges.

Proposition

Fix $p \in [0, 1]$ and $q \ge 1$. There exist two (possibly equal) infinite-volume random-cluster measures $\phi_{p,q}^0$ and $\phi_{p,q}^1$ such that for any event *A* depending on a finite number of edges,

$$\lim_{n\to\infty}\phi^1_{\rho,q,\Lambda_n}[A]=\phi^1_{\rho,q}[A],\quad \lim_{n\to\infty}\phi^0_{\rho,q,\Lambda_n}[A]=\phi^0_{\rho,q}[A].$$

< 同 ト < 三 ト < 三 ト

Lemma

Fix $q \ge 1$. The infinite-volume measures $\phi_{p,q}^0$ and $\phi_{p,q}^1$ are translation invariant and are ergodic.

イロト イポト イヨト イヨト

Lemma

Fix $q \ge 1$. The infinite-volume measures $\phi_{p,q}^0$ and $\phi_{p,q}^1$ are translation invariant and are ergodic.

Lemma

Fix $q \ge 1$. For $\phi_{p,q}^0$ or $\phi_{p,q}^1$, either there is no infinite cluster almost surely, or there exists a unique infinite cluster almost surely.

< ロ > < 同 > < 回 > < 回 >

Lemma

Fix $q \ge 1$. The infinite-volume measures $\phi_{p,q}^0$ and $\phi_{p,q}^1$ are translation invariant and are ergodic.

Lemma

Fix $q \ge 1$. For $\phi_{p,q}^0$ or $\phi_{p,q}^1$, either there is no infinite cluster almost surely, or there exists a unique infinite cluster almost surely.

The measures $\phi_{p,q}^0$ and $\phi_{p,q}^1$ are extremal :

$$\phi_{p,q}^{0} \leq_{st} \phi_{p,q} \leq_{st} \phi_{p,q}^{1}.$$

・ 回 ト ・ ヨ ト ・ ヨ ト

Lemma

Fix $q \ge 1$. The infinite-volume measures $\phi_{p,q}^0$ and $\phi_{p,q}^1$ are translation invariant and are ergodic.

Lemma

Fix $q \ge 1$. For $\phi_{p,q}^0$ or $\phi_{p,q}^1$, either there is no infinite cluster almost surely, or there exists a unique infinite cluster almost surely.

The measures $\phi^0_{\rho,q}$ and $\phi^1_{\rho,q}$ are extremal :

$$\phi_{p,q}^{0} \leq_{st} \phi_{p,q} \leq_{st} \phi_{p,q}^{1}$$
.

Question

Do we have $\phi_{p,q}^0 = \phi_{p,q}^1$?

Bernoulli percolation vs. FK-percolation

Bernoulli percolationFK percolationIndependent percolationdependent percolation• FKG inequality• True for $q \ge 1$ • Phase transition• $q \ge 1 : \infty$ -volume measure • Critical value : $p_c = p_{sd}$ • True for $q \ge 1$.• Subcritical : exp. decay• True for $q \ge 1$.

• Continuity of PT

• True for $1 \le q \le 4$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• False for q > 4

Theorem

Fix $q \ge 1$. There exists a critical point $p_c = p_c(q) \in [0, 1]$ such that

- For p > p_c, any infinite-volume measure has an infinite cluster almost surely.
- For p < p_c, any infinite-volume measure has no infinite cluster almost surely.

Lemma

Fix $q \ge 1$. we have $\phi_{p,q}^0 = \phi_{p,q}^1$ for all but countably many values of p.

< 回 > < 三 > < 三 >

Bernoulli percolation vs. FK-percolation

Bernoulli percolation FK percolation Independent percolation dependent percolation FKG inequality • True for q > 1Phase transition • Critical value : $p_c = p_{sd}$ • True for q > 1. Subcritical : exp. decay

Continuity of PT

• q > 1 : ∞ -volume measure \checkmark

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $q \ge 1$: Phase transition \checkmark
- True for q > 1.
- True for $1 \le q \le 4$.
- False for q > 4

Critical Value : self-dual point

Theorem

Consider the random-cluster model on \mathbb{Z}^2 with cluster-weight $q \ge 1$. The critical value p_c is given by

$$\mathcal{D}_c(q) = rac{\sqrt{q}}{1+\sqrt{q}}.$$

Proposition

The dual configuration of the random-cluster model on *G* with parameters (p, q) and b.c. ξ is the random-cluster model with parameters (p^*, q) on *G*^{*} with b.c. ξ^* where $p^* = p^*(p, q)$ satisfying

$$\frac{pp^*}{(1-p)(1-p^*)}=q.$$

・ロン ・四 ・ ・ ヨン ・ ヨン

Critical Value

Lemma

Fix $q \ge 1$, we have

$$\phi^{\mathsf{0}}_{p_{sd}(q),q}[\mathsf{0}\leftrightarrow\infty]=\mathsf{0}.$$

Theorem

Consider the random-cluster model on \mathbb{Z}^2 with cluster-weight $q \ge 1$.

- If $p < p_c$, then there exists c = c(p) > 0 such that for every $n \ge 1$, $\phi_{p,q,\Lambda_n}^1[0 \longleftrightarrow \partial \Lambda_n] \le e^{-cn}$.
- If $p > p_c$, then there exists C > 0 such that $\phi_{p,q}^1[0 \longleftrightarrow \infty] \ge C(p p_c)$.

イロト イ理ト イヨト イヨト

Bernoulli percolation vs. FK-percolation

Bernoulli percolation FK percolation Independent percolation dependent percolation FKG inequality • True for q > 1Phase transition • Critical value : $p_c = p_{sd}$ • True for q > 1. Subcritical : exp. decay

Continuity of PT

• q > 1 : ∞ -volume measure \checkmark

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $q \ge 1$: Phase transition \checkmark
- True for q > 1.
- True for $1 \le q \le 4$.
- False for q > 4

Continuity of the phase transition

Theorem

• Fix $1 \le q \le 4$, we have

$$\phi^{1}_{p_{c},q}[0\longleftrightarrow\infty]=0.$$

• Fix q > 4, we have

$$\phi^1_{\rho_c,q}[0\longleftrightarrow\infty]>0,\quad \phi^0_{\rho_c,q}[0\longleftrightarrow\infty]=0$$

Consequence

- When $1 \le q \le 4$, we have $\phi^1 = \phi^0$, and continuous PT.
- When q > 4, we have $\phi_{p_c,q}^1 \neq \phi_{p_c,q}^0$, and discontinuous PT for $\phi_{p_c,q}^1$.

э

Bernoulli percolation vs. FK-percolation

Bernoulli percolation	FK percolation
Independent percolation	dependent percolation
 FKG inequality 	• True for $q \ge 1$
 Phase transition 	 q ≥ 1 : ∞-volume measure q ≥ 1 : Phase transition
• Critical value : $p_c = p_{sd}$	• True for $q \ge 1$.
Subcritical : exp. decay	• True for $q \ge 1$.

Continuity of PT

• True for $1 \le q \le 4$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• False for q > 4

FK-Ising model

FK-Ising model : random-cluster model with q = 2.

 $\mathbb{L} = (\mathbb{Z}^2, E(\mathbb{Z}^2))$: the square lattice ; \mathbb{L}^* : the dual lattice \mathbb{L}^\diamond : the medial lattice.

- vertices : the centers of edges of \mathbb{L} .
- edges : connecting nearest neighbors.

$$\mathbb{L}_{\delta} = \sqrt{2}\delta\mathbb{L}, \mathbb{L}_{\delta}^{*}, \mathbb{L}_{\delta}^{\diamond}.$$
 The mesh-size of $\mathbb{L}_{\delta}^{\diamond}$ is δ .

< ロ > < 同 > < 回 > < 回 >

Dobrushin domain

For a simply connected domain Ω , we set $\Omega_{\delta} = \Omega \cap \mathbb{L}_{\delta}$. For a Dobrushin domain (Ω ; a, b), let ($\Omega_{\delta}^{\diamond}$; a_{δ}, b_{δ}) be an approximation. Dobrushin b.c. : edges of (ba) are open (edges of (ba) are wired), edges of (a^*b^*) are dual-open (edges of (ab) are free).

Hao Wu (THU)

2D Lattice Models

Loop representation

Fix a Dobrushin domain $(\Omega; a, b)$ with Dobrushin b.c.

Draw self-avoiding loops on Ω^{\diamond} as follows : a loop arriving at a vertex of the medial lattice always makes a $\pm \pi/2$ turn so as not to cross the open or dual open edges through this vertex.

FK fermionic observable

Definition

The edge FK fermionic observable is defined on edges of $\Omega^{\diamond}_{\delta}$ by

$$F_{(\Omega_{\delta}^{\circ};a_{\delta}^{\circ},b_{\delta}^{\circ})}(e) = \mathbb{E}_{(\Omega_{\delta}^{\circ};a_{\delta}^{\circ},b_{\delta}^{\circ})} \left[\mathbf{1}_{\{e \in \gamma\}} \exp\left(\frac{i}{2}W_{\gamma}(e,b_{\delta})\right) \right],$$

where $W_{\gamma}(e, b_{\delta})$ denotes the winding between the center of e and b_{δ}^{\diamond} . The vertex FK fermionic observable is defined on vertices of $\Omega_{\delta}^{\diamond} \setminus \partial \Omega_{\delta}^{\diamond}$ by

$$\mathcal{F}_{(\Omega^{\diamond}_{\delta};a^{\diamond}_{\delta},b^{\diamond}_{\delta})}(v)=rac{1}{2}\sum_{oldsymbol{e}\sim v}\mathcal{F}_{(\Omega^{\diamond}_{\delta};a^{\diamond}_{\delta},b^{\diamond}_{\delta})}(oldsymbol{e}),$$

where the sum is over the four medial edges having v as an endpoint.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Fix a Dobrushin domain (Ω ; a, b). Consider the critical FK-Ising model. Let F_{δ} be the vertex fermionic observable in ($\Omega_{\delta}^{\diamond}$; $a_{\delta}^{\diamond}, b_{\delta}^{\diamond}$). Then, we have

$$\frac{1}{\sqrt{2\delta}}F_{\delta} \rightarrow \sqrt{\phi'}, \quad as \ \delta \rightarrow 0, \quad locally \ uniformly,$$

where ϕ is any conformal map from Ω on to the strip $\mathbb{R} \times (0, 1)$ sending a to $-\infty$ and b to $+\infty$.

イロト イヨト イヨト イヨト

Discrete complex analysis

 $\mathbb{L} = (\mathbb{Z}^2, E(\mathbb{Z}^2))$: the square lattice ; \mathbb{L}^* : the dual lattice \mathbb{L}^\diamond : the medial lattice.

- vertices : the centers of edges of L.
- edges : connecting nearest neighbors.
- $\mathbb{L}_{\delta} = \sqrt{2}\delta\mathbb{L}, \mathbb{L}_{\delta}^{*}, \mathbb{L}_{\delta}^{\diamond}$. The mesh-size of $\mathbb{L}_{\delta}^{\diamond}$ is δ .

< ロ > < 同 > < 回 > < 回 >

For $x \in \mathbb{L}_{\delta}$ and $h : \mathbb{L}_{\delta} \to \mathbb{C}$, define

$$\Delta_{\delta}h(x) = \frac{1}{4}\sum_{y: y \sim x}(h(y) - h(x)).$$

- $h: \Omega_{\delta} \to \mathbb{C}$ is preharmonic if $\Delta_{\delta} h(x) = 0, \forall x \in \Omega_{\delta}$.
- $h: \Omega_{\delta} \to \mathbb{C}$ is pre-superharmonic if $\Delta_{\delta} h(x) \leq 0, \forall x \in \Omega_{\delta}$.
- $h: \Omega_{\delta} \to \mathbb{C}$ is pre-subharmonic if $\Delta_{\delta} h(x) \ge 0, \forall x \in \Omega_{\delta}$.

The classical relation between preharmonic function and SRW : Let (X_n) be a SRW on \mathbb{L}_{δ} killed at the first time it exits Ω_{δ} , then *h* is preharmonic if and only if $(h(X_n))$ is a martingale.

< 日 > < 同 > < 回 > < 回 > < □ > <

Convergence of the discrete Dirichlet problem solution

Theorem

- let (Ω; a, b) be a Dobrushin domain,
- let f be a bounded continuous function on $\partial \Omega \setminus \{a, b\}$,
- let h be the unique harmonic function on Ω , continuous on $\overline{\Omega} \setminus \{a, b\}$, satisfying h = f on $\partial \Omega \setminus \{a, b\}$.
- let (Ω_δ; a_δ, b_δ) be a sequence of discrete Dobrushin domains converging to (Ω; a, b) in the Carathéodory sense.
- let f_δ : ∂Ω_δ → C be a sequence of uniformly bounded functions converging to f uniformly away from a and b.
- let h_δ be the unique preharmonic function on Ω_δ such that h_δ = f_δ on ∂Ω_δ.

Then $h_{\delta} \rightarrow h$ locally uniformly as $\delta \rightarrow 0$.

Preholomorphic function

For a function $f : \mathbb{L}_{\delta} \to \mathbb{C}$, and $x \in \mathbb{L}_{\delta}^*$, define

$$\bar{\partial}_{\delta}f(x) = rac{1}{2}(f(E) - f(W)) + rac{i}{2}(f(N) - f(S)),$$

where N, E, S, W are the four vertices of \mathbb{L}_{δ} adjacent to *x* indexed in the obvious way.

A function $f : \Omega_{\delta} \to \mathbb{C}$ is preholomorphic if $\bar{\partial}_{\delta} f(x) = 0$ for all $x \in \Omega_{\delta}^*$. The equation $\bar{\partial}_{\delta} f(x) = 0$ is called the Cauchy-Riemann equation at x.

- (1) Sums of preholomorphic functions are preholomorphic.
- (2) Discrete contour integrals vanish in simply connected domain.
- (3) The primitive in simply connected domain is well-defined.
- (4) If a family (*f_δ*) of preholomorphic functions on Ω_δ converges locally uniformly to *f* on Ω, then *f* is holomorphic.

Attention : the product of two preholomorphics is not preholomorphic, and preholomorphic, and preholomorphic, and preholomorphic and preholomorphi

Spin-holomorphic

For $e \in E(\mathbb{L}^\diamond)$, we give an orientation : counterclockwise around white faces. For $e \in E(\mathbb{L}^\diamond)$, we associate a direction $\ell(e)$: as in the figure. In other words, $\ell(e)$ has the same direction as $\sqrt{\overline{e}}$.

< D > < P > < P > < P > < P >

A function f is s-holomorphic if for any edge e of $\Omega^{\diamond}_{\delta}$, we have

$$\mathsf{P}_{\ell(e)}[f(x)] = \mathsf{P}_{\ell(e)}[f(y)],$$

where *x*, *y* are the endpoints of *e* and P_{ℓ} is the orthogonal projection on the direction ℓ .

Proposition

Any *s*-holomorphic function $f : \Omega_{\delta}^{\diamond} \to \mathbb{C}$ is preholomorphic on $\Omega_{\delta}^{\diamond}$.

Discrete analog of $\frac{1}{2}\Im \int f^2$

Theorem

Let Ω be a simply connected domain. Suppose $f : \Omega_{\delta}^{\diamond} \to \mathbb{C}$ is an *s*-holomorphic function and $b_0 \in \Omega_{\delta}$. Then, there exists a unique function $H : \Omega_{\delta} \cup \Omega_{\delta}^* \to \mathbb{C}$ such that

$$H(b_0) = 1$$
, and $H(b) - H(w) = \delta |P_{\ell(e)}[f(x)]|^2 (= \delta |P_{\ell(e)}[f(y)]|^2)$,

for every edge e = (x, y) on $\Omega_{\delta}^{\diamond}$ bordered by a black face $b \in \Omega_{\delta}$ and a white face $w \in \Omega_{\delta}^{*}$.

For two neighboring sites $b_1, b_2 \in \Omega_{\delta}$, with *v* being the medial vertex at the center of (b_1, b_2) ,

$$H(b_1) - H(b_2) = \frac{1}{2}\Im(f(v)^2(b_1 - b_2)).$$

The same relation also holds for vertices of Ω^*_{δ} .

Discrete analog of $\frac{1}{2}\Im \int f^2$

Proposition

Denote by H^{\bullet} the restriction of H to Ω_{δ} (black faces) and by H° the restriction of H to Ω_{δ}^{*} (white faces). If f is *s*-holomorphic, then H^{\bullet} is subharmonic and H° is superharmonic.

Dobrushin domain

For a simply connected domain Ω , we set $\Omega_{\delta} = \Omega \cap \mathbb{L}_{\delta}$. For a Dobrushin domain (Ω ; a, b), let ($\Omega_{\delta}^{\diamond}$; a_{δ}, b_{δ}) be an approximation. Dobrushin b.c. : edges of (ba) are open (edges of (ba) are wired), edges of (a^*b^*) are dual-open (edges of (ab) are free).

Hao Wu (THU)

2D Lattice Models

Loop representation

Fix a Dobrushin domain $(\Omega; a, b)$ with Dobrushin b.c.

Draw self-avoiding loops on Ω^{\diamond} as follows : a loop arriving at a vertex of the medial lattice always makes a $\pm \pi/2$ turn so as not to cross the open or dual open edges through this vertex.

FK fermionic observable

Definition

The edge FK fermionic observable is defined on edges of $\Omega^{\diamond}_{\delta}$ by

$$F_{(\Omega_{\delta}^{\circ};a_{\delta}^{\circ},b_{\delta}^{\circ})}(e) = \mathbb{E}_{(\Omega_{\delta}^{\circ};a_{\delta}^{\circ},b_{\delta}^{\circ})} \left[\mathbf{1}_{\{e \in \gamma\}} \exp\left(\frac{i}{2}W_{\gamma}(e,b_{\delta})\right) \right],$$

where $W_{\gamma}(e, b_{\delta})$ denotes the winding between the center of e and b_{δ}^{\diamond} . The vertex FK fermionic observable is defined on vertices of $\Omega_{\delta}^{\diamond} \setminus \partial \Omega_{\delta}^{\diamond}$ by

$$\mathcal{F}_{(\Omega^{\diamond}_{\delta};a^{\diamond}_{\delta},b^{\diamond}_{\delta})}(v)=rac{1}{2}\sum_{oldsymbol{e}\sim v}\mathcal{F}_{(\Omega^{\diamond}_{\delta};a^{\diamond}_{\delta},b^{\diamond}_{\delta})}(oldsymbol{e}),$$

where the sum is over the four medial edges having v as an endpoint.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Fix a Dobrushin domain (Ω ; a, b). Consider the critical FK-Ising model. Let F_{δ} be the vertex fermionic observable in ($\Omega_{\delta}^{\diamond}$; $a_{\delta}^{\diamond}, b_{\delta}^{\diamond}$). Then, we have

$$\frac{1}{\sqrt{2\delta}}F_{\delta} \rightarrow \sqrt{\phi'}, \quad as \ \delta \rightarrow 0, \quad locally \ uniformly,$$

where ϕ is any conformal map from Ω on to the strip $\mathbb{R} \times (0, 1)$ sending a to $-\infty$ and b to $+\infty$.

イロト イポト イヨト イヨト

The observable is s-holomorphic

Lemma

Consider a medial vertex $v \in \Omega^{\diamond}_{\delta} \setminus \partial \Omega^{\diamond}_{\delta}$. We have

$$F_{\delta}(N) - F_{\delta}(S) = i(F_{\delta}(E) - F_{\delta}(W)),$$

where N, E, S, W are the four adjacent edges indexed in clockwise order.

Lemma

The vertex fermionic observable F_{δ} is s-holomorphic.

Let *A* be the black face bordering a_{δ} . Define $H_{\delta} : \Omega_{\delta} \cup \Omega_{\delta}^* \to \mathbb{R}$ such that

 $H(A) = 1, \quad \text{and} \quad H_{\delta}(B) - H_{\delta}(W) = |P_{\ell(e)}[F_{\delta}(x)]|^2 = |P_{\ell(e)}[F_{\delta}(y)]|^2,$

for the medial edge e = (x, y) bordered by a black face $B \in \Omega_{\delta}$ and a white face $W \in \Omega^*_{\delta}$.

Lemma

- The subharmonic function H[•]_δ is equal to 1 on (ba), and it converges to 0 on (ab) uniformly away from a and b.
- The superharmonic function H^o_δ is equal to 0 on (a^{*}b^{*}), and it converges to 1 on (b^{*}a^{*}) uniformly away from a and b.

Proposition

The sequence $(H_{\delta})_{\delta>0}$ converges to $\Im \phi$ locally uniformly.

Theorem

Fix a Dobrushin domain (Ω ; a, b). Consider the critical FK-Ising model. Let F_{δ} be the vertex fermionic observable in ($\Omega_{\delta}^{\diamond}$; $a_{\delta}^{\diamond}, b_{\delta}^{\diamond}$). Then, we have

$$rac{1}{\sqrt{2\delta}}F_{\delta}
ightarrow \sqrt{\phi'}, \quad as \ \delta
ightarrow 0, \quad locally \ uniformly,$$

where ϕ is any conformal map from Ω on to the strip $\mathbb{R} \times (0, 1)$ sending a to $-\infty$ and b to $+\infty$.

Corollary

The exploration path in FK-Ising with Dobrushin boundary conditions converges to $SLE_{16/3}$. (Lecture on Oct. 30th)