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Bernoulli percolation vs. FK-percolation

Bernoulli percolation
Independent percolation

FK percolation
dependent percolation

FKG inequality True for q ≥ 1

Phase transition True for q ≥ 1

Critical value : pc = psd True for q ≥ 1.

Subcritical : exp. decay True for q ≥ 1.

Continuity of PT
True for 1 ≤ q ≤ 4.
False for q > 4
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FK-percolation—definition

Fortuin and Kasteleyn
FK-percolation : also called random-cluster model. It is a generalization
of Bernoulli percolation where there is dependence between edges.

G = (V ,E) is a finite graph
configuration ω ∈ {0,1}E , o(ω), c(ω), k(ω)

edge-parameter p ∈ [0,1], cluster-parameter q > 0

FK-percolation on G is the probability measure defined by

φp,q,G[ω] ∝ po(ω)(1− p)c(ω)qk(ω).
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FK-percolation—boundary conditions

Fix a partition ξ of ∂G, and identify the vertices in ∂G that belong to the
same component of ξ. FK-percolation on G with parameters (p,q) and
boundary conditions ξ is the probability measure :

φξp,q,G[ω] ∝ po(ω)(1− p)c(ω)qk(ω,ξ).

wired-b.c. : φ1
p,q,G

free-b.c. : φ0
p,q,G

Dobrushin-b.c.
induced by a config. outside G

Domain Markov Property

Suppose G′ ⊂ G, for any ψ ∈ {0,1}E(G)\E(G′),

φξp,q,G[X |ωe = ψe,∀e ∈ E(G) \ E(G′)] = φψ
ξ

p,q,G′ [X ].
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Theorem (FKG Inequality)

Fix p ∈ [0,1], q ≥ 1, a finite graph G and some boundary conditions ξ.
For any two increasing events A and B, we have

φξp,q,G[A ∩ B] ≥ φξp,q,G[A]φξp,q,G[B].

Given two proba. measures µ1, µ2, we write µ1 ≤st µ2,
if µ1[A] ≤ µ2[A] for all increasing event A.
A proba. measure µ strictly positive if µ[ω] > 0 for all ω.

Theorem (Holley inequality)
Let µ1, µ2 be strictly positive probability measures on the finite state
space such that

µ2[ωe]µ1[ηe] ≥ µ2[ωe]µ1[ηe], ∀e ∈ E , ∀η ≤ ω.

Then µ1 ≤st µ2.
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FKG Inequality : consequences

Corollary (Monotonicity)

Fix p ≤ p′ and q ≥ 1, a finite graph G and some b.c. ξ.
We have φξp,q,G ≤st φ

ξ
p′,q,G.

Corollary (Comparison between boundary conditions)

Fix p ∈ [0,1] and q ≥ 1, a finite graph G. For any b.c. ξ ≤ ψ,
we have φξp,q,G ≤st φ

ψ
p,q,G.

In particular, for any b.c. ξ, we have φ0
p,q,G ≤st φ

ξ
p,q,G ≤st φ

1
p,q,G.

Corollary (Finite-energy property)

Fix p ∈ [0,1] and q ≥ 1, a finite graph G, and some b.c. ξ, we have

p
p + (1− p)q

≤ φξp,q,G [ω(f ) = 1 |ω(e) = ψ(e) ∀e ∈ E(G) \ {f}] ≤ p.
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Bernoulli percolation vs. FK-percolation

Bernoulli percolation
Independent percolation

FK percolation
dependent percolation

FKG inequality True for q ≥ 1 X

Phase transition True for q ≥ 1

Critical value : pc = psd True for q ≥ 1.

Subcritical : exp. decay True for q ≥ 1.

Continuity of PT
True for 1 ≤ q ≤ 4.
False for q > 4
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Infinite volume measure

Let ξn be a sequence of b.c. The sequence φξn
p,q,Λn

is said to converge
to the infinite-volume measure φp,q if

lim
n
φξn

p,q,Λn
[A] = φp,q[A],

for any event A depending only on the status of finitely many edges.

Proposition

Fix p ∈ [0,1] and q ≥ 1. There exist two (possibly equal)
infinite-volume random-cluster measures φ0

p,q and φ1
p,q such that for

any event A depending on a finite number of edges,

lim
n→∞

φ1
p,q,Λn

[A] = φ1
p,q[A], lim

n→∞
φ0

p,q,Λn
[A] = φ0

p,q[A].
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Ergodicity

Lemma

Fix q ≥ 1. The infinite-volume measures φ0
p,q and φ1

p,q are translation
invariant and are ergodic.

Lemma

Fix q ≥ 1. For φ0
p,q or φ1

p,q, either there is no infinite cluster almost
surely, or there exists a unique infinite cluster almost surely.

The measures φ0
p,q and φ1

p,q are extremal :

φ0
p,q ≤st φp,q ≤st φ

1
p,q.

Question

Do we have φ0
p,q = φ1

p,q ?
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Bernoulli percolation vs. FK-percolation

Bernoulli percolation
Independent percolation

FK percolation
dependent percolation

FKG inequality True for q ≥ 1 X

Phase transition
q ≥ 1 :∞-volume measure X

q ≥ 1 : Phase transition

Critical value : pc = psd True for q ≥ 1.

Subcritical : exp. decay True for q ≥ 1.

Continuity of PT
True for 1 ≤ q ≤ 4.
False for q > 4
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Phase transition

Theorem

Fix q ≥ 1. There exists a critical point pc = pc(q) ∈ [0,1] such that
For p > pc , any infinite-volume measure has an infinite cluster
almost surely.
For p < pc , any infinite-volume measure has no infinite cluster
almost surely.

Lemma

Fix q ≥ 1. we have φ0
p,q = φ1

p,q for all but countably many values of p.
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Critical Value : self-dual point

Theorem

Consider the random-cluster model on Z2 with cluster-weight q ≥ 1.
The critical value pc is given by

pc(q) =

√
q

1 +
√

q
.

Proposition
The dual configuration of the random-cluster model on G with
parameters (p,q) and b.c. ξ is the random-cluster model with
parameters (p∗,q) on G∗ with b.c. ξ∗ where p∗ = p∗(p,q) satisfying

pp∗

(1− p)(1− p∗)
= q.
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Critical Value

Lemma

Fix q ≥ 1, we have
φ0

psd (q),q[0↔∞] = 0.

Theorem

Consider the random-cluster model on Z2 with cluster-weight q ≥ 1.
If p < pc , then there exists c = c(p) > 0 such that for every n ≥ 1,
φ1

p,q,Λn
[0←→ ∂Λn] ≤ e−cn.

If p > pc , then there exists C > 0 such that
φ1

p,q[0←→∞] ≥ C(p − pc).
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Bernoulli percolation vs. FK-percolation
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Continuity of the phase transition

Theorem
Fix 1 ≤ q ≤ 4, we have

φ1
pc ,q[0←→∞] = 0.

Fix q > 4, we have

φ1
pc ,q[0←→∞] > 0, φ0

pc ,q[0←→∞] = 0

Consequence

When 1 ≤ q ≤ 4, we have φ1 = φ0, and continuous PT.
When q > 4, we have φ1

pc ,q 6= φ0
pc ,q, and discontinuous PT for

φ1
pc ,q.
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Bernoulli percolation vs. FK-percolation
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FK-Ising model

FK-Ising model : random-cluster model with q = 2.

L = (Z2,E(Z2)) : the square lattice ; L∗ : the dual lattice
L� : the medial lattice.

vertices : the centers of edges of L.
edges : connecting nearest neighbors.

Lδ =
√

2δL, L∗δ , L�δ . The mesh-size of L�δ is δ.

Hao Wu (THU) 2D Lattice Models 18 / 36



Dobrushin domain

For a simply connected domain Ω, we set Ωδ = Ω ∩ Lδ.
For a Dobrushin domain (Ω; a,b), let (Ω�δ ; aδ,bδ) be an approximation.
Dobrushin b.c. : edges of (ba) are open (edges of (ba) are wired),
edges of (a∗b∗) are dual-open (edges of (ab) are free).
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Loop representation

Fix a Dobrushin domain (Ω; a,b) with Dobrushin b.c.
Draw self-avoiding loops on Ω� as follows : a loop arriving at a vertex
of the medial lattice always makes a ±π/2 turn so as not to cross the
open or dual open edges through this vertex.
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FK fermionic observable

Definition
The edge FK fermionic observable is defined on edges of Ω�δ by

F(Ω�δ ;a�δ ,b
�
δ )(e) = E(Ω�δ ;a�δ ,b

�
δ )

[
1{e∈γ} exp

(
i
2

Wγ(e,bδ)
)]

,

where Wγ(e,bδ) denotes the winding between the center of e and b�δ .
The vertex FK fermionic observable is defined on vertices of Ω�δ \ ∂Ω�δ
by

F(Ω�δ ;a�δ ,b
�
δ )(v) =

1
2

∑
e∼v

F(Ω�δ ;a�δ ,b
�
δ )(e),

where the sum is over the four medial edges having v as an endpoint.
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Conformal invariance

Theorem

Fix a Dobrushin domain (Ω; a,b). Consider the critical FK-Ising model.
Let Fδ be the vertex fermionic observable in (Ω�δ ; a�δ ,b

�
δ ). Then, we have

1√
2δ

Fδ →
√
φ′, as δ → 0, locally uniformly,

where φ is any conformal map from Ω on to the strip R× (0,1) sending
a to −∞ and b to +∞.
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Discrete complex analysis

L = (Z2,E(Z2)) : the square lattice ; L∗ : the dual lattice
L� : the medial lattice.

vertices : the centers of edges of L.
edges : connecting nearest neighbors.

Lδ =
√

2δL, L∗δ , L�δ . The mesh-size of L�δ is δ.
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Discrete complex analysis

For x ∈ Lδ and h : Lδ → C, define

∆δh(x) =
1
4

∑
y : y∼x

(h(y)− h(x)).

h : Ωδ → C is preharmonic if ∆δh(x) = 0, ∀x ∈ Ωδ.
h : Ωδ → C is pre-superharmonic if ∆δh(x) ≤ 0, ∀x ∈ Ωδ.
h : Ωδ → C is pre-subharmonic if ∆δh(x) ≥ 0, ∀x ∈ Ωδ.

The classical relation between preharmonic function and SRW :
Let (Xn) be a SRW on Lδ killed at the first time it exits Ωδ, then h is
preharmonic if and only if (h(Xn)) is a martingale.
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Convergence of the discrete Dirichlet problem solution

Theorem

let (Ω; a,b) be a Dobrushin domain,
let f be a bounded continuous function on ∂Ω \ {a,b},
let h be the unique harmonic function on Ω, continuous on
Ω \ {a,b}, satisfying h = f on ∂Ω \ {a,b}.
let (Ωδ; aδ,bδ) be a sequence of discrete Dobrushin domains
converging to (Ω; a,b) in the Carathéodory sense.
let fδ : ∂Ωδ → C be a sequence of uniformly bounded functions
converging to f uniformly away from a and b.
let hδ be the unique preharmonic function on Ωδ such that hδ = fδ
on ∂Ωδ.

Then hδ → h locally uniformly as δ → 0.
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Preholomorphic function

For a function f : Lδ → C, and x ∈ L∗δ , define

∂̄δf (x) =
1
2

(f (E)− f (W )) +
i
2

(f (N)− f (S)),

where N,E ,S,W are the four vertices of Lδ adjacent to x indexed in
the obvious way.
A function f : Ωδ → C is preholomorphic if ∂̄δf (x) = 0 for all x ∈ Ω∗δ .
The equation ∂̄δf (x) = 0 is called the Cauchy-Riemann equation at x .

(1) Sums of preholomorphic functions are preholomorphic.
(2) Discrete contour integrals vanish in simply connected domain.
(3) The primitive in simply connected domain is well-defined.
(4) If a family (fδ) of preholomorphic functions on Ωδ converges locally

uniformly to f on Ω, then f is holomorphic.

Attention : the product of two preholomorphics is not preholomorphic.
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Spin-holomorphic

For e ∈ E(L�), we give an orientation :
counterclockwise around white faces.
For e ∈ E(L�), we associate a direction `(e) :
as in the figure. In other words, `(e) has the
same direction as

√
ē.

A function f is s-holomorphic if for any edge e of Ω�δ , we have

P`(e)[f (x)] = P`(e)[f (y)],

where x , y are the endpoints of e and P` is the orthogonal projection
on the direction `.

Proposition
Any s-holomorphic function f : Ω�δ → C is preholomorphic on Ω�δ .
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Discrete analog of 1
2=
∫

f 2

Theorem

Let Ω be a simply connected domain. Suppose f : Ω�δ → C is an
s-holomorphic function and b0 ∈ Ωδ. Then, there exists a unique
function H : Ωδ ∪ Ω∗δ → C such that

H(b0) = 1, and H(b)− H(w) = δ|P`(e)[f (x)]|2(= δ|P`(e)[f (y)]|2),

for every edge e = (x , y) on Ω�δ bordered by a black face b ∈ Ωδ and a
white face w ∈ Ω∗δ .

For two neighboring sites b1,b2 ∈ Ωδ, with v being the medial vertex at
the center of (b1,b2),

H(b1)− H(b2) =
1
2
=(f (v)2(b1 − b2)).

The same relation also holds for vertices of Ω∗δ .
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Discrete analog of 1
2=
∫

f 2

Proposition
Denote by H• the restriction of H to Ωδ (black faces) and by H◦ the
restriction of H to Ω∗δ (white faces). If f is s-holomorphic, then H• is
subharmonic and H◦ is superharmonic.

b

b1

1

e−iπ/4eiπ/4

i

b2

b3 b4

.
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Dobrushin domain

For a simply connected domain Ω, we set Ωδ = Ω ∩ Lδ.
For a Dobrushin domain (Ω; a,b), let (Ω�δ ; aδ,bδ) be an approximation.
Dobrushin b.c. : edges of (ba) are open (edges of (ba) are wired),
edges of (a∗b∗) are dual-open (edges of (ab) are free).
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Loop representation

Fix a Dobrushin domain (Ω; a,b) with Dobrushin b.c.
Draw self-avoiding loops on Ω� as follows : a loop arriving at a vertex
of the medial lattice always makes a ±π/2 turn so as not to cross the
open or dual open edges through this vertex.

Hao Wu (THU) 2D Lattice Models 31 / 36



FK fermionic observable

Definition
The edge FK fermionic observable is defined on edges of Ω�δ by
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�
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i
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Conformal invariance

Theorem

Fix a Dobrushin domain (Ω; a,b). Consider the critical FK-Ising model.
Let Fδ be the vertex fermionic observable in (Ω�δ ; a�δ ,b

�
δ ). Then, we have

1√
2δ

Fδ →
√
φ′, as δ → 0, locally uniformly,

where φ is any conformal map from Ω on to the strip R× (0,1) sending
a to −∞ and b to +∞.
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The observable is s-holomorphic

Lemma

Consider a medial vertex v ∈ Ω�δ \ ∂Ω�δ .
We have

Fδ(N)− Fδ(S) = i (Fδ(E)− Fδ(W )) ,

where N,E ,S,W are the four adjacent
edges indexed in clockwise order.

Lemma
The vertex fermionic observable Fδ is s-holomorphic.
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Let A be the black face bordering aδ. Define Hδ : Ωδ ∪Ω∗δ → R such that

H(A) = 1, and Hδ(B)− Hδ(W ) = |P`(e)[Fδ(x)]|2 = |P`(e)[Fδ(y)]|2,
for the medial edge e = (x , y) bordered by a black face B ∈ Ωδ and a
white face W ∈ Ω∗δ .

Lemma
The subharmonic function H•δ is equal to 1 on (ba), and it
converges to 0 on (ab) uniformly away from a and b.
The superharmonic function H◦δ is equal to 0 on (a∗b∗), and it
converges to 1 on (b∗a∗) uniformly away from a and b.
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Proposition

The sequence (Hδ)δ>0 converges to =φ locally uniformly.

Theorem

Fix a Dobrushin domain (Ω; a,b). Consider the critical FK-Ising model.
Let Fδ be the vertex fermionic observable in (Ω�δ ; a�δ ,b

�
δ ). Then, we have

1√
2δ

Fδ →
√
φ′, as δ → 0, locally uniformly,

where φ is any conformal map from Ω on to the strip R× (0,1) sending
a to −∞ and b to +∞.

Corollary
The exploration path in FK-Ising with Dobrushin boundary conditions
converges to SLE16/3. (Lecture on Oct. 30th)
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