

Fig. 3. F_{θ} : true distribution, $F_{\hat{\theta}_n}$: smooth empirical distribution *: smooth boostrap empirical distributions. *BW*: the Bootstrap World, *P*: the World of Measures.

 $\hat{\zeta}_n = E(\hat{\zeta}_{n,B}^* | \mathcal{X}_d)$ is the parameter to be estimated by $\hat{\zeta}_{n,B}^*$. The heuristics in Section 4.1 indicate that, as the dimension of the estimand ζ increases, the probability $F_{\hat{\zeta}_{n,B}^*}$ will stay in the Hellinger ball with centre F_{ζ} and radius $H(F_{\zeta}, F_{\hat{\zeta}_n})$ decreases. In Proposition 1, it is seen that the same holds for a larger radius. The probability is maximised when F_{ζ} is on the surface of the larger ball representing the Bootstrap World. That is, the bootstrap estimate of F_{ζ} (or of ζ) has higher chance to beat the classical estimate when the latter deteriorates; as with the bootstrap samples, we will not know about it. In Example 1, the comparison of the differences Dk, k = 1, 2, was motivated by these heuristics.

5. Confirming the heuristics and the examples

Proposition 1. Let $\hat{\zeta}_{n,B,i}^*$ be a bootstrap estimate of $\zeta_i (\in R)$, and let $\hat{\zeta}_{n,i} = E[\hat{\zeta}_{n,B,i}^* | \mathscr{X}_d], =1, \dots, d;$ $\zeta, \hat{\zeta}_n, \hat{\zeta}_{n,B}^*$ are the corresponding d-vectors. Then,

(a) the estimate $\hat{\zeta}_{n,B}^*$ is inadmissible:

$$E \|\hat{\zeta}_{n,B}^* - \zeta\|^2 = E \|\hat{\zeta}_n - \zeta\|^2 + \sum_{i=1}^{a} E \operatorname{Var}(\hat{\zeta}_{n,B,i}^* | \mathscr{X}_d).$$