
MLE’s Bias Pathology, Model Updated MLE
and MME, and Wallace’s Minimum Message
Length (MML) method
• We start with an examination of parametric
statistical problems. A brief description of MLE
and MME, examples showing that they are not
always unbiased and that the MLE can be in-
consistent.
• Then we will show why MLE may not be un-
biased and how to correct it by updating the
model providing the Likelihood equations.
• More general results will follow.
PARAMETER ESTIMATION PROBLEMS
The set-up: Data X1, . . . , Xn i.i.d. r.v.’s,
X1 ∼ f (x, θ), θ ∈ Θ(⊆ Rp usually),
f has known form, θ is unknown.
• Estimate: any function of the data only,
Tn = T (X1, . . . , Xn).
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• Tn is unbiased for θ when ETn = θ ∀ θ ∈ Θ.

• The Aims:
Find an estimate, Tn = T (X1, . . . , Xn), of θ,
evaluate the estimation error and/or an estimate
of Tn’s variance. Determine Tn’s distribution.
• Think of estimation as “separation” of the true
θ from Rp − {θ} with some error around θ.
• We solve a STOCHASTIC OPTIMIZATION
PROBLEM. It differs from minimizing OR max-
imizing an objective function in Calculus. The
Objective Function is determined by the Data.
• Often estimates are obtained using data model
f and a Method M in steps, e.g. solving equa-
tions:

DATA
EV OLV ES V IA f AND M

=⇒ EQUATIONS

•DATAX1, . . . , Xn is not touched again after
finding the EQUATIONS.
• The EQUATIONS include estimates and
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parameters.
• Estimates are the different coefficients that
will be known because of the observed sample:
X1 = x1, . . . , Xn = xn.

Questions for you: I guess you had a first course
in Math Stat. Think of MLE and MME.
a) Do the EQUATIONS evolve?
b) Does DATA evolve?
c) What are the implications in theEQUATIONS?
d) Is there new information in the process?
e) Should we use this new information before
solving the EQUATIONS ?
f) What EQUATIONS?
Let us try to see these questions in things you
have seen before.
MOMENTS ESTIMATION METHOD
DATA : X1, . . . , Xn i.i.d. r.vs. X1 follows
f (x, θ); θ ∈ Rp, p ≥ 1.
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• The k-th moment of X1,

µk = E(Xk
1 ), i.e.

µk =

∫
xkf (x, θ)dx = gk(θ),

is function of p unknown parameter(s),
θ = (θ1, . . . , θp), k = 1, 2, . . . .

To determine the p unknown parameters need
p-equations.
If there are known expressions for p moments
of X1 use them. Which p moments? The lower
p-moments, for k = 1, . . . , p. Here is “How”
assuming those are the first p-moments: replace
µk by its sample estimate

µ̃k =
1

n

n∑
i=1

Xk
j ,

and solve the system of EQUATIONS

1

n

n∑
i=1

Xk
j = gk(θ1, . . . , θp), k = 1, . . . , p, (1)
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obtaining the Moments Estimates (ME) θ̃k, k =
1, . . . , p.

Example 1. X1, . . . , Xn are i.i.d. with mean µ
and variance σ2 both unknown, θ = (µ, σ2).
Find the moments estimates of µ, σ2.
Step 1: p = 2 so we need two equations.
Step 2: µ1 = EX1 = µ, µ2 = EX2

1 = σ2+ µ2.
Step 3: Replace the population moments on the
left sides of the equalities by their sample coun-
terparts to obtain EQUATIONS in µ, σ2.

X̄n =
1

n

n∑
j=1

Xj = µ, (2)

1

n

n∑
j=1

X2
j = µ2 + σ2 (3)

NOTE: X1, . . . , Xn is history. What we have
now is (2) and (3).
Questions: What is random in (2)?
What is random in (3)?

5



Do they satisfy the Method of Moments approach,
i.e. E of left side equals right side?
Which one we solve first?
I guess you will say the fist equation, i.e. (2),
obtaining µ̃ME = X̄ which is unbiased for µ.
Replacing in (3) we get:

1

n

n∑
j=1

X2
j = X̄2

n+σ
2 or

1

n

n∑
j=1

(Xj−X̄n)2 = σ2.

(4)
Then, (4) is solved for σ2, obtaining

σ̃2ME =
1

n

n∑
j=1

X2
j − X̄2 =

1

n

n∑
j=1

(Xj − X̄n)
2,

which is NOT unbiased for σ2.

With µ known the Moments Estimate of σ2 is
the unbiased

σ̃2ME =
1

n

n∑
j=1

(Xj − µ)2.
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What is random in equation (4), i.e. in

1

n

n∑
j=1

(Xj − X̄n)
2 = σ2.

The left side of the equation.
Did the equation evolve? YES.

Does the equation satisfy the Method of Mo-
ments approach, i.e. E of left side equals right
side? NO.

What if we will respect it?
The only data we have is the left side. We need
to estimate one parameter, so take its first mo-
ment:

E
1

n

n∑
j=1

(Xj − X̄n)
2 =

n− 1

n
σ2.

Use the Method of Moments Approach equat-
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ing the left side with the evolved data,

1

n

n∑
j=1

(Xj − X̄n)
2 =

n− 1

n
σ2.

Solving it we get the Model Updated Moments
Estimate which is unbiased for σ2 :

σ̃2MUME =
1

n− 1

n∑
j=1

(Xj − X̄n)
2.

We will see that Model Updated MLE makes
often MLE unbiased. It will be proved why
this happens.
THE MAXIMUM LIKELIHOOD METHOD
• It is the most common estimation method.
Assume that the data X = (X1, . . . , Xn) have
joint density or probability

f (x1, . . . , xn|θ), θ ∈ Θ ⊂ Rp.

Given the observed data values X1 = x1, . . . ,
Xn = xn, we want to see how much each of the
models determined by Θ “supports” the data.
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We do that by looking at f (x1, . . . , xn|θ)
as function of θ(∈ Θ).

We may also use f (X1, . . . , Xn|θ) instead, that
makes it a random variable.
The likelihood of θ (or of each model) as a func-
tion of X1, . . . , Xn, is

lik(θ) = f (X1, . . . , Xn|θ). (5)

The Maximum Likelihood Estimate (MLE) θ̂ of
θ is that value in Θ that maximizes (5).
(Assume uniqueness ...)
When the data X1, . . . , Xn are i.i.d. observa-
tions with density f then the likelihood in (5)
is

lik(θ) = Πnj=1f (Xj|θ). (6)

Instead of maximising the product lik(θ) in θ it
is easier to maximise its logarithm, called
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log likelihood, that is the sum

l(θ) =

n∑
j=1

log f (Xj|θ). (7)

• When the domain of f (x|θ) depends on θ you
have to maximise directly either lik(θ) or l(θ).
• When the domain of the density f (x|θ) is in-
dependent of θ and f is “smooth” (i.e. has deriva-
tives with respect to θ), to maximise (7) equate
its derivative to zero, and solve it to obtain θ̂.
Show the sign of the second derivative at θ̂ is
negative, or that l(θ) is concave function of θ.

The steps to obtain the MLE θ̂ :

1) If X1, . . . , Xn are i.i.d. f (x|θ),
lik(θ) = Πnj=1f (Xj|θ).

2) l(θ) =
∑n
j=1 log f (Xj|θ)

3) Solve the equation

0 =
dl(θ)

dθ
|
θ=θ̂
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to obtain θ̂. (May need iterative methods.)
4) Check θ̂ is a maximum.
Potential problem: Many solutions in 3).

• ML ESTIMATION WHEN θ ∈ Rp

When θ = (θ1, . . . , θp) replace 3) by a system
of p-equations with p unknowns

3∗) 0 =
∂l(θ1,...,θp)

∂θi
|
θ1=θ̂1,...,θp=θ̂p

, i = 1, . . . , p.

Example 2. X1, . . . , Xn are iid N(µ, σ2), µ, σ
both unknown. Find the MLE µ̂, σ̂2.

1. Πnj=1f (Xj|µ, σ) =
1

(σ
√
2π)n

e
−

∑n
j=1(Xj−µ)

2

2σ2

2. l(µ, σ) = −n log σ−n log
√
2π−

∑n
j=1(Xj−µ)2

2σ2

3∗. EQUATIONS

0 =
∂l(µ,σ)
∂µ =

∑n
j=1(Xj−µ)

σ2
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0 =
∂l(µ,σ)
∂σ =

−nσ2+
∑n
j=1(Xj−µ)2

σ3

Both equations have been obtained from the Data
and the ML method.
Solving the first equation we get: µ̂MLE = X̄n.

Then the second equation becomes,
−nσ2 +

∑n
j=1(Xj − X̄)2 = 0.

Did the second equation evolve? YES.
The Data in it evolved? YES.
Could this equation be obtained from the Like-
lihood of the original Data? NO.

The MLE is biased, σ̂2MLE =

∑n
j=1(Xj−X̄)2

n .

What is the data in this last equation? Y ∗ =∑n
j=1(Xj − X̄)2.

What is the density of Y ∗/σ2? χ2n−1. The like-
lihood of Y ∗ provides equation for σ

−(n− 1)σ2 + Y ∗ = 0
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and the Model Updated MLE is unbiased,

σ̂2MUMLE =
1

n− 1

n∑
i=1

(Xi − X̄n)
2.

Example 3. Le Cam’s (1990) version of Neyman-
Scott (1948) example: independent Xi, Yi are
Normal with mean µi and variance σ2, i=1,. . . ,
n. Assuming independence of all n samples of
size 2, show that MLE σ̂2 is inconsistent but a
naive estimate is consistent.
The likelihood

lik(µ1, µ2, . . . , µn, σ)

= (
1

σ22π
)ne

−
∑n
j=1[(Xj−µj)

2+(Yj−µj)2]

2σ2 ,

the log-likelihood

l(µ1, µ2, . . . , µn, σ) = −2n log σ − n log 2π

−
∑n
j=1[(Xj − µj)

2 + (Yj − µj)
2

2σ2
.
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The likelihood equations for the means are

0 =
∂l(µ1, µ2, . . . , µn, σ)

∂µj
=
Xj − µ̂j + Yj − µ̂j

σ2

and µ̂j =
Xj + Yj

2
, j = 1, . . . , n.

The likelihood equation for σ after replacing
the µ’s by their MLE’s are

0 =
∂l(µ1, µ2, . . . , µn, σ)

∂σ

= −2n

σ̂
+

∑n
j=1[(Xj − µ̂j)

2 + (Yj − µ̂j)
2]

σ̂3

and since

(Xj − µ̂j)
2 = (Yj − µ̂j)

2 =
(Xj − Yj)

2

4
,

we get 0 = −2n

σ̂
+

∑n
j=1(Xj − Yj)

2

2σ̂3

and σ̂2 =
1

4n

n∑
j=1

(Xj − Yj)
2.

14



Eσ̂2 =
1

4n

n∑
j=1

E(Xj − Yj)
2 =

1

4n
2nσ2 =

σ2

2
.

Naive Estimate
Wj = Xj − Yj ∼ N(0, 2σ2), j = 1, . . . , n, the
W ’s are independent, and EW 2

j = 2σ2, by the
WLLN

1

n

n∑
j=1

W 2
j =

1

n

n∑
j=1

(Xj − Yj)
2 Prob−→ 2σ2

or
1

2n

n∑
j=1

(Xj − Yj)
2 Prob−→ σ2

and σ̂2 =
1

4n

n∑
j=1

(Xj − Yj)
2 Prob−→ σ2

2
.

Try with the Method of Moments to see what
you get. You have to use all the data.
Lemma 1: Let X ∼ f (x, θ), θ ∈ R,Uθ(X, θ) =
d ln f (X,θ)

dθ .
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Assume: a) EUθ(X, θ) = 0 ∀ θ.
b) Uθθ =

dUθ(x,θ)
dθ = C ∀ θ, C constant.

Then, θ̂MLE is unbiased for θ.

Proof:
U(x, θ̂MLE) = U(x, θ) + (θ̂MLE − θ) · C,

→ E(θ̂MLE − θ) = −C−1EU(X, θ) = 0.

Question: Do a), b) in Lemma 1 hold often?

Normal model: X = (X1, . . . , Xn) i.i.d.mean
θ, variance ψ = σ2, C∗, generic constant
f (x, θ, σ) = 1

(σ
√
2π)n

e−
∑n
i=1(xi−θ)2/2σ2,

ln f (x, θ, σ) = −n lnσ −
∑n
i=1(xi−θ)2

2σ2
+ C∗,

Uθ(x, θ, σ) =

∑n
i=1(xi − θ)

σ2
,

EUθ(X, θ, σ) = 0, Uθθ = −n/σ2.
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Uσ(x, θ, σ) = −n
σ
+

∑n
i=1(xi − θ)2

σ3

EUσ(X, θ, σ) = 0,

Uσσ =
n

σ2
− 3

∑n
i=1(xi − θ)2

σ4

When θ is known,

Uσ(X, θ, σ̂) = Uσ(X, θ, σ) + (σ̂ − σ)Uσσ,

otherwise

Uσ(X, θ̂, σ̂) = Uσ(X, θ̂, σ) + (σ̂ − σ)Uσσ

Observe we cannot draw conclusion for σ̂2 from
this expansion. Will need derivatives with re-
spect to σ2.
The estimate σ̂ would be unbiased from the Lemma
when the expected values of the score functions
Uσ(X, θ, σ) (for θ known), Uσ(X, θ̂, σ) in the
right side of the expansion have means zero AND
Uσσ = C. The ultimate does not hold though.
In addition, for σ, when θ is known, since
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EUσ(X, θ, σ) = 0, the equation

EUσ(X, θ̂, σ) = 0

is not expected to hold.
To have the expansion for σ2 rewrite the log-
likelihood as function of σ2 = ψ.

ln f (x, θ, σ) = −n
2 lnσ

2−
∑n
i=1(xi−θ)2

2σ2
+C∗, C∗

= −n
2 lnψ −

∑n
i=1(xi−θ)2

2ψ + C∗,

Uψ = − n
2ψ +

∑n
i=1(xi−θ)2
2ψ2

,

Uψψ = n
2ψ2

−
∑n
i=1(xi−θ)2
ψ3

Observe

EUψ = 0, EUψψ = − n

ψ2
.

Suggested Exercise: For the Neyman-Scott Ex-
ample presented by Le Cam withXi, Yi, iid Nor-
mal with mean µi, variance σ2, i = 1, . . . , n
with all observations independent, obtain the
Model Updated Moments Estimates of σ2.
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