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At low temperatures, the surface is very smooth . It is very easy to 
calculate the partition function.Only small deviation from a 
smooth interface are important. 
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The behavior of the interface in the three-dimensional (3-D} Ising and related lattice systems is modeled using

a 2-D array of columns of varying heights. %e show that the "roughening" transition (the transition from a

localized to a delocalized interface) is directly related to the metal-insulator transition in a 2-D Coulomb gas.

Implications of this relationship are discussed.

I. INTRODUCTION

In this paper we show a direct connection be-
tween the recently studied metal-insulator transi-
tion in a two-dimensional (2D) Coulomb gas' ' and

the "roughening" phase transition for interfacial
properties of the three-dimensional (3D) Ising
and related lattice models. ' Below the roughen-
ing temperature T~ the interface separating re-
gions of "up" and "down" spins is localized while
above T~ the interface wanders arbitrarily far
from its T =0 location. The roughening transition
has important consequences, both practically in
the theory of crystal growth, ' and more fundamen-
tally in the basic theory of interfacial properties.
The existence of the roughening transition points
out difficulties in. theories which associate the in-
terface width with the bulk correlation length, "
and provides a counterexample to the common
supposition that the only singularities in interfacial
thermodynamic properties occur at the bulk criti-
cal temperature.

second term introduces a, dimensionless "magnetic
field" B which tends to localize the interface near
h,. =0. We choose the lattice spacing and the cou-
pling constant 4 as the units of length and energy. "

If the h,. vary uniformly between a~, Eq. (1)
gives the ungeeighted Gaussian model of the inter-
face." Qne can show that as H-0', the interface
width diverges logarithmically at any nonzero
temperature. If, on the contrary, the h,. are re
stricted to be integers 0, +1,+2, . . . , there is a
gap in the energy spectrum and the low-tempera-
ture behavior is similar to that of an interface in
the 3D Ising model, which at low temperatures
can be rigorously shown to have a finite interface
width. ' The intel face 1ll this Asc'Y8t8 Gauss'EaR

(DG) model becomes delocalized at a finite non-
zero T~; the corresponding transition temperature
in the unweighted Gaussian model is zero.

These examples suggest the study of the follow-
ing partition function

II. DISCRETE GAUSSIAN MODEL

We introduce the following simplified interfacial
model, which at low temperatures should closely
mimic the properties of the interface in an iso-
tropic 3D Ising model, or its anisotropic limit,
the "solid-on-solid" (SOS) model. ' Consider a.

square lattice made up of an vs && vN array of
columns of varying heights h with interaction en-
ergy

~exp —2p h; —h.,~
' —4pH h2

i, e i

where P = (ksT) ' and W is a weighting function to
be specified later. The integration is over contin-
uous height variables for all the X columns. If
W((h,.])=1, the integration of (2) is elementary"
and we obtain Z~, the unweighted Gaussian model
partition function, while the choice

The first summation is over all lattice sites, de-
noted by the vector i, and the four nearest neigh-
bors to site i, denoted by the vector |). The

(3)

gives ZD, the DG model partition function. Qther
choices of W(fh,.)) will be discussed below.
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III. EQUIVALENCE TO A COULOMB GAS SYSTEM

We show in the Appendix

ZD —2 Z

where in the limit H —0',

z, -=Y' k, k' Qk;k, .U)'j))
(n. ] =- ~i ii' j

(4)

(5)

is the partition function for a 2D lattice Coulomb
gas at a. dimensionless temperature T' =(P') '
= (kaT/d) '. The first summation is over all inte-
gers n,. for each site i. The "charges" k,.=—2',.
are subject to the neutrality condition Zk,. =0.
Since different values of k,. a.re permitted, Eq. (5)
is the partition function for a mixture of charges.

The potential U( jm), directly related to the 2D
square lattice Green's function, ' is

1 1 ' " 1 —e ~tm
U jm) =—,dq„dq8 (2x)', " q" 1 ——,'(cosq, + cosq, )

'

(6)

An a,ccurate approximation to U(jm) for all
~j -m~ 1 is U(jm) =(4w) '(ln~j —m~+-', ln8+Y),
where y is Euler's constant; thus we have a loga-
rithmic (2D Coulomb) potential.

The same partition function Z, occurs in the
vortex model for 2D spin systems. " Assuming
that only charges of unit strength are important
(i.e. , ~k,.

~

~2m), Kosterlitz and Thouless" pre-
sented strong evidence for a transition at T„' from
a low-T' dielectric phase with charges closely
bound together in dipole pairs to a high-T' con-
ducting plasma. They associated this transition
in Z, with a phase transition in the X-Y model.

Since ZU is analytic, Eq. (4) shows that the
transition in Z, and the roughening transition in

Z~ are different representations of the same tran-
sition. Our results differ in two important re-
spects from the work of Kosterlitz and Thouless
as applied to the X- Y model: (a) Eq. (4) is an
exact relationship and (b) T in the DG system is
related inversely to T' in the Coulomb gas system.

The two representations very nicely complement
one another. The low-T' behavior of the Coulomb
gas (non-conducting dielectric) is relatively easy
to calculate since the charge density is small.
Calculations in the high-T' high-density phase are
more difficult. ' ' Conversely, the low-T behavior
of the DG model can be accurately determined
using low-temperature series expansions and
Monte Carlo simulations" while information above
TR is much more difficult to obtain. Previous
analysis' ' of both systems separately using very
different methods gave strong evidence for a
phase transition; by combining the results and

noting the internal consistency, we have hopes of
determining in some detail the precise nature of
the phase transition.

Kosterlitz' has given an estimate of the Coulomb
gas transition temperature TR using Kondo-type
renormalization-group equations. His Eq. (A18)
predicts that the DG model has a roughening tem-
perature k~TR =—1.74 J, which should be compared
with the estimates from series expansions and
Monte Carlo simulations on the SOS model of
k~TR—= 1.2 J.' ' These results are consistent
since TR for the DG system must be higher than
for the SOS system, because equivalent excitations
require equal or greater energy in the DG model
than in the SOS model. '

IV. CORRELATION FUNCTION RELATIONS

Perhaps the most interesting results come from
relating correlation functions in the DG system to
those in the Coulomb gas system. This is easy to
do since the partition functions are related to each
other by Eq. (4). The second moment of the height
difference between two columns arbitrarily labeled
1 and 2 a distance r apart is given by

G(12) -
=&(h, h, )'),

exp P'Z gk, [U(1j) —U(2j)] —P'Z'U(12)

The notation () indicates a normalized ensemble
average in the Coulomb gas system. Assuming the
expansion

WMr(12; Z) =Z'wMkr)(12) +Z4w~+F)(12) +

we show in the Appendix that

G(12) = 2P'wMr)(12) . (10)

At low T', the Coulomb gas system is a dielec-
tric and wM'r'(r) —= U(r)/e(T'), where ).'(T') is a di-
electric constant which is an increasing function of
T' with e(0) =1. Hence G(r) at high T should di-
verge as A(T) log(r) with A(T) an increasing func-

(h, —h, )'P(h„h, ),
h =-~ hp=-&1

where P(h, ; h, ) is the probability of finding a col-
umn of height h, at site 1 and height h, at site 2.
The limit as r- ~ of G(12) gives a measure of the
interface width.

There is a simple relationship between G(12) and
the potential of mean force W„r(12;Z) between two
opposite "test" charges of magnitude Z on the
sites 1 and 2, where

exp[ —P'W„r(12; Z)]



S. T. CHUI AND J. D. %EEKS

tion of T. This is in precise agreement with re-
cent Monte Carlo calculations of G(r) for the SOS
model. ' At high T' in the conducting phase,
n'M'r'(r) reaches its asymptotic value exponentially
fast because of screening; this again is in agree-
ment with the Monte Carlo calculations.

Kosterlitz and Thouless" assumed that only unit
charges (ik,. i

«2w) were important in the Coulomb
gas system. Using Eq. (4), we can relate the
average charge density at a site (i.e. , the "ionic
strength") to the DG system's interns, l energy
(P ~/N)n and correlation function G(r):

P~ ( 1 G(V2) 1 G(2) ("
N e( 4 G(1) 8 G(I) (-

The DG energy (P~/N)n can be calculated very
accurately at all T using the pair (Bethe) approxi
mation. '7 Lower and upper bounds on (k') can
then be easily calculated by assuming G(r) in-
creases as slowly as possible, where the term in
curly brackets equals —,', or as rapidly as possible
where G(r) =2PU(r) and the same term equals ~.
If the approximation zvMr'(r) = U(r)/e(T') is good for
x = 1, W2, and 2 for T' & T~, then the upper bound
on (k') is in fact very close to the exact value.
Assuming this, we have numerically calculated
(k') as a function of T' and find that (k') is indeed
very small at low T' Here (k') «. 8T'. Nea. r Te
estimated by Kosterlitz however, (k') = 0.25 and it
rises rapidly thereafter to the limiting value 8T'.

Since (k') is small for T'(TR, the higher k,.
values in Eq. (5) implied by the discrete nature of
the DG model are unimportant. Indeed any period-
ic u (k,.) [see Eq. (3)] with nonzero Fourier corn
ponents should give the same qualitative behavior
(with a different Te of course).

V. DIMENSIONALITY

As usual, effects of dimensionality are important.
One can show that a d-dimensional DG model goes
over to a d-dimensional lattice Coulomb gas. This
suggests that the 2D case is the only one providing
a finite nonzero T~. For d &2, the d-dimensional
Coulomb potential U, (x) r'~ (d w 2) bi-nds a pair of
opposite charges together so strongly that (r') is
finite for all finite T'. This suggests that the d&2
system is always an insulator. In this case T„
=0. For d &2 the attractive force between the di-
pole pair is much weaker and the dipole dissoci-
ates at any nonzero T'. This suggests that the
d &2 system is always a conductor and thus TR =~.
Only the marginal d =2 case with U~(y)-lny seems
to offer the possibility of a metal-insulator transi-
tion at finite nonzero T'. In terms of properties
of the d —1 dimensional interface in a d-dimension-

al isotropic Ising model we then believe T~ =0 for
d&3 and TR=T, for d&3, and T~—= 1.2 J for d

3 18, 19

VI. FINAL REMARKS

Qne might argue that by showing the equivalence
of the discrete Gaussian model of the interface to
a 2D Coulomb gas system, we have merely reex-
pressed one virtually intractable problem in terms
of another. Strictly speaking, of course, this is
correct, but we believe that it is precisely be-
cause of the difficulty of the problem that the
equivalence is significant. In both systems, cal-
culations are much more easily performed at low
temperatures using, e.g. , low-temperature expan-
sions or Monte Carlo simulations4 ' for the DG
model and low-density expansions or an itera. ted
mean field theory' in the Coulomb gas system.
Since the temperature is inversely related in the
two systems, a combination of the results allows
an approximate but independent description of the
system both above and below its transition tem-
perature. The situation thus seems analogous to
determining T, or the critical exponents in the
Ising model using only high-temperature series-
expansion methods. Qne's confidence in the es-
sential correctness of the results is certainly in
creased if low temperature series methods give a
consistent picture, although one is no closer to
giving an "exact" description of critical phenome-
na.

The methods used to predict the existence of
the roughening' ' or the 2D Coulomb gas transi-
tion' ' have separately made a plausible, but by
no means incontrovertible, case for a phase tran-
sition. This case seems more than doubly
strengthened when the consistency of the picture
from both the high- and low-temperature sides is
realized. This is particularly so since the meth-
ods of approximation appropriate for the short-
ranged DG system are very different from those
used in the long-ranged Coulomb gas system. In
a future paper we will present further results
made possible by a recognition of the equivalence
discussed herein.
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APPENDIX

The results in this paper make use of the well-
known identity for integer values of I and n (Ref.
20):
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& x —m = e"'"".

From this follows at once

(Al) performed (doing the real and imaginary parts
separately) making use of the formula

2 2
d& e-ax hibx (7//ii) 4/2&- b /44 (A9)

6(x m)
l. /2

/2
dz exp[27/iz (x —m)) g e"'"*. (A2)

This gives immediately

These identities can easily be derived by writing
the usual integral representation of the 5 function

7T
Z/2

U(hzfh - 4 Ip)+a j

e ' dz (A2) Z 16il[1 —@(q) +H]

Z D de) p(iE hh, . ——,'hE(h, . —h,. P
j, 6

as a sum over all integers n of integrals from
n ——, to n+ &. The use of Eq. (Al) and Eq. (3) in
Eq. (2) gives

(A10)

The first factor on the right hand side is the un-
weighted Gaussian model partition function" Z~,
and the second, denoted Z„can be rewritten using
Eq. (A6) as

—4PB Q h', ) . (A4)
2

z, = E p( ——,'O' Qh, p(pI
[n } j

Here kj
—= 2mn j Assuming periodic boundary con-

ditions, the quadratic form in Eq. (A4) can
be diagonalized by going to the Fourier-trans-
formed variables where P' = P ',

~ —,'P' g k,.k„f/(lm) (All)

N-&/2 ~ g elaj
q j (A5)

1 1
6N + 1 —P(q)+ H'

(A12)

(A6) and

and Eq. (A4) rewritten as
(A13)

d(h, }exp i ghP,

—4P g h,h, [1 —P (q) +H)

where

Q (if) = z(cosgx+ cosdf p) .

(A7)

(A6)

Note that since h,. (or k,.) is real, h, = h,* (or k,
=k*). The integration over the (h,}can then be

After taking the limit N- ~ the sums can be re-
placed by integrals. In the limit H-O', Eq. (A12)
gives the Coulomb potential, Eq. (6), while V(0) in
Eq. (A12) tends to infinity. Using Eq. (All) we see
that only those configurations with Z,.k,. = 0 will
contribute to the partition function Z„ thus giving
the neutrality condition. This establishes the
basic Eqs. (4) and (5).

Other results in this paper are proved in a simi-
lar manner. For example, to establish Eq. (10)
we first write P(n, ; n, ), the probability of finding
column 1 at height n, and column 2 at height n„as

P(n, ;n, ) =ZD' dory &(Aj By) dh, 5(h, —n, ) dh, g &(h, n, ) ~ ~~
n =-~

3

n„)

t

x exp —z P g (h, —h, „)'—4PII g h',.
!

(A14)
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Using Eqs. (A1) and (A2) in Eq. (A14), and re-
tracing the algebra which led to Eq. (All), we
find in the limit A-0' that P(n„n, ) is a function
only of the height difference 4n -=n, —n„with

P(d. n) = dZe's~ exp[- P'W„r(12; Z)]. (A15)

W„r(12;Z) is defined in Eq. (8). Then, using Eq.
(i),

G(12) = g (An)'P(hn)
hn=-~

hn=- oo

dZ(&n)' e's "exp[ p'W„(12; Z)] .

(A&6)

Equation (10) follows at once, using Eq. (9) and
Eq. (Al) differentiated twice.
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