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Flat metric associated to meromorphic quadratic different ial
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Construction 1. In a simply-connected coordinate chart U , on a Riemann

surface, in which a meromorphic quadratic differential q(w) = φ(w) · (dw)2
does not have zeroes and poles, it can be represented as a square of a

non-vanishing holomorphic 1-form: q(w) = (±ω(w))2 = (±
√

φ(w)dw)2.

The form ω is defined up to a sign.
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does not have zeroes and poles, it can be represented as a square of a

non-vanishing holomorphic 1-form: q(w) = (±ω(w))2 = (±
√

φ(w)dw)2.

The form ω is defined up to a sign.
We can choose a local coordinate z in U such that in this coordinate ω = dz.

The coordinate z = x+ iy is defined up to an additive constant. It is called the

flat coordinate associated to q. It defines a flat metric coming from the standard

Euclidean plane endowed with coordinates x, y and horizontal (y = const)
and vertical (x = const) foliations, which are orthogonal in our flat metric.
Neither the flat metric nor the foliations depend on a choice of sign of ω = dz.
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Construction 1. In a simply-connected coordinate chart U , on a Riemann

surface, in which a meromorphic quadratic differential q(w) = φ(w) · (dw)2
does not have zeroes and poles, it can be represented as a square of a

non-vanishing holomorphic 1-form: q(w) = (±ω(w))2 = (±
√

φ(w)dw)2.

The form ω is defined up to a sign.
We can choose a local coordinate z in U such that in this coordinate ω = dz.

The coordinate z = x+ iy is defined up to an additive constant. It is called the

flat coordinate associated to q. It defines a flat metric coming from the standard

Euclidean plane endowed with coordinates x, y and horizontal (y = const)
and vertical (x = const) foliations, which are orthogonal in our flat metric.
Neither the flat metric nor the foliations depend on a choice of sign of ω = dz.

Construction 2. Let w = u+ iv. Define a volume element in U as

− 1

2i
|φ(w)| dw ∧ dw̄ = |φ(w)| du ∧ dv

and a length element as
√

|φ(w)| |dw| =
√

|φ(w)|
√
du2 + dv2 .

Exercise. Verify that the two constructions of the flat metric are equivalent and
that the resulting metric does not depend on coordinates.



Half-translation surfaces
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As in the case of Abelian differentials one can unwrap the resulting flat surface

to a polygon. This time the sides are identified not only by parallel translations,

but also by central symmetries. We still have distinguished vertical and

horizontal directions. The difference with Abelian differentials is that now the

holonomy group of the metric is Z/2Z: a parallel transport along a smooth loop
can bring a tangent vector ~v back to itself or to −~v.

We can let the meromorphic quadratic differential have simple poles. They

correspond to cone angles π of the metric. When the poles are at most simple,

the area of the surface is still finite.



Coefficient of quasiconformality
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Let X1 and X2 be Riemann surfaces of genus g. When complex structures are

different there are no conformal maps from X1 to X2. A smooth map

f : X1 → X2 sends an infinitesimal circle at x ∈ X1 to an infinitesimal ellipse

at f(x).

f−→

Coefficient of quasiconformality of f at x ∈ X1 is the ratio Kx(f) =
a
b of

demi-axis of this ellipse. Coefficient of quasiconformality of f is

K(f) = sup
x∈X1

Kx(f).

Though X1 is a compact Riemann surface we use sup and not max since the
map f is allowed to have several isolated points where f is degenerate or even

not smooth, and where Kx(f) is thus not defined.



Teichmüller Theorem
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Theorem. For any pair X1, X2 of Riemann surfaces of genus g ≥ 1 there

exist an extremal map fext : X1 → X2 which minimizes the coefficient of

quasiconformality K(f). For this extremal map fext the coefficient of

quasiconformality is constant everywhere on X1 outside of a finite collection of

points, where fext degenerates, and where Kx(fext) is not defined.
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Theorem. For any pair X1, X2 of Riemann surfaces of genus g ≥ 1 there

exist an extremal map fext : X1 → X2 which minimizes the coefficient of

quasiconformality K(f). For this extremal map fext the coefficient of

quasiconformality is constant everywhere on X1 outside of a finite collection of

points, where fext degenerates, and where Kx(fext) is not defined.
One can choose a pair of holomorphic quadratic differentials q1 on X1 and q2

on X2, such that in the corresponding flat coordinates, the map fext acts as an

expansion–contraction in respectively horizontal and vertical directions with a

constant coefficient
√

K(fext). The foliations correspond to foliations of big

(respectively small) demi-axes of ellipses.

fext (x)−−−−→



Teichmüller metric and Teichmüller geodesic flow.
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Teichmüller metric measures the distance between two complex structures as

dist(X1, X2) =
1

2
logK(fext),

where fext : X1 → X2 is the extremal map. Any holomorphic quadratic
differential defines a direction of deformation of the complex structure and a

geodesic in the Teichmüller metric. Namely, a holomorphic quadratic differential

defines a flat metric. A one-parameter family of maps, which in the flat

coordinates are defined by diagonal matrices gt =

(

et 0
0 e−t

)

, is a

one-parameter family of extremal maps, so it forms a Teichmüller geodesic.
According to the definition above we have dist(X, gtX) = t.
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correspond to a quadratic form in the tangent space, but just to a norm which
depends continuously on the point of the space of complex structures.
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Teichmüller metric measures the distance between two complex structures as

dist(X1, X2) =
1

2
logK(fext),

where fext : X1 → X2 is the extremal map. Any holomorphic quadratic
differential defines a direction of deformation of the complex structure and a

geodesic in the Teichmüller metric. Namely, a holomorphic quadratic differential

defines a flat metric. A one-parameter family of maps, which in the flat

coordinates are defined by diagonal matrices gt =

(

et 0
0 e−t

)

, is a

one-parameter family of extremal maps, so it forms a Teichmüller geodesic.
According to the definition above we have dist(X, gtX) = t.

Remarks. The Teichmüller metric is not Riemannian but Finsler: it does not

correspond to a quadratic form in the tangent space, but just to a norm which
depends continuously on the point of the space of complex structures.

Taking into consideration a functorial behavior of the vector bundle of

holomorphic quadratic differentials, one can see, that it should be identified with

a cotangent bundle (and not with a tangent bundle).
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Saddle connections
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A saddle connection is a geodesic segment joining a pair of conical singularities

or a conical singularity to itself without any singularities in its interior.

Similar to the torus case regular closed geodesics on flat surface always appear
in families; any such family fills a maximal cylinder bounded on each side by a

closed saddle connection or by a chain of parallel saddle connections.

Let Nsc(S,L) be the number of saddle connections of length at most L on a
flat surface S. Let Ncg(S,L) be the number of maximal cylinders filled with

closed regular geodesics of length at most L on S. It was proved by H. Masur

that for any flat surface S both counting functions N(S,L) grow quadratically

in L:

const1(S) ≤
N(S,L)

L2
≤ const2(S)



Exact quadratic asymptotics
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Theorem (A. Eskin and H. Masur, 2001). For almost all flat surfaces S of

area 1 in any connected SL(2,R)-invariant suborbifold L in any stratum of

Abelian differentials the counting functions Nsc(S,L) and Ncg(S,L) have

exact quadratic asymptotics

lim
L→∞

Nsc(S,L)

πL2
= csc lim

L→∞

Ncg(S,L)

πL2
= ccg .

The Siegel–Veech constants csc and ccg depend only on the suborbifold L.

The Magic Wand Theorem of Eskin–Mirzakhani–Mohammadi implies that the

above statement is valid for every S under extra averaging:

lim
L→∞

1

L

∫ L

0
Nsc(S, e

t)e−2t dt = csc; lim
L→∞

1

L

∫ L

0
Ncg(S, e

t)e−2t dt = ccg ,

where the Siegel–Veech constants csc and ccg depend only on the

SL(2,R)-orbit closure L = SL(2,R) · S of the translation surface S.



Holonomy vector of a saddle connection
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To every saddle connection γ on a flat surface S (or to every closed geodesic,

if we want to count closed geodesics) assign a vector ~v(γ) in the Euclidean

plane R
2 having the length and the direction of γ. In other words, ~v =

∫

γ ω,

where we consider a complex number as a vector in R
2 ≃ C. We get a

discrete set V in R
2.



Holonomy sets for saddle connections and for closed
geodesics
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Mark two points on a torus and consider all geodesic segments joining these

two points. They mimic saddle connections. We associate to them a set Vsc of

holonomy vectors. Consider also all closed geodesics; we associate to them
the set Vcg of holonomy vectors. To count the number of saddle connections or

closed geodesics of length bounded by L is the same as to count the number

of points of Vsc or Vcg which get into a disc of radius L.

Vsc Vcg
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Mark two points on a torus and consider all geodesic segments joining these

two points. They mimic saddle connections. We associate to them a set Vsc of

holonomy vectors. Consider also all closed geodesics; we associate to them
the set Vcg of holonomy vectors. To count the number of saddle connections or

closed geodesics of length bounded by L is the same as to count the number

of points of Vsc or Vcg which get into a disc of radius L.

Vsc Vcg

Remark. The discrete sets Vsc ⊂ R
2 and Vcg ⊂ R

2 are transformed

equivariantly with respect to the group action:
V (gS) = gV (S) for any g ∈ GL(2,R) .
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Consider the following operator f 7→ f̂ from functions with compact support on

R
2 to functions on the stratum H1(d1, . . . , dn):

f̂(S) :=
∑

~v∈V (S)

f(~v)
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R
2 to functions on the stratum H1(d1, . . . , dn):

f̂(S) :=
∑
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f(~v)

Function f̂(S) generalizes the counting function N(S,L): when f(x, y) is
the characteristic function χL of the disc of radius L with the center at the

origin, χ̂L(S) = N(S,L) counts the number of chosen configurations of

homologous saddle connections of length at most L on a flat surface S.
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Consider the following operator f 7→ f̂ from functions with compact support on

R
2 to functions on the stratum H1(d1, . . . , dn):

f̂(S) :=
∑

~v∈V (S)

f(~v)

Function f̂(S) generalizes the counting function N(S,L): when f(x, y) is
the characteristic function χL of the disc of radius L with the center at the

origin, χ̂L(S) = N(S,L) counts the number of chosen configurations of

homologous saddle connections of length at most L on a flat surface S.

Lemma (W. Veech). The functional

f 7→
∫

Hcomp
1 (d1,...,dn)

f̂(S) dν1

is SL(2,R)-invariant.
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Theorem (W. Veech’98) For any function f : R2 → R with compact support

1

VolH1(d1, . . . , dn)

∫

H1(d1,...,dn)
f̂(S) dν1 = C

∫

R2

f(x, y) dx dy ,

where the constant C does not depend on the function f .
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Proof: The only SL(2,R)-invariant functionals are the integral over R2, the

value in the origin, and their linear combinations.
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Theorem (W. Veech’98) For any function f : R2 → R with compact support

1

VolH1(d1, . . . , dn)

∫

H1(d1,...,dn)
f̂(S) dν1 = C

∫

R2

f(x, y) dx dy ,

where the constant C does not depend on the function f .
Proof: The only SL(2,R)-invariant functionals are the integral over R2, the

value in the origin, and their linear combinations.

Theorem (A. Eskin, H. Masur’01) For almost all flat surfaces S in any
connected component of any stratum, the Siegel–Veech constant c(S) in the

quadratic asymptotics N(S,L) ∼ c(S) · πL2, as L → ∞, coincides with the

constant C in the Theorem of Veech.

Remark. The Theorem of Veech allows to count the average number of closed

geodesics (saddle connections) of length at most L for any L large or small.

We have an exact equality. Eskin and Masur compute the asymptotic number

N(S,L) only when L is large, but for almost any individual surface S.



Calculation of Siegel–Veech constants: key idea
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To compute C it is sufficient to evaluate
∫

H1
f̂(S) dν1 for a single function f .

Consider a characteristic function χε(x, y) of a disc of a very small radius ε in

R
2. Then χ̂ε(S) counts how many ε-short saddle connections (closed

geodesics) we can find on a flat surface S. We have

χ̂ε(S) =











0 for most of the surfaces S

1 for S ∈ Hε,thick
1 (d1, . . . , dn)

> 1 for S ∈ Hε,thin
1 (d1, . . . , dn)

where Hε,thin
1 (d1, . . . , dn) is the subset of surfaces containing at least two

nonhomologous saddle connections of length at most ε. We get

∫

H1

χ̂ε(S) dν1 = VolHε,thick
1 (d1, . . . , dn) +

∫

Hε,thin
1

χ̂ε(S) dν1.
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For a characteristic function χε(x, y) of a disc of radius ε the Siegel–Veech

formula gives us:

1

VolH1(d1, . . . , dn)

∫

H1

χ̂ε(S) dν1 = C

∫

R2

χε(x, y) dx dy = C · πε2

On the other hand, by definition of χ̂ε, of the thick and the thin parts:

∫

H1

χ̂ε(S) dν1 = VolHε,thick
1 (d1, . . . , dn) +

∫

Hε,thin
1

χ̂ε(S) dν1.

Theorem (A. Eskin, H. Masur’91)

∫

Hε,thin
1

χ̂ε(S) dν1 = o(ε2)



Calculation of Siegel–Veech constants: the formula
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Corollary.
∫

H1

χ̂ε(S) dν1 = VolHε,thick
1 (d1, . . . , dn) + o(ε2).

Applying Siegel–Veech formula we obtain

VolHε
1(d1, . . . , dn)

VolH1(d1, . . . , dn)
+ o(ε2) = C · πε2
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Corollary.
∫

H1

χ̂ε(S) dν1 = VolHε,thick
1 (d1, . . . , dn) + o(ε2).

Applying Siegel–Veech formula we obtain

VolHε
1(d1, . . . , dn)

VolH1(d1, . . . , dn)
+ o(ε2) = C · πε2

In order to compute the constant C it is sufficient to compute the asymtotics of

the volume of the subset Hε
1(d1, . . . , dn) of surfaces containing a saddle

connection of length at most ε, i.e. the volume of a “ε-thin part” of

H1(d1, . . . , dn). Then

C = lim
ε→0

1

πε2
Vol(“ε-thin part” of H(d1, . . . , dn))

VolH1(d1, . . . , dn)
.
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Mark two points on a torus and consider all geodesic segments joining these

two points. They mimic saddle connections. We associate to them a set Vsc of

holonomy vectors. Consider also all closed oriented geodesics; we associate to
them the set Vcg of holonomy vectors. To count the number of saddle

connections or closed geodesics of length bounded by L is the same as to

count the number of points of Vsc or Vcg which get into a disc of radius L.

Vsc Vcg

If the torus is glued from a unit square, the set Vsc is just a shifted lattice, and

the set Vcg is the set of coprime points in Z⊕ Z. Thus, the corresponding

Siegel–Veech constants should be csc = 1 and ccg = 6
π2 . Let us compute the

latter one using our approach.



Volume of the thin part Hε
1(0) of the moduli space of flat tori
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Denote by H1(0) the space of flat tori of unit area with a chosen direction to

the North. Denote by Hε
1(0) the thin part of this space, namely the subset of

those tori, which have a closed geodesic of length at most ε. Attention to a

possible confusion: initially we have decomposed the thin part Hε
1(d1, . . . , dn)

into a disjoint union of a thick-part-of-the-thin-part Hε,thick
1 (d1, . . . , dn) and its

complement, a thin-part-of-the-thin-part Hε,thin
1 (d1, . . . , dn).

Lemma. The thin part Hε
1(0) of the moduli space of flat tori has

Masur–Veech volume Vol(Hε
1(0)) = 2πε2.

Corollary. The Siegel—Veech constant ccg(H(0)) satisfies:

ccg = lim
ε→0

1

πε2
·
Vol(Hε

1(0))

Vol(H1(0))
=

1

πε2
·
2πε2

π2/3
=

6

π2
=

1

ζ(2)

Corollary. The set of coprime lattice points has density
1

ζ(2)
in Z ⊕ Z.

Proof. The set of coprime integer points (m,n) (the ones with gcd(m,n) = 1)

is exactly the set of holonomy vectors of closed geodesics.



Volume of the thin part Hε
1(0) of the moduli space of flat tori
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Proof of the Lemma. We first evaluate the volume ν(C(Hε
1(0))) of the

corresponding cone C(Hε
1(0)) = Hε

≤1(0)). Let |γ| be the systole in the flat

metric, h — the hight of the cylinder obtained by cutting the torus by γ, and t
the twist of the cylinder, when gluing back to a torus. Tori from the cone satisfy:











h · |γ| ≤ 1

|γ| ≤ ε ·
√

h · |γ|
0 ≤ t < |γ| .

h

w = |γ|Letting w = |γ| we get

ν(C(Hε
1(0))) =

∫

B(ε)
dγ

∫ 1/|γ|

|γ|/ε2
dh

∫ |γ|

0
dt = 2π

∫ ε

0
w

(

1

w
− w

ε2

)

w dw =
πε2

2
.

It remains to recall that ν(C(Hε
1(0))) = dimRH(0) ·Vol(Hε

1(0)) where

dimRH(0) = 4. �
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Breaking up a double zero into two simple ones
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Cut an ε-neighborhood of the double zero out of the surface. Decompose it into

six metric half-disks of radius ε. Now change identifications of diameters of

these half-discs as indicated and paste the result into the surface.

2δ

ε+δ ε−δ

ε−δ ε+δ

2δε+δ ε+δ

ε−δ ε−δ

ε−δ ε−δ



Volume of thin part of H1(1, 1)
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We want to compute the measure of the subset of surfaces having a single

short saddle connection joining two simple zeroes. There is a canonical way to

shrink the saddle connection on S ∈ Hε,thick
1 (1, 1) coalescing two zeroes into

one. This provides us with an (almost) fiber bundle

Hε,thick
1 (1, 1)





y
D̃2

ε

H1(2)

where D̃2
ε is a ramified cover of order 3 over a standard metric disc of radius ε.

Moreover, the measure on Hε,thick
1 (1, 1) disintegrates into a product of the

standard measure on D̃2
ε and the natural measure on H1(2) which implies:

Vol(“ε-thin part” of H(1, 1)) ∼ 3 · πε2 ·VolH1(2) .



Siegel–Veech constant for saddle connections on H1(1, 1)
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Plugging the resulting expression for Vol(“ε-thin part” of H(1, 1)) into the

formula for the Siegel–Veech constant we get

csc(H(1, 1)) = lim
ε→0

1

πε2
Vol(“ε-thin part” of H(1, 1))

VolH1(1, 1)

=
3VolH1(2)

VolH1(1, 1)
= 3

π4

120
π4

135

=
27

8
.
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Phenomenon of multiple saddle connections
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Consider some saddle connection γ1 = [P1P2] with an endpoint at P1.

Memorize its direction, say, let it be the North-West direction. Let us launch a

geodesic from the same starting point P1 in one of the remaining k − 1
North-West directions. Let us study how big is the chance to hit P2 ones again,

and how big is the chance to hit it after passing the same distance as before.

Theorem (A. Eskin, H. Masur, A. Zorich’03). For almost any flat surface S
in any stratum and for any pair P1, P2 of conical singularities on S the function

N2(S,L) counting the number of pairs of parallel saddle connections of the

same length joining P1 to P2 also has exact quadratic asymptotics

lim
L→∞

N2(S,L)

πL2
= c2 > 0.
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Consider some saddle connection γ1 = [P1P2] with an endpoint at P1.

Memorize its direction, say, let it be the North-West direction. Let us launch a

geodesic from the same starting point P1 in one of the remaining k − 1
North-West directions. Let us study how big is the chance to hit P2 ones again,

and how big is the chance to hit it after passing the same distance as before.

Theorem (A. Eskin, H. Masur, A. Zorich’03). For almost any flat surface S
in any stratum and for any pair P1, P2 of conical singularities on S the function

N2(S,L) counting the number of pairs of parallel saddle connections of the

same length joining P1 to P2 also has exact quadratic asymptotics

lim
L→∞

N2(S,L)

πL2
= c2 > 0.

However, for almost all flat surfaces S in any stratum one cannot find neither a
single pair of parallel saddle connections on S of different length, nor a single

pair of parallel saddle connections joining different pairs of singularities.



Saddle connections joining distinct zeroes
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Multiple homologous saddle connections, topological picture.



Saddle connections joining distinct zeroes
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Saddle connections γ and γ1 are homologous. They stay parallel and

isometric, |γ1| = |γ|, under any small deformation of the flat surface.



Typical and nontypical degenerations
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The cycles are NOT homologous

Theorem (H. Masur, J. Smillie’91) The set of surfaces as on the right such

that the waist curve of the cylinder is shorter than ε has measure O(ε2) in

H1(d1, . . . , dn) no matter what is the number of components.
The set of surfaces as on the left such that the waist curve of the cylinder is

shorter than ε has measure O(ε4).
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The cycles are NOT homologous

Theorem (H. Masur, J. Smillie’91) The set of surfaces as on the right such

that the waist curve of the cylinder is shorter than ε has measure O(ε2) in

H1(d1, . . . , dn) no matter what is the number of components.
The set of surfaces as on the left such that the waist curve of the cylinder is

shorter than ε has measure O(ε4).

A similar statement is true for short saddle connections. In our language:

VolHε,thin
1 (d1, . . . , dn) = O(ε4) .



More artistic picture of a generic degeneration
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Warning: invisible components of stable curves
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Contracting slits we have an illusion of getting a “forbidden stable curve” in Deligne–

Mumford compactification: it has a triple node. Actually, the underlying complex
curve develops an extra CP1 through which the three components are attached.

This hardly visible component has zero limiting flat area. An adequate compactifi-

cation is recently constructed by Bainbridge–Chen–Gendron–Grushevsky–Möller.
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Counting ignoring multiplicities
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Working with translation surfaces (holomorphic forms) in H(m1, . . . ,mn) one

usually labels all conical singularities P1, . . . , Pn. Fix any two of them, Pi and

Pj . Let us count saddle connections joining Pi to Pj neglecting multiplicities

(i.e., let us count saddle connections looking only at their holonomy vectors in

R
2). The corresponding Siegel–Veech constant chomi,j is the sum of all

Siegel–Veech constants corresponding to all possible configurations of

homologous saddle connections joining Pi to Pj .

Theorem (D. Chen, M. M öller, A. Sauvaget, D. Zagier, 2020) . For any

nonhyperelliptic component of any stratum H(m1, . . . ,mn) of Abelian
differentials one has chomi,j = (mi + 1)(mj + 1).

The formula has the following (somehow misleading) heuristic interpretation:

the cone angle 2π(mi + 1) at the conical point Pi is (mi + 1) times larger
than at a regular point. So there are (mi + 1) times more saddle connections

getting out of Pi than from a regular point. Multiplying, (mi + 1) by (mj + 1)
we get the answer.

There are yet no analogous formulae valid for quadratic differentials!



Area Siegel—Veech constant
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Closed regular geodesics on flat surfaces appear in families of parallel closed

geodesics sharing the same length. Every such family fills a maximal cylinder

having conical points on each of the boundary components. We have seen that

sometimes we might get a configuration C of several cylinders, with

homologous waste curves (sharing the same length and direction).
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Closed regular geodesics on flat surfaces appear in families of parallel closed

geodesics sharing the same length. Every such family fills a maximal cylinder

having conical points on each of the boundary components. We have seen that

sometimes we might get a configuration C of several cylinders, with

homologous waste curves (sharing the same length and direction).

Denote by Narea(S,L) the sum of areas of all cylinders spanned by geodesics
of length at most L on a translation surface S of area 1.

Theorem [W. Veech; Ya. Vorobets] For every SL(2,R)-invariant finite
ergodic measure the following ratio is constant (i.e. does not depend on the

value of a positive parameter L):

1

πL2

∫

Narea(S,L) dν1 = carea(dν1)

The constant carea is called the area Siegel–Veech constant.



Large genus asymptotics
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The result below (in a slightly weaker form) was conjectured by A. Eskin and

A. Zorich about 2003. The conjecture was proved in 2020 by D. Chen,

M. Möller, A. Sauvaget, D. Zagier, and independently in 2019 by A. Aggarwal

(in a slightly weaker form by different methods).
Theorem. For any nonhyperelliptic component of any stratum

H(m1, . . . ,mn) of Abelian differentials one has

carea =
1

2
− 1

2
∑n

i=1(mi + 1)
+O(1/g2) as g → +∞ ,

where the implied constants are independent of the partition

m1 + · · ·+mn = 2g − 2 and of g.
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The result below (in a slightly weaker form) was conjectured by A. Eskin and

A. Zorich about 2003. The conjecture was proved in 2020 by D. Chen,

M. Möller, A. Sauvaget, D. Zagier, and independently in 2019 by A. Aggarwal

(in a slightly weaker form by different methods).
Theorem. For any nonhyperelliptic component of any stratum

H(m1, . . . ,mn) of Abelian differentials one has

carea =
1

2
− 1

2
∑n

i=1(mi + 1)
+O(1/g2) as g → +∞ ,

where the implied constants are independent of the partition

m1 + · · ·+mn = 2g − 2 and of g.

Combining the theorem with further results of D. Chen, M. Möller, A. Sauvaget,
D. Zagier, and of A. Aggarwal on large genus asymptotics of Masur–Veech

volumes (confirming another conjecture of A. Eskin and A. Zorich) one gets

Theorem (A. Zorich’20). The relative contribution of all configurations of

saddle connections of multiplicity 2 and more to carea and to chomi,j tends to 0
uniformly in partitions m1 + · · ·+mn = 2g − 2 and in g as g → +∞.
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Hyperelliptic involution and Weierstrass points
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S1 S2

• Verify that the surface S1, obtained by identifying pairs of corresponding

sides of the first polygon (respectively S2 — of the second polygon) by parallel

translations, have genus 2. To which strata belong S1 and S2?

• It is known that every Riemann surface of genus 2 is hyperelliptic, i.e. it

admits a holomorphic involution τ such that the quotient over the involution is

CP1. Describe the hyperelliptic involutions for the surfaces S1 and S2.

• Fixed points of a hyperelliptic involution are called Weierstrass points. It

follows from the Riemann–Hurwitz formula (which is a nice and very simple
fact) that there are 2g + 2 Weierstrass points. Find all Weierstrass points for

the surfaces S1 and S2.
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