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Flat metric associated to meromorphic quadratic different al

Construction 1. In a simply-connected coordinate chart {/, on a Riemann
surface, in which a meromorphic quadratic differential g(w) = ¢(w) - (dw)?
does not have zeroes and poles, it can be represented as a square of a
non-vanishing holomorphic 1-form: g(w) = (Fw(w))? = (£+/P(w)dw)?.
The form w is defined up to a sign.
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Flat metric associated to meromorphic quadratic different al

Construction 1. In a simply-connected coordinate chart {/, on a Riemann
surface, in which a meromorphic quadratic differential g(w) = ¢(w) - (dw)?
does not have zeroes and poles, it can be represented as a square of a
non-vanishing holomorphic 1-form: g(w) = (Fw(w))? = (£+/P(w)dw)?.
The form w is defined up to a sign.

We can choose a local coordinate z in I/ such that in this coordinate w = dz.
The coordinate z = x + 1y is defined up to an additive constant. It is called the
flat coordinate associated to ¢. It defines a flat metric coming from the standard
Euclidean plane endowed with coordinates x, 4y and horizontal (y = const)
and vertical (x = const) foliations, which are orthogonal in our flat metric.
Neither the flat metric nor the foliations depend on a choice of sign of w = dz.
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Flat metric associated to meromorphic quadratic different al

Construction 1. In a simply-connected coordinate chart {/, on a Riemann
surface, in which a meromorphic quadratic differential g(w) = ¢(w) - (dw)?
does not have zeroes and poles, it can be represented as a square of a
non-vanishing holomorphic 1-form: g(w) = (Fw(w))? = (£+/o(w)dw)?

The form w is defined up to a sign.

We can choose a local coordinate z in I/ such that in this coordinate w = dz.
The coordinate z = x + 1y is defined up to an additive constant. It is called the
flat coordinate associated to ¢. It defines a flat metric coming from the standard
Euclidean plane endowed with coordinates x, 4y and horizontal (y = const)
and vertical (x = const) foliations, which are orthogonal in our flat metric.
Neither the flat metric nor the foliations depend on a choice of sign of w = dz.

Construction 2. Let w = u + 2v. Define a volume element in £ as
1
——,|(b(w)| dw A dw = |p(w)| du A dv
and a length element as +/|p(w)| |[dw| = /|d(w) |V du? + dv? .

Exercise. Verify that the two constructions of the flat metric are equivalent and
that the resulting metric does not depend on coordinates.
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Half-translation surfaces

As in the case of Abelian differentials one can unwrap the resulting flat surface
to a polygon. This time the sides are identified not only by parallel translations,
but also by central symmetries. We still have distinguished vertical and
horizontal directions. The difference with Abelian differentials is that now the
holonomy group of the metric is Z/27.: a parallel transport along a smooth loop
can bring a tangent vector v back to itself or to —.

We can let the meromorphic quadratic differential have simple poles. They
correspond to cone angles 7 of the metric. When the poles are at most simple,
the area of the surface is still finite.
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Coefficient of quasiconformality

Let X and X5 be Riemann surfaces of genus g. When complex structures are
different there are no conformal maps from X to Xo. A smooth map
f : X1 — X9 sends an infinitesimal circle at x € X to an infinitesimal ellipse

at f(x).

Coefficient of quasiconformality of f at x € X is the ratio K, (f) = ¢ of
demi-axis of this ellipse. Coefficient of quasiconformality of f is

Though X is a compact Riemann surface we use sup and not max since the
map f is allowed to have several isolated points where f is degenerate or even
not smooth, and where K, ( f) is thus not defined.
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Teichmuller Theorem

Theorem. For any pair X1, X2 of Riemann surfaces of genus g > 1 there
exist an extremal map fe;t : X1 — Xo which minimizes the coefficient of
guasiconformality K(f) For this extremal map f..+ the coefficient of
guasiconformality is constant everywhere on X1 outside of a finite collection of
points, where f.,: degenerates, and where K ( fe,:) is not defined.
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Teichmuller Theorem

Theorem. For any pair X1, X2 of Riemann surfaces of genus g > 1 there
exist an extremal map fe;t : X1 — Xo which minimizes the coefficient of
quasiconformality K (f). For this extremal map f..: the coefficient of
guasiconformality is constant everywhere on X1 outside of a finite collection of
points, where f.,+ degenerates, and where Kx(fext) IS not defined.

One can choose a pair of holomorphic quadratic differentials q; on X and ¢
on X, such that in the corresponding flat coordinates, the map f.,+ acts as an
expansion—contraction in respectively horizontal and vertical directions with a
constant coefficient \/K(fext). The foliations correspond to foliations of big

(respectively small) demi-axes of ellipses.
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Teichmduller metric and Teichmtller geodesic flow.

Teichmuller metric measures the distance between two complex structures as

1
dist(Xl,XQ) = 5 log K(fext)a

where fer : X1 — Xo is the extremal map. Any holomorphic quadratic
differential defines a direction of deformation of the complex structure and a
geodesic in the Teichmdller metric. Namely, a holomorphic quadratic differential
defines a flat metric. A one-parameter family of maps, which in the flat

t
coordinates are defined by diagonal matrices g = (eo egt) ,Is a
one-parameter family of extremal maps, so it forms a Teichmuller geodesic.
According to the definition above we have dist(X, g: X ) = t.
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Teichmduller metric and Teichmtller geodesic flow.

Teichmuller metric measures the distance between two complex structures as

1
dist(Xl,XQ) = 5 log K(fext)a

where fer : X1 — Xo is the extremal map. Any holomorphic quadratic
differential defines a direction of deformation of the complex structure and a
geodesic in the Teichmdller metric. Namely, a holomorphic quadratic differential
defines a flat metric. A one-parameter family of maps, which in the flat

t0
coordinates are defined by diagonal matrices g = (eo e‘t) ,Is a

one-parameter family of extremal maps, so it forms a Teichmuller geodesic.
According to the definition above we have dist(X, g: X ) = t.

Remarks. The Teichmdiller metric is not Riemannian but Finsler: it does not
correspond to a quadratic form in the tangent space, but just to a norm which
depends continuously on the point of the space of complex structures.
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Teichmduller metric and Teichmtller geodesic flow.

Teichmuller metric measures the distance between two complex structures as

1
dist(Xl,XQ) = 5 log K(fea:t)a

where fer : X1 — Xo is the extremal map. Any holomorphic quadratic
differential defines a direction of deformation of the complex structure and a
geodesic in the Teichmdller metric. Namely, a holomorphic quadratic differential
defines a flat metric. A one-parameter family of maps, which in the flat

t0
coordinates are defined by diagonal matrices g = (eo e‘t) ,Is a

one-parameter family of extremal maps, so it forms a Teichmuller geodesic.
According to the definition above we have dist(X, g: X ) = t.

Remarks. The Teichmdiller metric is not Riemannian but Finsler: it does not
correspond to a quadratic form in the tangent space, but just to a norm which
depends continuously on the point of the space of complex structures.

Taking into consideration a functorial behavior of the vector bundle of
holomorphic quadratic differentials, one can see, that it should be identified with
a cotangent bundle (and not with a tangent bundle).
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Saddle connections

A saddle connection is a geodesic segment joining a pair of conical singularities
or a conical singularity to itself without any singularities in its interior.

Similar to the torus case regular closed geodesics on flat surface always appear
In families; any such family fills a maximal cylinder bounded on each side by a
closed saddle connection or by a chain of parallel saddle connections.

Let N.(S, L) be the number of saddle connections of length at most L on a
flat surface S. Let N.4(S, L) be the number of maximal cylinders filled with
closed regular geodesics of length at most L on \S. It was proved by H. Masur
that for any flat surface S both counting functions IV (.5, L) grow quadratically
in L:

N(S, L)

consty(S) < 72

< consty(S)
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Exact quadratic asymptotics

Theorem (A. Eskin and H. Masur, 2001).  For almost all flat surfaces S of
area 1 in any connected SL(2, R)-invariant suborbifold £ in any stratum of
Abelian differentials the counting functions N,.(S, L) and N, (.S, L) have
exact quadratic asymptotics

 Nu(S.L)  Ny(S,L)
Lh—{%o w2 - e Lh—{%o w2 — Ceg

The Siegel-Veech constants c,. and c., depend only on the suborbifold L.

The Magic Wand Theorem of Eskin—Mirzakhani-Mohammadi implies that the
above statement is valid for every .S under extra averaging:

lim —/ N,.(S,e)e 2t = cgp; hm —/ Neg (S, e')e _2tdt—ccg,

L—oo L

where the Siegel-Veech constants c,. and c., depend only on the
SL(2,R)-orbit closure £ = SL(2,R) - S of the translation surface S.
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Holonomy vector of a saddle connection

To every saddle connection -y on a flat surface S (or to every closed geodesic,
if we want to count closed geodesics) assign a vector ¥/(+y) in the Euclidean
plane R? having the length and the direction of . In other words, v = f7 w,

where we consider a complex number as a vector in R? ~ C. We get a
discrete set V in R?.

® -
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Holonomy sets for saddle connections and for closed
geodesics

Mark two points on a torus and consider all geodesic segments joining these
two points. They mimic saddle connections. We associate to them a set V.. of
holonomy vectors. Consider also all closed geodesics; we associate to them
the set V., of holonomy vectors. To count the number of saddle connections or
closed geodesics of length bounded by L is the same as to count the number
of points of V. or V., which get into a disc of radius L.

A A
‘/SC ([ ] ([ ] ([ ] ([ ] ([ ] [ ] ([ ] ° ‘/Cg
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Holonomy sets for saddle connections and for closed
geodesics

Mark two points on a torus and consider all geodesic segments joining these
two points. They mimic saddle connections. We associate to them a set V.. of
holonomy vectors. Consider also all closed geodesics; we associate to them
the set V., of holonomy vectors. To count the number of saddle connections or
closed geodesics of length bounded by L is the same as to count the number
of points of V. or V., which get into a disc of radius L.

A A
‘/SC ([ ] ([ ] ([ ] ([ ] ([ ] [ ] ([ ] ° ‘/Cg

Remark. The discrete sets V.. C R? and Veg C R? are transformed

equivariantly with respect to the group action:
Vi(gS) =gV (S) forany g € GL(2,R).
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Siegel-Veech formula

Consider the following operator f —> ffrom functions with compact support on
IR? to functions on the stratum H1(d1, ..., dy):

13/38



Siegel-Veech formula

Consider the following operator f —> ffrom functions with compact support on
IR? to functions on the stratum H1(d1, ..., dy):

Function f(.S) generalizes the counting function N (S, L): when f(z, y) is
the characteristic function y 7, of the disc of radius L with the center at the
origin, x7.(S) = N (S, L) counts the number of chosen configurations of
homologous saddle connections of length at most L on a flat surface S.
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Siegel-Veech formula

Consider the following operator f —> ffrom functions with compact support on
IR? to functions on the stratum H1(d1, ..., dy):

Function f(.S) generalizes the counting function N (S, L): when f(z, y) is
the characteristic function y 7, of the disc of radius L with the center at the
origin, x7.(S) = N (S, L) counts the number of chosen configurations of
homologous saddle connections of length at most L on a flat surface S.

Lemma (W. Veech). The functional

J= f%i"mp(dl,...,dn) f(S) di
is SL(2, R)-invariant.
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Siegel-Veech formula

Theorem (W. Veech’98) For any function f : R? — R with compact support

1 )
S)dv, =C x,y)drdy,
Vol?—[l(dl,...,dn)/le(dl,_“,dn)f( ) dn Rgf( y) dx dy

where the constant C' does not depend on the function f.
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Siegel-Veech formula

Theorem (W. Veech’98) For any function f : R? — R with compact support

1 )
S)dv, =C x,y)drdy,
Vol?-[l(dl,...,dn)/}[l(dl,m,dn)f( ) dn Rgf( y) dx dy

where the constant C' does not depend on the function f.
Proof: The only SL(2, R)-invariant functionals are the integral over R?, the
value in the origin, and their linear combinations.
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Siegel-Veech formula

Theorem (W. Veech’98) For any function f : R? — R with compact support

1 )
S)dv, =C x,y)drdy,
Vol?-[l(dl,...,dn)/}[l(dl,m,dn)f( ) dn sz( y) dx dy

where the constant C' does not depend on the function f.
Proof: The only SL(2, R)-invariant functionals are the integral over R?, the
value in the origin, and their linear combinations.

Theorem (A. Eskin, H. Masur'01) For almost all flat surfaces .S in any
connected component of any stratum, the Siegel-Veech constant ¢(S) in the
quadratic asymptotics N (S, L) ~ ¢(S) - mL?, as L — oo, coincides with the
constant C' in the Theorem of Veech.

Remark. The Theorem of Veech allows to count the average number of closed
geodesics (saddle connections) of length at most L for any L large or small.
We have an exact equality. Eskin and Masur compute the asymptotic number
N (S, L) only when L is large, but for almost any individual surface S.
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Calculation of Siegel-Veech constants: key idea

To compute C' it is sufficient to evaluate fH1 £(S) dv, for a single function f.
Consider a characteristic function x-(x, y) of a disc of a very small radius ¢ in
R?. Then Xe(S) counts how many e-short saddle connections (closed
geodesics) we can find on a flat surface .S. We have

(0 for most of the surfaces S
Xe(S) =<1 forS e ”Hi’th?k(dl, oy dy)
| >1 for S e HE (L dy)

where 15" (dy, ..., d,,) is the subset of surfaces containing at least two

nonhomologous saddle connections of length at most €. We get

/ )25(5) drv1 = Vol /Hi’thwk(dl, - ,dn) + / | )A(g(S) du .
Hq Hf—i‘,thzn
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Calculation of Siegel-Veech constants: key idea

For a characteristic function . (x, y) of a disc of radius € the Siegel-Veech
formula gives us:

1
o (S)dyy = C (z,y)dxdy = C - 1€
VolHl(dl,...,dn)L1X( et /R2X (#,9) dz dy e

On the other hand, by definition of ., of the thick and the thin parts:

/ X=(S) dvy = Vol HE™MF (dy, ... dy) + / %(9) du.
Hq Hf—i‘,thzn
Theorem (A. Eskin, H. Masur91l)

[ Re(S) it = o
Hi‘,thzn

16/38



Calculation of Siegel-Veech constants: the formula

Corollary.
/ )A(g(S) dv1 = Vol /Hi’thid{(dl, Ceey dn) + 0(62).
Ha

Applying Siegel-Veech formula we obtain

VOlH‘i(dl, 5o ,dn)

2 _ 2
Vol Hi(dy, .., dp) FeE) = O
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Calculation of Siegel-Veech constants: the formula

Corollary.
/ )A(g(S) dv1 = Vol /Hi’thwk(dl, Ceey dn) + 0(62).
Ha

Applying Siegel-Veech formula we obtain

VOlH‘i(dl, 5o ,dn)
VOlHl(dl, ce ,dn)

+ 0(e?) = C - e?

In order to compute the constant C' it is sufficient to compute the asymtotics of
the volume of the subset H3(dy, . . ., d,) of surfaces containing a saddle
connection of length at most ¢, i.e. the volume of a “c-thin part” of

Hi(dy,...,dy). Then

1 Vol(*e-thin part” of H(d1,...,dy))
C = lim :
e—0 2 VOlHl(dl,...,dn)
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Siegel-Veech constants for a torus

Mark two points on a torus and consider all geodesic segments joining these
two points. They mimic saddle connections. We associate to them a set V.. of
holonomy vectors. Consider also all closed oriented geodesics; we associate to
them the set V.., of holonomy vectors. To count the number of saddle
connections or closed geodesics of length bounded by L is the same as to
count the number of points of V. or V., which get into a disc of radius L.

A
‘/SC ([ ] ([ ] ([ ] ([ ] ([ ] [ ] ([ ] ° ‘/Cg

If the torus is glued from a unit square, the set V. is just a shifted lattice, and
the set V;, is the set of coprime points in Z @ Z. Thus, the corresponding
Siegel-Veech constants should be ¢s. = 1 and ¢,y = %. Let us compute the
latter one using our approach.
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Volume of the thin part  J(0) of the moduli space of flat tori

Denote by 71(0) the space of flat tori of unit area with a chosen direction to
the North. Denote by 745 (0) the thin part of this space, namely the subset of
those tori, which have a closed geodesic of length at most €. Attention to a

possible confusion: initially we have decomposed the thin part H5(d1, ..., dy)
into a disjoint union of a thick-part-of-the-thin-part ”Hi’thwk(dh ...,dy) and its
complement, a thin-part-of-the-thin-part Hi’thm(dl, ceydp).

Lemma. The thin part 3 (0) of the moduli space of flat tori has
Masur—Veech volume Vol(#5(0)) = 2me?.

Corollary.  The Siegel—Veech constant c.,(#(0)) satisfies:
1 Vol(H(0)) 1 2w 6 1

ch — ]j.m — ¢ — —

c50 T2 Vol(H1(0)) mwe? wn2/3 w2  ((2)

Corollary. The set of coprime lattice points has density @ in Z @ 7.
Proof. The set of coprime integer points (1, n) (the ones with ged(m,n) = 1)

IS exactly the set of holonomy vectors of closed geodesics.
]
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Volume of the thin part  J(0) of the moduli space of flat tori

Proof of the Lemma. We first evaluate the volume v(C'(H5(0))) of the
21(0)). Let || be the systole in the flat

metric, h — the hight of the cylinder obtained by cutting the torus by vy, and ¢
the twist of the cylinder, when gluing back to a torus. Tori from the cone satisfy:

corresponding cone C'(H3(0)) =

(h-|yl <1
Syl <e-h- |y
L0 <t <]

Letting w = || we get

v(C( / dv/i;dh/vdt—%/g (

)) = dimg H(0) - Vol(H5(0)) where

It remains to recall that v(C'(H5(0)

h

-
w = ||

w
w 2

2

wdw = E.
2
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Breaking up a double zero into two simple ones

Cut an e-neighborhood of the double zero out of the surface. Decompose it into
six metric half-disks of radius €. Now change identifications of diameters of
these half-discs as indicated and paste the result into the surface.

e+0 gE—0

gE—0 e+0




Volume of thin part of H;(1,1)

We want to compute the measure of the subset of surfaces having a single
short saddle connection joining two simple zeroes. There is a canonical way to
shrink the saddle connection on S € HS"*"(1, 1) coalescing two zeroes into

one. This provides us with an (almost) fiber bundle
thick
My (L)

|2

H1(2)

where [)3 is a ramified cover of order 3 over a standard metric disc of radius ¢.
Moreover, the measure on 15" (1, 1) disintegrates into a product of the

standard measure on Dg and the natural measure on #1(2) which implies:

Vol (“e-thin part” of #(1,1)) ~ 3 - we? - Vol H1(2) .
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Siegel-Veech constant for saddle connections on Hi(1,1)

Plugging the resulting expression for Vol (“e-thin part” of H (1, 1)) into the
formula for the Siegel-Veech constant we get

. 1 Vol(“e-thin part” of H(1,1))
cse(H(1,1)) = lim — Vol Hy(1,1)
~ 3VolHqi(2) 3 17TT40 27
— 90— =

B Vol H1(1,1) Loz 8
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Phenomenon of multiple saddle connections

Consider some saddle connection vv; = [P P»] with an endpoint at P;.
Memorize its direction, say, let it be the North-West direction. Let us launch a
geodesic from the same starting point P in one of the remaining £ — 1
North-West directions. Let us study how big is the chance to hit 5 ones again,
and how big is the chance to hit it after passing the same distance as before.

Theorem (A. Eskin, H. Masur, A. Zorich’03). For almost any flat surface S
in any stratum and for any pair P;, P» of conical singularities on S the function
N (S, L) counting the number of pairs of parallel saddle connections of the
same length joining P; to P also has exact quadratic asymptotics

Ii N2(Sa L)
L1—>H;o w2

= c9 > 0.
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Phenomenon of multiple saddle connections

Consider some saddle connection vv; = [P P»] with an endpoint at P;.
Memorize its direction, say, let it be the North-West direction. Let us launch a
geodesic from the same starting point P in one of the remaining £ — 1
North-West directions. Let us study how big is the chance to hit 5 ones again,
and how big is the chance to hit it after passing the same distance as before.

Theorem (A. Eskin, H. Masur, A. Zorich’03). For almost any flat surface S
in any stratum and for any pair P;, P» of conical singularities on S the function
N (S, L) counting the number of pairs of parallel saddle connections of the
same length joining P; to P also has exact quadratic asymptotics

. N2(Sa L)
lim

L—o0 w2 = €22 V-

However, for almost all flat surfaces S in any stratum one cannot find neither a
single pair of parallel saddle connections on .S of different length, nor a single
pair of parallel saddle connections joining different pairs of singularities.
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Saddle connections joining distinct zeroes

Multiple homologous saddle connections, topological picture.
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Saddle connections joining distinct zeroes
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Saddle connections -~y and ~y; are homologous. They stay parallel and
isometric, |y1| = ||, under any small deformation of the flat surface.
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Typical and nontypical degenerations

The cycles are NOT homologous \ Q

Theorem (H. Masur, J. Smillie’91) The set of surfaces as on the right such
that the waist curve of the cylinder is shorter than ¢ has measure O(<?) in
Hi(dy, ..., dy,) no matter what is the number of components.

The set of surfaces as on the left such that the waist curve of the cylinder is
shorter than € has measure 0(54).

30/38 '



Typical and nontypical degenerations

The cycles are NOT homologous \ Q

Theorem (H. Masur, J. Smillie’91) The set of surfaces as on the right such
that the waist curve of the cylinder is shorter than ¢ has measure O(<?) in
Hi(dy, ..., dy,) no matter what is the number of components.

The set of surfaces as on the left such that the waist curve of the cylinder is
shorter than € has measure 0(54).

A similar statement is true for short saddle connections. In our language:

Vol HE™ (dy, ... dy) = O(eY) .

30/38 '



B I —
More artistic picture of a generic degeneration




Warning: invisible components of stable curves

S

—~

Contracting slits we have an illusion of getting a “forbidden stable curve” in Deligne—
Mumford compactification: it has a triple node. Actually, the underlying complex
curve develops an extra CP! through which the three components are attached.
This hardly visible component has zero limiting flat area. An adequate compactifi-
cation is recently constructed by Bainbridge—Chen—Gendron—Grushevsky—Moller.

]
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Counting ignoring multiplicities

Working with translation surfaces (holomorphic forms) in H(my1, ..., m,) one
usually labels all conical singularities P, .. ., P,. Fix any two of them, P; and
P;. Let us count saddle connections joining £7; to P; neglecting multiplicities
(.e., let us count saddle connections looking only at their holonomy vectors Iin
R2). The corresponding Siegel-Veech constant c,iljm Is the sum of all
Siegel-Veech constants corresponding to all possible configurations of

homologous saddle connections joining £ to P;.

Theorem (D. Chen, M. M dller, A. Sauvaget, D. Zagier, 2020) . For any

nonhyperelliptic component of any stratum H (my, . .., m,,) of Abelian
differentials one has c,ffgm = (m; +1)(m; +1).

The formula has the following (somehow misleading) heuristic interpretation:
the cone angle 2 (m; + 1) at the conical point P; is (m; + 1) times larger
than at a regular point. So there are (m; + 1) times more saddle connections
getting out of P; than from a regular point. Multiplying, (m; + 1) by (m; + 1)
we get the answer.

There are yet no analogous formulae valid for quadratic differentials!
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Area Siegel—Veech constant

Closed regular geodesics on flat surfaces appear in families of parallel closed
geodesics sharing the same length. Every such family fills a maximal cylinder
having conical points on each of the boundary components. We have seen that
sometimes we might get a configuration C of several cylinders, with
homologous waste curves (sharing the same length and direction).
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Area Siegel—Veech constant

Closed regular geodesics on flat surfaces appear in families of parallel closed
geodesics sharing the same length. Every such family fills a maximal cylinder
having conical points on each of the boundary components. We have seen that
sometimes we might get a configuration C of several cylinders, with
homologous waste curves (sharing the same length and direction).

Denote by Ny (S, L) the sum of areas of all cylinders spanned by geodesics
of length at most L on a translation surface S of area 1.

Theorem [W. Veech; Ya. Vorobets]  For every SL(2, R)-invariant finite
ergodic measure the following ratio is constant (i.e. does not depend on the
value of a positive parameter L):

7TL2 /NGT’GG S L) dvy = Ca/rea(dyl)

The constant ¢, IS called the area Siegel-Veech constant.
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Large genus asymptotics

The result below (in a slightly weaker form) was conjectured by A. Eskin and
A. Zorich about 2003. The conjecture was proved in 2020 by D. Chen,

M. Moller, A. Sauvaget, D. Zagier, and independently in 2019 by A. Aggarwal
(in a slightly weaker form by different methods).

Theorem. For any nonhyperelliptic component of any stratum

H(myq, ..., my,) of Abelian differentials one has
= —1 — ! -+ 0(1/92) — T
C as o0,
2 2 o (m; + 1) g

where the implied constants are independent of the partition
mi+ -+ m, =29 — 2 and of g.
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Large genus asymptotics

The result below (in a slightly weaker form) was conjectured by A. Eskin and
A. Zorich about 2003. The conjecture was proved in 2020 by D. Chen,

M. Moller, A. Sauvaget, D. Zagier, and independently in 2019 by A. Aggarwal
(in a slightly weaker form by different methods).

Theorem. For any nonhyperelliptic component of any stratum

H(myq, ..., my,) of Abelian differentials one has
= —1 — ! -+ 0(1/92) — T
C as o0,
2 2 o (m; + 1) g

where the implied constants are independent of the partition
mi+ -+ m, =29 — 2 and of g.

Combining the theorem with further results of D. Chen, M. Mdller, A. Sauvaget,
D. Zagier, and of A. Aggarwal on large genus asymptotics of Masur—Veech
volumes (confirming another conjecture of A. Eskin and A. Zorich) one gets

Theorem (A. Zorich’20). The relative contribution of all configurations of

saddle connections of multiplicity 2 and more to ¢ ¢, and to c,?;m tends to 0

uniformly in partitions m1 4+ --- +m, = 29 — 2 and in g as g — +o0.
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Hyperelliptic involution and Welerstrass points

A

—

A

—

e Verify that the surface 57, obtained by identifying pairs of corresponding

sides of the first polygon (respectively So — of the second polygon) by parallel
translations, have genus 2. To which strata belong S and S9?

e It is known that every Riemann surface of genus 2 is hyperelliptic, i.e. it
admits a holomorphic involution 7 such that the quotient over the involution is
CP'. Describe the hyperelliptic involutions for the surfaces S; and So.

e Fixed points of a hyperelliptic involution are called Weierstrass points. It

follows from the Riemann—Hurwitz formula (which is a nice and very simple

fact) that there are 2g + 2 Weierstrass points. Find all Weierstrass points for

the surfaces S and .Ss.
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