BV differentials and Derived Lagrangian intersections on meduli Spaces of Surfaces in Fano and CY threefolds

Artan Sheshmani (BIMSA)

Joint work with. Jladimir Baranovsky Sadmil katzarkou Maxim Kontsevieh.

Motivation: S-duality conjecture.
Assumptions

- X: Smocth, Prey, CY
- Pic (X) generated by an ample diviser f
- Fer fixed $k \in \mathbb{T}>0$ set $H \in\left|k_{k} L\right|$

Qt $l:=$ generator of $H^{4}(x, \pi) \cong \mathbb{L}$
let $i, n \in \mathbb{R}$ fixed
$\operatorname{ctch}(i, n):=\left(0, H, H_{2}^{2}-i l, X\left(O_{H}\right)-H-t_{2}(x)-n\right)$
 fixed chern character
$M\left|x ; c^{*}\right|:=\{$ moduli space of Gieseker-semistable sheaves $\left.f_{\in} \operatorname{coh}(X) \mid \operatorname{ch}(R)=C^{*}\right\}$
when Stability $=$ semistability
$M\left(X j \mathrm{Ch}^{*}\right)$ has Perfect obstruction Theory M

$h^{0}(t)$ isom
$h^{-1}(\phi)$ epimor

$$
h^{i}(\phi)=0 \quad \forall i \neq-1,0
$$

$$
\begin{aligned}
r k\left(\dot { E } \left|\left.\right|_{P E M}\right.\right. & =\operatorname{dim}\left(h^{0}(\dot{E}) \mid-\operatorname{dim}\left(h^{-1}(\dot{E})\right)=V \operatorname{dim} M\right. \\
& =\operatorname{dim}\left(\left.T M\right|_{P}\right)-\operatorname{dim}\left(\left.0 b_{M}\right|_{p}\right) \\
& \left.=\operatorname{din}\left(E_{k} t^{\prime}(P, F)\right)-\operatorname{dim}(E x)^{2}(F, P)\right)=0
\end{aligned}
$$

Serve duality.

It is an intersection number Counts deformation invariant Systems

ugly; nenSmooth
multi component with jumpiy dimns
Local Picture locally $A=$ Ekt $^{\prime}(F, F)$ tayant buude

If stability \neq semistability
\Longrightarrow Joyce-Song defined generalized DT invt, $; \overline{D T}\left(x_{j} c^{*}\right) \in \mathbb{Q}$
\rightarrow generating function of $\overline{\nabla T}\left(x, \mathrm{Ch}^{*}\right)$

$$
E_{i}^{H}(q)=\sum_{n \in \mathbb{R}} \overline{D T}\left(X_{j} C^{*}(i, n)\right) q^{n}
$$

Remark
tensoriy by $O(\pm L)$ induces isom on $M\left(x, c^{k}(i, n) \Longrightarrow Z_{i}^{H}(q)\right.$ and $Z_{i+k L}^{H}(q)$ only differ by a shift in power of q.

S-duality Conjecture; Gaiotto-Strominger Yin Qaietto - un

The vector of generation Series $\sum(\cdots) \sum(m)$

$$
\left(q^{a_{i}} z_{i}^{H}(q)\right)_{i=0}^{k k^{3}-1}=\left(q^{a_{0}} z_{0}^{H}(q), q_{1}^{a_{1}} z_{1}^{H}(q), \ldots\right)
$$

is a holomorphic vector valued modular form of weight $-\frac{3}{2}$:38

$$
a_{i}=\frac{\left(2 i+H^{3}\right)^{2}}{8 H^{3}}-\frac{H^{3}}{8}-\frac{x(H)}{24} \in \mathbb{Q}
$$

Counting curves on surfaces in Calabi-Yau threefolds, (with Amin Gholampour and Richard P. Thomas), Mathematische Annalen, Volume 360, Issue 1-2, pp 67-78 (2014), arXiv:1309.0051.

Obtain modular partition function? Almost!

$$
Z=\sum_{\beta, n}=\boldsymbol{\square}+\boldsymbol{\square}+\square+\square+\square+\cdots+\square+\square+\cdots
$$

To prove modularity we need:

1. Generalize from rank 1, ideal sheaf counting to rank one general sheaf counting
2. Compute higher rank sheaf counting from rank 1 sheaf ocunting (Feyzbakhsh, Thomas)

Donaldson-Thomas Invariants of 2-Dimensional sheaves inside threefolds and modular forms, (with Amin Gholampour), Advances in Mathematics, Vol. 326, No. 21, p. 79-107 arXiv:1309.0050.

$$
=\text { (Göettche invariants } \rightarrow \text { Modular) } \cdot \text { (Noether-Lefschetz numbers } \rightarrow \text { Modular; Borcherds) }
$$

$$
Z(X, q)=\frac{\Phi^{\tilde{\pi}}(q)-k v_{0}}{2 \eta(q)^{24}}
$$

where

$$
\begin{gathered}
\Phi^{\tilde{\pi}}(q)=\sum_{d=0}^{\ell-1} \Phi_{d}^{\tilde{\pi}}(q) v_{d} \in \mathbb{C}\left[\left[q^{1 / 2 \ell}\right]\right] \otimes \mathbb{C}[\mathbb{Z} / 4 \ell \mathbb{Z}] \\
\Phi_{d}^{\tilde{\pi}}(q)=q^{1+d^{2} / 2 \ell} \sum_{h \in \mathbb{Z}} N L_{h, d}^{\tilde{\pi}} q^{-h}
\end{gathered}
$$

Stable pairs on nodal K3 brations, (with Amin Gholampour and Yukinu Toda), International Mathematical Research Notices, Vol. 2017, No. 00, pp. 1-50, arXiv:1308.4722.

$$
\begin{aligned}
& \sum_{h=0}^{\infty} \sum_{n=1-h}^{\infty}(-1)^{n+2 h-1} \chi\left(P_{n}(S, h)\right) y^{n} q^{h}= \\
& -\left(\sqrt{-y}-\frac{1}{\sqrt{-y}}\right)^{-2} \prod_{n=1}^{\infty} \frac{1}{\left(1-q^{n}\right)^{20}\left(1+y q^{n}\right)^{2}\left(1+y^{-1} q^{n}\right)^{2}}
\end{aligned}
$$

How to compute DT $\left(X_{j} c^{*}\right) ?$
\longrightarrow Degenerate $X \sim Y_{1} \bigcup_{S} Y_{2}$
normal Crossing

$$
\operatorname{ch}(R)=c_{n}^{*}
$$

Dream

$$
\operatorname{ch}\left(f_{1}\right)=h_{1}^{*} \quad \operatorname{ch}\left(f_{2}\right)=\operatorname{ch}_{2}^{*}
$$

気
Require F_{1} and F_{2} to meet d transversely and glue.

$$
F_{i} \perp S \underset{\text { constraint }}{\rightleftarrows} \operatorname{Tor}_{1}^{\text {Homological }_{\Longleftrightarrow}^{Y_{i}}}\left(F_{i}, O_{S}\right)=0
$$

Reality Tor $_{1} O_{Y_{i}}\left(F_{i}, O_{S}\right)=0$ is an open Condition in $M\left(f_{i}^{\perp}, c h_{i}^{*}\right) \subset M\left(f_{i}, h_{i}^{*}\right)$

Jun Li / Baosen Wu
Need to come up with Compactifications $\overline{M\left(F_{1}^{\perp}, \mathrm{ch}_{1}^{*}\right)}$ and $\overline{M\left(F_{2}^{\perp}, \mathrm{ch}_{2}^{*}\right)}$

These must parameterize transverse $F_{1} \& F_{2}$ in then limit.

Si- Wu if F_{i} ane ideal sheaves or Pandhanipande-Thomas Stable pairs (PT)
then expanded deyenerations give Compactificatia

Recall from GIX Theory
in the linit!

$$
H_{i} b^{n}(s) \longleftrightarrow \Delta \quad H_{i} b^{n}(s) \times H_{i} b^{n}(s)
$$

\Downarrow

$$
[M(x ; C)]^{\text {vir }} \frac{\text { def }_{n}^{\prime}}{{ }_{\text {iuvarianc }}^{C}} \sum_{C, C_{1} \cup C_{2}} \Delta^{!}\left(\left[M\left(Y_{1}, C_{1} / s\right)\right] \times\left[M\left(H_{21} C_{2} / s\right]\right)\right.
$$

Wonks for ideal Sheaves end PT pairs
Not for general Coherent
Sheaves

Due to Gieseller stability

$F_{1}\left[n_{1}\right]$ or $F_{2}\left[n_{2}\right]$
can be destabilized

Remedy use derived intersection thong. and compute categorification of DT invts

$$
\left|c_{g=3}\right| \cong \mathbb{R}^{3}
$$

Theorem (Barancusky, katzarkov, kontsevich, $S-$)
$\operatorname{let} r_{i}: M\left(Y_{i}, M_{i}^{*}\right) \rightarrow M\left(s,\left.c^{*}\right|_{s}\right)$ denote the derived restriction morphism; given at the level of points by $F_{i} \rightarrow F_{i} \otimes^{L} \sigma_{S} \quad \forall F_{i} \in M\left(y_{i g}\left(u_{i}^{*}\right)\right.$
Then r_{i} Satisfies the Condition of inducing a Lagrangian
structure

$$
\theta_{r_{i}}=\pi_{r_{i}}^{0} \stackrel{\stackrel{N}{\Longrightarrow}}{\|_{M\left(y_{i}, c_{n}^{x}\right)}}[-1]
$$

is a quasi-isomorphism of perfect Complexes

Lemme. The cuduced (-1)-shifted Symplectic form on derived fiber product $M\left(y_{1}, c c_{1}^{*}\right) \times{ }^{D R} M\left(y_{2}, c_{2}^{*}\right)$

$$
M(S)
$$

agrees with the Canonical Structure on derived intersection of two Lagrangians $\theta_{M\left(Y_{1}\right)}^{\infty} \otimes_{M(S)}^{\alpha} \theta_{M\left(Y_{2}\right)}$

Categerified DT iurts from derived Lagrangian
intersection.

Need to show shifted Symplectic structures are invt in degenerate family

let $\mathbb{P}=$ tot $\left(X \sim \sim \cup_{11} \cup_{S} Y_{2}\right)$ Fane 4 fold.
Weed to All derived Structure is induced Show \leadsto from ambient space!!!!

Theonen (Baranevski, katzarkev, kentsevich, S-)
Define koszul algebras

$$
\begin{aligned}
& A_{\mathbb{P}}^{*}=\left(\operatorname{Sym}^{\bullet}\left(U[1] \oplus W_{2}^{v}[1]\right) \otimes \operatorname{Sym}^{v}\left(U^{v} \oplus N_{1}^{v}\right), d_{l_{\mathbb{P}}}^{v}\right) \\
& A_{x}^{*}=\left(\dot{\Lambda}(U[1]) \otimes \operatorname{Sym}(\stackrel{V}{v}), d_{e_{x}}^{v}\right)
\end{aligned}
$$

where over points Fin moduli space

$$
\begin{aligned}
& U=E x t^{1}(F, F)\left\{W_{1}=E_{x t^{\prime}}^{0}\left(F, F \otimes k_{\mathbb{P}}^{v}\right) \quad W_{2}=E_{x}^{\prime}{ }_{x}^{\prime}\left(F, F \otimes k_{\mathbb{P}}^{v}\right)\right. \\
& U^{v}=\operatorname{Ext}^{2}(F, F)\left(W_{1}^{v}=\operatorname{Ext}^{3}\left(F \otimes \mathcal{F}_{\mathbb{P}}^{v}, F\right) \quad W_{2}^{v}=\operatorname{Ext}_{x}^{2}\left(F_{\otimes k^{2}, F}^{\mathbb{P}}\right)\right.
\end{aligned}
$$

(1). The dg-alsebra A_{x}° is isomerpmic to the koszul algebra of af (i.e. The dg algebra of functions
7 on the derived Critical locus of f)
These See ambient
over

$$
\text { over fibers ot } \quad f:=\sum_{k \geqslant 2} \frac{1}{(k+1)!} f_{k+1} \in \operatorname{Syw}^{*}\left(u^{v}\right)
$$

(2). lit $g: U \otimes W_{1} \otimes W_{2}^{V} \rightarrow \mathbb{C}$ a function Linear then the products in last two arguments

$$
S_{y m}{ }^{k}(U) \rightarrow U^{v} \text { and } \delta_{y m}^{k-1}(U) \otimes W_{1} \rightarrow W_{2} k \geqslant 2 \text { can be }
$$

Chosen to describe the canonical $f-\infty$ structure on $U_{\mathbb{P}}^{\prime}=\operatorname{Ext}_{\mathbb{P}}^{\prime}(R, R)$ therefore existence of g implies existence of f
(3) The dg algebra A_{x}^{\prime} is quasi-isom to $\operatorname{dcrit}(f+g)$ on

Throreen (Baraneusky, kattarlecy kentsevich, S-)
(1) let $s \in H^{0}\left(\mathbb{P}, \alpha_{\mathbb{P}}^{v}\right)$. The periodic cyclic hemelegy $H P(s)$ of the matrix factorization categor $D(s)$ is isomorphic to Cehomelogy (in Zariski topelegy)

$$
H\left(w, \Omega_{x}^{0}(u)\right),-d\left(f(s)+g(s)+u d_{D R}\right.
$$

These are Categerified DT iuvts (Gunningham, Safranev)
(2) For a good degeneration $X \sim \sim Y_{1} U_{S} \cup_{S}$ there is a flat connection on vector bundle over $(A$ ' with th fiber $H P(S(t)) t \in A^{\prime} \quad$ (this implies defy invariance) of Categorified DT

$$
\dot{H}_{a p}\left(p y, \dot{B}_{i r}\left(\pi_{h}^{\bullet}\right)\right) \stackrel{P_{a y}}{\cong} Y_{a u}^{\bullet}
$$

