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1 Motivation-The Results

It is a well-known fact that Lr-optimal estimates (1 ≤ r ≤ ∞) of a density and a

regression function with the same smoothness converge to the true parameter at the same

rate; for example:

“... The results on optimal rates of convergence for nonparametric density estimates are

surprisingly similar to those for nonparametric regression ...” (Stone (1982), Annals of

Statistics, 10, p. 1044, 1. 7-8).

The following questions arise naturally, given the presented results on density estimation:

1. Is there an explanation for this coincidence in the rates of convergence?

2. Would the same optimal rates have been observed if, other things being equal, the

regression functions were a quantile or another parameter of the conditional density?

These questions provided the motivation for the regression type problem studied in these

lectures. The key observation to answer both questions is that a regression type problem

can be viewed as a combination of several density estimation problems, each occurring at

the observed values of the independent variable; see graph.

In the classical regression problem (X1, Y1), . . . , (Xn, Yn) are observed, according to the

model

Y = θ(X) + ε, (1)

θ belongs to a space of functions Θ and the assumptions for the error ε are:

E(ε) = 0, V ar(ε) = σ2, ε ∼ P0,σ2 unknown

AIM: Estimate θ(x) (conditional mean).

Observe that: Yi|Xi = xi ∼ Pθ(xi),σ2 , θ(xi) = E(Yi|Xi = xi).

In a regression type problem it is assumed instead of (1) that

Y |X = x ∼ Pθ(x), (2)

i.e. the regression type function θ(x) can be any parameter of the conditional probability

measure Pθ(x), i.e. a conditional median or another conditional quantile.
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What are the results, briefly: Let (X1, Y1), . . . , (Xn, Yn) be a sample, denote the con-

ditional density of Yi|Xi = xi as f(y|xi, θ(xi) and θ an element of a metric space, (Θ, d),

of functions. A lower bound is provided for the d-error in estimating θ. The order of the

bound depends on the local behavior of the Kullback-Leibler information of the conditional

density. As an application, we consider the case where Θ is the space of q-smooth functions

on [0, 1]d metrized with the Lr-distance, 1 ≤ r <∞. An upper d-error bound for Minimum

Distance Estimate θ̂n is obtained, that depends on Kolmogorov entropy of the space (Θ, d),

and holds also under weak dependence; d the L1-distance. It is risk optimal, when Θ is

the space of q-smooth functions on [0, 1]d.

The tools needed to obtain the results are presented in the sequel.

2 Optimal Estimates in Probability and in Risk

In the previous lectures we obtained the upper convergence rate of the MDE in Probabil-

ity. The question that arises is whether the estimate and the rate are optimal. Definitions

of optimality for a sequence of estimates {θ̂n} in Probability and in Risk follow.

Let {θ̂n, T̂n} be estimates of the parameter θ(∈ Θ). The estimation loss/cost is measured

by a distance measure d. The observations X1, . . . , Xn are i.i.d. with respect to probability

measure Pθ, θ ∈ Θ.

For a sequence of estimates {θ̂n} of θ it is expected that the Risk

Eθd(θ̂n, θ)−→
n→∞

0 ∀ θ ∈ Θ,

or, for the convergence of the risk to zero to be independent of θ,

sup
θ∈Θ

Eθd(θ̂n, θ) ≤ CUγn; γn ↓ 0, CU = constant.

We would feel more comfortable if there is no other sequence of estimates {T̂n} that

converges faster than {θ̂n} uniformly in θ, i.e.

inf
T̂n

sup
θ∈Θ

Eθd(T̂n, θ) ≥ CLγn; γn ↓ 0, CL = constant

These observations motivate the definition of finite sample risk optimality.
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Definition 2.1 A sequence of estimates {θ̂n} is risk-optimal in estimating θ ∈ (Θ, d) with

rate of convergence an(↓ 0), if there are constants CL and CU , 0 < CL ≤ CU , such that for

n ≥ 1,

CL · an ≤ inf
T̂n

supθ∈ΘEd(T̂n, θ)︸ ︷︷ ︸
Minimax Risk

≤ supθ∈ΘEd(θ̂n, θ) ≤ CU · an. (3)

For the rate of convergence in Probability of {θ̂n} to θ consult the definition of achievable

d-upper rate of convergence given in previous lectures that provides also (5).

Definition 2.2 {θ̂n} is d-optimal in probability uniformly in θ if there is a sequence {an}

decreasing to zero such that

lim
C→0

lim inf
n→∞

inf
T̂n

sup
θ∈Θ

P [d(T̂n, θ) > Can] = 1 (4)

and

lim
C→∞

lim sup
n→∞

sup
θ∈Θ

P [d(θ̂n, θ) > Can] = 0. (5)

Density estimates satisfying (5) have been already obtained, with the achievable upper

rate of convergence an depending on the Kolmogorov entropy of the parameter space. The

same will hold also for regression estimates and the upper bound in (3). The lower bounds

for the convergence rates in (3) and (4) depend on the behavior of the Kullback-Leibler

information of the underlying probability measures of the sample,“locally” at each θ ∈ Θ.

3 Inequalities

Convexity is used repeatedly to obtain inequalities. The material is presented for com-

pleteness.

Definition 3.1 Let f(x) be a real valued function defined on the interval I = [a, b]. f is

convex if for every x1, x2 ∈ [a, b] and 0 ≤ p ≤ 1,

f [px1 + (1− p)x2] ≤ pf(x1) + (1− p)f(x2). (6)
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• Draw a graph to see what (6) means.

Informally: f is convex when for every segment [x1, x2], as xp = px1 + (1− p)x2 varies over

the line segment [x1, x2], the point (xp, f(xp)) lies below the segment connecting (x1, f(x1))

and (x2, f(x2)).

• f is strictly convex if inequality (6) is strict for x1 6= x2.

• If f ′′(x) ≥ 0 ∀ x ∈ [a, b] then f is convex for all x ∈ [a, b].

Definition 3.2 f is concave (strictly concave) if (−f) is convex (strictly convex)

Examples: f1(x) = x2, g1(x) = ex are convex; f2(x) = −x2, g1(x) = log x are concave.

Remark 3.1 Let h(x) = x log x. Is h(x) convex or concave? h(x) is used repeatedly to

prove inequalities.

Jensen’s inequality (for discrete r.v.’s): Let x1, . . . , xk be in the Interval I, 0 ≤

pi ≤ 1,
∑k

i=1 pi = 1. If f is convex, then

f(
k∑
i=1

xipi) ≤
k∑
i=1

pif(xi). (7)

• Result (7) says:

- if f is convex, f(EX) ≤ Ef(X);

- if g is concave, Eg(X) ≤ g(EX).

•When you have to prove inequalities using Jensen’s inequality the function that should

play the role of f and g may not be easy to recognize. An application of Jensen’s inequality

that will be used later follows.

Lemma 3.1 Let ai > 0, bi > 0, i = 1, . . . , n, a =
∑n

i=1 ai, b =
∑n

i=1 bi.

a) Show that

a · log
a

b
≤

n∑
i=1

ai · log
ai
bi
. (8)

(Hint: You may use Remark 3.1.)

b) Assume in addition that ai = c > 0, b̄ = 1
n

∑n
i=1 bi, then

nc · log
nc∑n
i=1 bi

≤
n∑
i=1

c log
c

bi
−→ c · log

c

b̄
≤ 1

n

n∑
i=1

c log
c

bi
. (9)
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Proof of Lemma 3.1 : a) In the right hand side of (8) the log(x) is a concave function and

if Jensen would be used the inequality should have been reversed. If x log(x) would be the

function then the inequality would be of this type BUT we have to alter the presentation

for this sum:
n∑
i=1

ai · log
ai
bi

=
n∑
i=1

bi
ai
bi
· log

ai
bi

now we get the function f(x) = x log(x) but it is multiplied by bi which is not a probability.

Then, we can make it by rewriting

n∑
i=1

ai · log
ai
bi

=
n∑
i=1

bi
ai
bi
· log

ai
bi

= b

n∑
i=1

bi
b
·{ai
bi
· log

ai
bi
} ≥ bf(

n∑
i=1

bi
b

ai
bi

) = bf(
a

b
) = b

a

b
log(

a

b
)

b) Follows from

Proof of Jensen’s inequality for discrete r.v.: For k = 1, 2, (7) holds by convexity.

Assume (7) holds for k = m, i.e.

f(
m∑
i=1

pixi) ≤
m∑
i=1

pif(xi).

To show (7) holds for k = m+ 1 we work for the right side of the inequality:

m+1∑
i=1

pif(xi) =
m∑
i=1

pif(xi) + pm+1f(xm+1) = (1− pm+1)
m∑
i=1

pi
1− pm+1

f(xi) + pm+1f(xm+1)

≥ (1− pm+1)f(
m∑
i=1

pixi
1− pm+1

) + pm+1f(xm+1) ≥ f(
m+1∑
i=1

pixi).

• Equality in (7) holds iff f is linear or x1 = . . . = xk.

Corollary 3.1 Let pi > 0 :
∑N

i=1 pi = 1, then

N∑
i=1

pi log
1

pi
≤ log

N∑
i=1

pi
1

pi
= logN. (10)

Observe that the upper bound is achieved when pi = 1
N
, i = 1, . . . , N, to be used

to prove the last inequality in Fano’s Lemma.

Proposition 3.1 If f is convex on [a, b] then it takes values larger than the tangent line

at any x0 ∈ (a, b), i.e.

f(x) ≥ f(x0) + f ′(x0)(x− x0). (11)
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Proof of Proposition 3.1: Let x1 < x2 < x3,−→ x2 = px3 + (1 − p)x1 −→ p =

x2−x1
x3−x1 , 1− p = x3−x2

x3−x1 .

From convexity of f, f(x2)−f(x1)
x2−x1 ≤ f(x3)−f(x2)

x3−x2 .

Indeed,

f(x2) = f(px3+(1−p)x1) ≤ pf(x3)+(1−p)f(x1) −→ 0 ≤ p[f(x3)−f(x2)]+(1−p)[f(x1)−f(x2)]

−→ [f(x2)−f(x1)](x3−x2) ≤ [f(x3)−f(x2)](x2−x1) −→ f(x2)− f(x1)

x2 − x1

≤ f(x3)− f(x2)

x3 − x2

.

Let now

x2 = x1 + h −→ f(x1 + h)− f(x1)

h
≤ f(x3)− f(x1 + h)

x3 − x1 − h
.

Taking limits in both sides of the inequality as h→ 0

f ′(x1) ≤ f(x3)− f(x1)

x3 − x1

−→ f(x3) ≥ f(x1) + f ′(x1)(x3 − x1)

proving (11).

Let now

x2 = x3 − h −→
f(x3 − h)− f(x1)

x3 − h− x1

≤ f(x3)− f(x3 − h)

h
.

Taking limits in both sides of the inequality as h→ 0

f(x3)− f(x1)

x3 − x1

≤ f ′(x3) −→ f(x1) ≥ f(x3) + f ′(x3)(x1 − x3)

proving (11).

• Use of Proposition 3.1 to prove the general case of Jensen’s inequality.

Proposition 3.2 Let X be a r.v. with domain the real line and with expected value EX.

Let f be a convex function with domain the range of the values of X. Then,

f(EX) ≤ Ef(X). (12)

Remark 3.2 To use (12) when there is an integral
∫
A
f(x)dx rewrite the integral as∫

IA(x)f(x)dx and use the inequality for the function IA(x)f(x); IA(x) = 1 if x ∈ A

and 0 otherwise.
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Proof of Proposition 3.2: Let consider the tangent line, L(x), to f at (EX, f(EX)),

L(x) = f(EX) + f ′(EX)(x− EX).

Then, from (11) it follows that

f(X) ≥ L(X) −→ Ef(X) ≥ EL(X) = f(EX).

x1, . . . , xm non-negative reals

m∑
i=1

xi log xi ≥ t log t+ (m− t) log
m− t
m− 1

≥ m log
m

2
− (m− t) logm

t = max{xi},m =
∑m

i=1 xi
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Distances and deviations between Probability measures/densities

Let P,Q measures on a space X with a σ-field A. Assume the measures have densities p

and q respectively, with respect to dominating measureµ : dP
dµ

= p, dQ
dµ

= q. You can think

of µ as Lebesgue measure, i.e. µ(dx) = dx.

• L1-distance (or Total Variation distance) between P,Q :

||P −Q||1 = 2 sup
A∈A
|P (A)−Q(A)| (13)

• It holds:

||P −Q||1 = 2[P (x : p(x) > q(x)]−Q[x : p(x) > q(x)] =

∫
X
|p(x)− q(x)|µ(dx). (14)

• Kullback-Leibler non-distance (WHY?) between P,Q :

dKL(P,Q) = dKL(p, q) =

∫
X
p(x) log

p(x)

q(x)
µ(dx)

• dKL(P,Q) =
∫
X p(x) log p(x)

q(x)
µ(dx) = −

∫
X p(x) log q(x)

p(x)
µ(dx) = EP [ - log q(X)

p(X)
]

≥ − logEP
q(X)
p(X)

= − log(1) = 0

• Lr-distance: ||p− q||r =
[∫
X |p(x)− q(x)|rµ(dx)

]1/r
, 1 ≤ r <∞.

• L∞-distance: ||p− q||∞ = supx∈X |p(x− q(x)|.

4 Shannon’s Entropy, Information, Fano’s Lemma

Entropy/Uncertainty of discrete r.v.

Shannon (1948) wanted a measure H of uncertainty/surprise of events with certain

properties. Before him a definition was given by Hartley for equally likely events. Some

required properties for H :

H(certainty) = H(no uncertainty) = H(no surprise) = 0;

H(largest uncertainty/surprise) will give the highest H-value;

additional information reduces the uncertainty.
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The events are outcomes of a discreet random variable. Shannon’s related work started

in Bell laboratories using a binary system, i.e. 0’s and 1’s to describe the results of coin

tossing, i.e. H(eads) and T (ails). Instead of calling each digit a “binary digit” John

Tukey suggested the word ”bit”. Shannon suggested for H a measure used in Statistical

Mechanics which for coin tossing, with p = Probability of Head and log denoting log2 is

−[p log p+ (1− p) log(1− p)].

Observe that when p = 1, i.e. complete certainty of the result

−[1 · log 1 + 0 log 0] = 0,

if 0 · (−∞) = 0. The most uncertain situation for the coin tossing is when p = 1/2 and

−[
1

2
log2

1

2
+

1

2
log2

1

2
] = log2 2 = 1,

which either using Jensen’s inequality or simply finding at the extremum of the function

p log2 p+ (1− p) log2(1− p) is indeed attained at p = 1
2
.

Definition 4.1 Let X be a discrete r.v., p(x) = P (X = x), x ∈ X . Then its entropy

H(X) = −E log p(X) = E
1

log p(X)
= −

∑
x∈X

pX(x) log pX(x). (15)

It follows that for discrete r.v. X, Y with joint probability pX,Y their entropy

H(X, Y ) = −E log pX,Y (X, Y ) = E log
1

pX,Y (X, Y )
= −

∑
x∈X ,y∈Y

pX,Y (x, y) log pX,Y (x, y).

(16)

The notation H(X|Y ) is used for what is called “average posterior entropy”. Do not

confuse H(X|Y ) with conditional probability statements: H(X|Y ) is a number.

Definition 4.2 For discrete r.v. X, Y,

H(X|Y ) = −E log p(X|Y ) = E
1

log p(X|Y )
= −

∑
x∈X ,y∈Y

pX,Y (x, y) log pX|Y (x|y). (17)
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• However, the entropy H(X) is an expected value thus the identity for expected value

E(V ) = E[E(V |U)] holds, i.e.

H(X) = −E log p(X) = −E[E(log p(X)|U)] = −
∑
u∈U

E(log p(X)|U = u) ·P (U = u). (18)

Properties of H

a) If the cardinality of X-values is N then, from (10), H(X) ≤ logN. The upper bound

is achieved when values of X are equally likely.

b) H(X, Y ) = H(X) +H(Y |X)

Proof: H(X, Y ) = −E log p(X, Y ) = −E log p(X)p(Y |X) = −E log p(X)−E log p(Y |X).

c) H(X, Y ) ≤ H(X) +H(Y )

Proof: Use ri,j = P (X = xi, Y = yj), pi = P (X = xi), qj = P (Y = yj).

Observe that
∑

j ri,j = pi and similarly for qj.

H(X, Y )−H(X)−H(Y ) =
∑

i,j ri,j log 1
ri,j

+
∑

i pi log pi +
∑

j qj log qj =
∑

i,j ri,j log 1
ri,j

+
∑

i,j ri,j log pi +
∑

j,i ri,j log qj =
∑

i,j ri,j log
piqj
ri,j
≤ (Why?) log

∑
i,j piqj = 0.

d) H(X, Y ) = H(X) +H(Y ) ⇐⇒ X, Y are independent.

Proof: log is not linear thus equality holds in c) holds iff
ri,j
piqj

= k, ∀ i, j, or ri,j = kpiqj

and summing for all j in both sides we get pi = kpi or k = 1 or X, Y are independent.

e) From c), for U1, . . . , Un discrete r.vs, H(U1, . . . , Un) ≤ H(U1) + . . .+H(Un).

f) H(X|Y ) ≤ H(X) (Higher surprise if nothing is known.)

Proof: From b) and c), respectively,

H(X, Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ),

H(X, Y ) ≤ H(X) +H(Y ),

therefore, H(X|Y ) ≤ H(X).

g) For any function g, H(g(Y )|Y ) = 0.

Intuitively clear: when Y is known there are no surprises for g(Y ). In the calculations

P [g(Y ) = g(y)|Y = y] is needed. What is its value?
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h) H(Y |X) ≤ H(Y |g(X)) Use G = g(X) with G taking values g (abuse of notation).

Intuitively: g(X) shrinks the X-values, so there will be more surprise when you know g(X)

instead of X.

Proof: H(Y |X) = −
∑

y

∑
x pY,X(y, x) log

pY,X(y,x)

pX(x)

H(Y |G) = −
∑
y

∑
g

pY,G(y, g) log
pY,G(y, g)

pG(g)

We will use repeatedly that for fixed y :

pY,G(y, g) = P [Y = y,G = g] = P [∪{x:g(x)=g}{Y = y,X = x}] =
∑

x:g(x)=g

pY,X(y, x)

We work on the term pY,G(y, g) log
pY,G(y,g)

pG(g)
and use that in (8), with a =

∑
ai, b =∑

bi, ai > 0, bi > 0,

a · log
a

b
≤

n∑
i=1

ai · log
ai
bi
,

pY,G(y, g) log
pY,G(y, g)

pG(g)
= [

∑
x:g(x)=g

pY,X(y, x)] log

∑
x:g(x)=g pY,X(y, x)∑
x:g(x)=g pX(x)

≤
∑

x:g(x)=g

pY,X(y, x) log
pY,X(y, x)

pX(x)

Thus,

H(Y |G = g(X)) = −
∑
y

∑
g

pY,G(y, g) log
pY,G(y, g)

pG(g)

≥ −
∑
y

∑
g

∑
x:g(x)=g

pY,X(y, x) log
pY,X(y, x)

pX(x)
= H(Y |X)

Proposition 4.1 (Fano’s Inequality) Let X, Y be r.v. with values 1, . . . , N, W = I{X 6=Y }

is the indicator of {X 6= Y }, with value 1 when X 6= Y and value 0 when X = Y. Then,

H(X|Y ) ≤ log 2 + P (X 6= Y ) log(N − 1). (19)

Proof: From b) of the H-properties, H(U, V ) = H(U) +H(V |U), and therefore

H(W,X|Y ) = H(X|Y ) +H(W |X, Y ) = H(X|Y ) (20)

with the last equality due to g) since W is function of X, Y.

Reversing the roles of W, X in the middle equality in (20),

H(W,X|Y ) = H(W |Y ) +H(X|W,Y )
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observing that W gets only 2 values and using from a) the bound on H(W ) and (18),

≤ log 2 + P (W = 1)H(X|W = 1, Y ) + P (W = 0)H(X|W = 0, Y )

= log 2 + P (W = 1) log(N − 1) + 0 = log 2 + P (X 6= Y ) log(N − 1)

where the penultimate equality holds since

i) when W = 1 then X 6= Y → X|{W = 1, Y } takes N − 1 values,

ii) when W = I{X 6=Y } = 0 it means X = Y and therefore X|{W = 0, Y } takes the Y -value

and there are no surprises i.e. H(X|W = 0, Y ) = 0.

Information I(X, Y ) in random variables X, Y via dKL

I(X, Y ) = dKL(PX,Y , PXxPY )

Thus, I(X, Y ) is a measure of the difference between pX,Y (x, y) and pX(x) · pY (y) on

the average with respect to the joint probability. We will see below that this difference is

equal also with the difference in uncertainties/surprises between X and X|Y, and if X|Y

takes N values then

I(X, Y ) = dKL(PX,Y , PXxPY ) = H(X)−H(X|Y ) ≤ logN −H(X|Y ). (21)

Proof: I(X, Y ) = dKL(PX,Y , PXxPY ) =
∑

(x,y)∈XxY pX,Y (x, y) log
pX,Y (x,y)

pX(x)pY (y)

=
∑

(x,y)∈XxY pX,Y (x, y) log
pX|Y (x|y)

pX(x)
=
∑

x∈X [
∑

y∈Y pX,Y (x, y)] log 1
pX(x)

−[−
∑

(x,y)∈XxY pX,Y (x, y) log pX|Y (x|y)] = H(X)−H(X|Y ).

The upper bound follows from (10) and it is achieved when X takes each of the N -values

with probability 1/N.

Fano’s Lemma

Recall Fano’s inequality (19),

H(X|Y ) ≤ log 2 + P (X 6= Y ) log(N − 1). (22)

which implies using also (21) with X’s values equally likely,

P (X 6= Y ) ≥ H(X|Y )− log 2

log(N − 1)
=
H(X)− I(X, Y )− log(2)

log(N − 1)
=

log(N)− I(X, Y )− log(2)

log(N − 1)
(23)
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or,

P (X 6= Y ) ≥ 1− I(X, Y ) + log 2

log(N − 1)
. (24)

Use of (23) in estimation: X, Y be discrete random variables, Y uniform taking N

values,

P (X = x|Y = i) = pi(x), P (X = x, Y = i) = pi(x)/N.

Y determines the N potential models followed by X given Y.

I(X, Y ) =
N∑
i=1

∑
x

p(X = x, Y = i) log
P (X = x, Y = i)

P (X = x)P (Y = i)

=
N∑
i=1

∑
x

pi(x)

N
log

pi(x)/N∑N
j=1 pj(x)/N2

=
1

N

N∑
i=1

∑
x

pi(x) log
pi(x)∑N

j=1 pj(x)/N

Work on the term in the sum, looking at pi as constant, c, and use (9):

pi(x) log
pi(x)∑N

j=1 pj(x)/N
=

1

N
·Npi(x) log

Npi(x)∑N
j=1 pj(x)

≤ 1

N

n∑
j=1

pi(x) log
pi(x)

pj(x)

thus an upper bound on the information is obtained for these X, Y

I(X, Y ) ≤ 1

N2

N∑
i=1

N∑
j=1

dKL(pi, pj) (25)

and from (24)

P (X 6= Y ) ≥ 1−
N−2

∑N
i=1

∑N
j=1 dKL(pi, pj) + log 2

log(N − 1)
. (26)

Observe that:

P (X 6= Y ) =
N∑
i=1

P (X 6= i|Y = i)P (Y = i) =
1

N

N∑
i=1

P (X 6= i|Y = i). (27)

In estimation problems, let (X ,A) be a space with a σ-field, X is a random vector on

X obtained from one of the probability measures P1, . . . , PN . Let Y be a uniform r.v.

taking values 1, . . . , N and δ(X) be an estimate of the index of the probability of X. We

are interested in

P [X : δ(X) 6= i||Y = i] = Pi[X : δ(X) 6= i], i = 1, . . . , N,
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in particular in their average which will be used to find a lower bound on the Lr-error,

r ≥ 1, via (26) and (27)

1

N

N∑
i=1

Pi[X : δ(X) 6= i] = P [δ 6= Y ] ≥ 1−
N−2

∑
i,j dKL(Pi, Pj) + log 2

log(N − 1)
; (28)

Pi in (28) denotes the joint probability of X, i = 1, . . . , n.

5 Lower Bounds on the Error in Nonparametric Regression-

Type Problems

In the classical nonparametric regression problem, we consider a sample (X1, Y1), . . . , (Xn, Yn)

where X1, . . . , Xn are Rd valued measurements that might be random or nonrandom,

Y1, . . . , Yn are the corresponding responses such that E(Yi|Xi = xi) = θ(xi) with θ in

an infinite dimensional space Θ. Conditionally on X1 = x1, . . . , Xn = xn, the Y -responses

are independent with distributions of the same form f(y|x, θ(x)dy := Pθ(x)(dy), but with

parameters depending on the measurements xi, i = 1, . . . , n.

Under this setup, Stone (1980, 1982) and Ibragimov and Khas’minskii (1980) have

constructed optimal estimators θ̂n of θ in Lr, 1 ≤ r, when Θ consists of q-smooth functions

on [0, 1]d. Ibragimov and Khas’minskii proved that their estimators are almost minimax

modulo a constant, that is, there are constants CL, CU such that sup{Eθ||θ̂n − θ||r; θ ∈

Θ} ≤ CU · n−γ and inf{sup{Eθ||T̂n − θ||r; θ ∈ Θ}; T̂n} ≥ CL · n−γ, γ > 0, n ∈ N. Stone has

considered other definitions of optimality using bounds for the loss ||θ̂n − θ||r as described

at the end of the paper.

We will relax the condition that θ(x) is a conditional mean as in the classical regression

problem. We will only assume that θ(x) is a parameter of the conditional density and we

will call the problem of estimating θ a regression type problem. When θ is an element of

a metric space (Θ, d) we will provide for the regression type problem a lower bound on

the d-minimax risk.This bound can be used as a tool to provide lower bounds for different

choices of (Θ, d). We will apply the result and evaluate the lower bound in the case where

Θ is a family of smooth functions and d is the Lr- distance, 1 ≤ r < ∞. In a remark
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at the end of the paper, we provide with the same technique, lower bounds for the d-loss

in probability. A minimum distance estimate for the regression type problem proposed in

Yatracos (1989) shows achievability of the lower bound. The error of this estimate depends

on the entropy of Kolmogorov of (Θ, d) as in the density estimation problem (Yatracos,

1985).

The method for computing the lower bound comes from Le Cam’s idea in hypothesis

testing (Le Cam, 1986, or Kraft,1955) that you cannot test (and so estimate) θ0 versus

Θ−{θ0} if θ0 is in the convex hull of Θ−{θ0}. So it will be difficult to test θ0 versus Θn ⊆

Θ−{θ0} when Θn consists of functions close to θ0, the difficulty being reflected in the lower

bound of the minimax or Bayes risk. This idea has already been used by Bretagnolle and

Huber (1979) to obtain lower bounds for the risk in the nonparametric density estimation

problem. A similar approach, using Fano’s lemma, has been considered to obtain lower

bounds for minimax risks by Khas’minskii (1978) and Birge (1983) in density estimation

and by Ibragimov and Khas’minskii (1981) in classical regression with equidistant design.

An observation that a regression problem is almost a density estimation problem leads to

the use of Fano’s lemma and a lower bound for an arbitrary metric space (Θ, d). An elegant

result of Birgé helps to obtain the best lower bound when Θ is the space of (q, L) smooth

functions on [0, 1]d metrized with the Lr distance, 1 ≤ r < ∞, (i.e., Θ consists of p times

differentiable functions in [0, 1]d, uniformly bounded in sup-norm with the p− th derivative

satisfying a Lipschitz condition with parameters (L, a), q = p + a, 0 ≤ p, 0 < a < 1). Note

that Fano’s lemma involves the Kullback information K(Pθ1(x), Pθ2(x)), so we will have to

evaluate it or find an upper bound for it. It is easy to see that for the case considered by

Stone, K(Pθ1(x), Pθ2(x)) ≤ C[θ1(x)−θ2(x)]2. It is this condition that makes the estimators of

Ibragimov and Khas’minskii and Stone asymptotically optimal and not the nature of θ(x)

in the conditional density. It is the behavior of the Kullback information K(Pθ1(x), Pθ2(x))

locally that will determine the lower bound on the risk and the lower bound of the loss in

probability.

For sample size n, we will compute a lower bound on the sup{Eθd(T̂n, θ); θ ∈ Θ} by

considering a bound on sup{Eθd(T̂n, θ); θ ∈ Θn} with Θn an appropriate subset of Θ

according to Le Cam’s idea. It turns out that when Θ is the set of q-smooth functions
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on [0, 1]d, one can use a set Θn similar to the one used by Kolmogorov and Tihomirov

(1959) to compute a lower bound for the entropy of smooth functions on [0, 1]d. We should

also mention, at this point, the work by Boyd and Steele (1978) and Assouad (1983).

The former proved that in the nonparametric density estimation problem, considering all

densities with squared error loss, the minimax risk cannot be better than O(n−1). The

latter provided a lower bound on risks for any loss and related the O(n−1/2) minimax risk

with dimensionality properties of the space of probability measures under consideration.

Khas’minskii (1978) provides lower bounds on the risks of nonparametric estimates of

densities in the uniform metric. Devroye (1986) computes minimax bounds on the L1 loss

for the class of kernel estimates. For a detailed study on lower bounds on minimax risks,

the reader could consult Devroye and Gyorfi (1985) and Devroye (1987).

Notation. Definitions. The results. Let (X ,A), (Y1,B1), . . . , (Yn,Bn) be spaces

with their σ-fields. Let (X1, Y1), . . . , (Xn, Yn) be a sample with Xi taking values in X , i =

1, . . . , n, Yi taking values in Yi, i = 1, . . . , n.

Definition 5.1 For any two functions f, g on (X ,A), Lr(λ) integrable, 1 ≤ r <∞, their

Lr distance is

||f − g||r =

(∫
X
|f(x)− g(x)|rλ(dx)

)1/r

. (29)

Definition 5.2 For any two probability measures P,Q on (Y ,B), their Kullback infor-

mation K(P,Q) = EP log(dP
dQ

) if P is absolutely continuous with respect to Q; otherwise,

K(P,Q) =∞.

Note: In the case of product measuresK(P1xP2x . . . xPn, Q1xQ2x . . . Qn) =
∑n

i=1 K(Pi, Qi).

FANO’S LEMMA: Let (Y ,B) be a space with a σ-field, P1, . . . , Pm probability mea-

sures on B and δ an estimator of the measures defined on Y . Then

1

m

m∑
i=1

Pi[δ(y) 6= Pi] ≥ 1−
m−2

∑
i

∑
jK(Pi, Pj) + log 2

log(m− 1)
. (30)

Proposition 5.1 Under the regression setup used for the sample (X1, Y1), . . . , (Xn, Yn),

for Θn a subset of Θ with finite cardinality, d a distance on Θ and T̂n an estimator of the
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regression type function θ,

sup{Eθd(T̂n, θ) : θ ∈ Θ}

≥ 1

2
inf{d(θ1, θ2) : θ1 6= θ2, (θ1, θ2) ∈ Θ2

n}E

[
1−

(card(Θn))−2
∑

(θ1,θ2)∈Θ2
n

∑n
i=1K(Pθ1(Xi), Pθ2(Xi)) + log 2

log(card(Θn − 1))

]
,

the last expectation taken with respect to the probability measure of (X1, . . . , Xn).

Proof: Define T̂ ∗n taking values in Θn such that d(T̂n, T̂
∗
n) = inf{d(T̂n, θ); θ ∈ Θn}. Then,

we have for θ ∈ Θn,

d(T̂ ∗n , θ) ≤ d(T̂ ∗n , T̂n) + d(T̂n, θ) ≤ 2 · d(T̂n, θ)

and

sup{Eθd(T̂n, θ) : θ ∈ Θ} ≥ sup{Eθd(T̂n, θ) : θ ∈ Θn} ≥
1

card(Θn)

∑
θ∈Θn

Eθd(T̂n, θ)

= E

[
1

card(Θn)

∑
θ∈Θn

Eθ(d(T̂n, θ)|X1 = x1, . . . , Xn = xn)

]

≥ 1

2
inf{d(θ1, θ2); θ1 6= θ2, (θ1, θ2) ∈ Θ2

n} ·
1

card(Θn)

∑
θ∈Θn

Pθ[T̂
∗
n 6= θ|X1 = x1, . . . , Xn = xn]

≥ 1

2
inf{d(θ1, θ2); θ1 6= θ2, (θ1, θ2) ∈ Θ2

n}

[
1−

(card(Θn))−2
∑

(θ1,θ2)∈Θ2
n

∑n
i=1K(Pθ1(xi), Pθ2(xi) + log 2

log(card(Θn)− 1)

]
,

by applying Fano’s Lemma (30) to the probability measures Pθ(x1)x . . . xPθ(xn), θ ∈ Θn, on

the product spaces Y1x . . . xYn. 2

Corollary 5.1 Under the assumptions of Proposition 5.1, if K(Pθ1(xi), Pθ2(xi)) ≤ cn for all

θ1, θ2 ∈ Θn and inf{d(θ1, θ2); θ1 6= θ2, (θ1, θ2) ∈ Θ2
n} > an, then

sup{Eθd(T̂n, θ) : θ ∈ Θ} ≥ 1

2
an

[
1− ncn + log 2

log(card(Θn)− 1)

]
. (31)

Proposition 5.2 Assume for the conditional density f(y|x, t), with all derivatives taken

with respect to the parameter t, that:

(i)
∫
Y f
′(y|x, t)µ(dy) = 0.

(ii) If l(y|x, t) = log f(y|x, t), there are positive constants ε0 and K1 and a function
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M(y|x, y) such that

a) |l′′(y|x, t+ ε)| ≤M(y|x, t) for |ε| ≤ ε0, and

b)
∫
YM(y|x, t)µ(dy) ≤ K1.

Then, K(Ps, Pt) ≤ C(t− s)2.

Proof: When |t− s| is small, making a Taylor expansion, we have

K(Ps, Pt) =

∫
Y
f(y|x, t) log

f(y|x, t)
f(y|x, s)

µ(dy)

= −
∫
Y
f(y|x, t)

[
(s− t)f

′(y|x, t)
f(y|x, t)

+
(t− s)2

2
l′′(y|x, c)

]
µ(dy) ≤ K1

2
(t− s)2,

where c is in the open interval determined by t and s. 2.

An application

Let Θ be the space of (q, L)-smooth functions on [0, 1]. We introduce a family Θn but

we will use a subset Θ∗n of it to apply Proposition 5.1. Let

φi,n(x) = abqn

[
1−

(
x− .5(2i− 1)bn

.5bn

)2
]q
· I{(i−1)bn≤x≤ibn}, i = 1, . . . , b−1

n ,

where a > 0 can be chosen appropriately to make the constant of the Lipschitz condition

less than or equal to L. The set Θn will consist of functions Θn with form

b−1
n∑
i=1

γiφi,n(x),

with γi = 1 or 0, i = 1, . . . , b−1
n .

Note that the Lr distance between functions of Θn will be greater than or equal to

abqn

[∫ bn

0

[
1−

(
x− .5bn
.5bn

)2
]qr]1/r

=
a

21/r
bq+(1/r)
n

[∫ 1

−1

(1− y2)qrdy

]1/r

= Cq,r,ab
q+ 1

r
n .

It is also easy to see that:

Ir =

∫ 1

−1

(1− y2)rdy =
2r

2r + 1
Ir−1, r ≥ 1, I0 = 2,

|θ1(x)− θ2(x)| ≤ abqn, ∀ θ1, θ2 ∈ Θn, ∀ x ∈ [0, 1].
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When X = [0, 1]d, consider functions φj1,...,jd,n with form

φj1,...,jd,n(x1, . . . , xd) = abqnΠd
i=1

[
1−

(
xi − .5(2ji − 1)bn

.5bn

)2
]q
· Πd

i=1I{(ji−1)bn≤xi≤jibn},

i = 1, . . . , b−1
n , i = 1, . . . , d.

Note that there are b−dn such I-rectangles in [0, 1]d defining the φ-functions, so enumerate

them as I1,n, . . . , Ib−dn ,n and the corresponding φ-functions as φI1,n, . . . , φI
b−dn ,n

. The functions

θ(x1, . . . , xd) in Θn will have form

b−dn∑
i=1

γiφIi,n(x1, . . . , xd), γi = 0 or 1.

The lower bound on the Lr-distance between functions of Θn will be greated than or equal

to Cq,r,a,db
q+(d/r)
n .

Definition 5.3 Let d be a distance-measure on a subset P of the L1(λ) functions on

(X ,A), λ a probability measure on A,Φ a function, Φ : R+ → R+. The function Φ(d(f, g))

is called superadditive if for every finite partition {Ai; 1 ≤ i ≤ l} of X , we have for f, g in

P ,

Φ(d(f, g)) =
l∑

i=1

l∑
i=1

Φ[d(fIAi , gIAi)]; (32)

IA denotes the indicator function of A.

Property (32) has been introduced by Bretagnolle and Huber (1979) and is satisfied by

d = ||f − g||rr on Lr(λ), r ≥ 1.

Theorem 5.1 (Birgé, 1983, Proposition 3.8) Let {Ai; 1 ≤ i ≤ l} be a partition of X and

f, gi and g′i be elements of L1(λ) with support on Ai, i = 1, . . . , n. Let Θ = {f+
∑l

i=1 λi;λi =

gi} and assume that for all i, d(f + gi, f + g′i)) ≥ a and that dr is superadditive for some

r ≥ 1. Then there is a subset Θ∗ of Θ such that d(f ∗, g∗) ≥ a(0.125l)1/r for f ∗ 6= g∗

elements of Θ∗ and log(card(Θ∗)− 1) > 0.316l for any l ≥ 8.

Corollary 5.2 If Θ is the set of q-smooth functions on [0, 1]d for conditional densities

such that K(Pθ1(x), Pθ2(x)) ≤ C|θ1(x) − θ2(x)|M for some M > 0, the Lr minimax risk is

greater than or equal to C∗n−q/(Mq+d).
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Proof: Consider the preceding sets of functions Θn of the form
∑b−dn

i=1 γiφIi,n(x1, . . . , xn). By

Birg’e’s Theorem, there exists a subset Θ∗n of Θn such that ||θ1−θ2||r ≥ (0.125b−dn )1/rCq,r,a,db
q+(d/r)
n

for all θ1 6= θ2 in Θ∗n and log(card(Θ∗n)− 1) > 0.316b−dn . By assumption,

K(Pθ1(x), Pθ2(x)) ≤ C|θ1(x)− θ2(x)|M ≤ CbMq
n ∀ θ1, θ2 ∈ Θn.

By Corollary 5.1, for any estimator T̂n,

sup{Eθ||T̂n − θ||r : θ ∈ Θ} ≥ 1

2
Cq,r,a,d(0.125)1/rbqn

[
1− C ′nbMq

n + log 2

0.316b−dn

]
.

For [1 − C′nbMq
n +log 2

0.316b−dn
] to be greater than a positive number, it is enough to take bn ∼

n−1/(Mq+d). The minimax risk cannot be better than C∗n−q/(Mq+d). 2

Example 5.1 In the case of conditional densities f(y|x, θ(x)) that are one of the following,

Bernoulli (θ(x)), binomial (N, θ(x)), geometric (θ(x)) and exponential (θ(x)), we see that

K(Pθ1(x), Pθ2(x)) < C(θ1(x)− θ2(x))2 so the lower bound for the Lr-minimax risk is of the

order n−
q

2q+d . The same holds for the normal (θ1(x), θ2(x)2) when we are interested in θ1(x)

and θ2(x) is bounded away from 0 and ∞.

Example 5.2 In the case the conditional density is either uniform (θ(x)) or has the form

eθ(x)−y, K(Pθ1(x), Pθ2(x)) < C|θ1(x) − θ2(x)| and the lower bound of the Lr-minimax risk

is n−q/(q+d). One could also derive lower bounds in the case K(Pθ1(x), Pθ2(x)) ≤ g(|θ1(x) −

θ2(x)|).

Remark 5.1 One can define d-optimality for a sequence θ̂n of estimators of θ in a regres-

sion type problem using bounds in probability for the loss d(θ̂n, θ) (Stone, 1980). We say

{θ̂n} is d-optimal in probability for θ if there is a sequence {an} decreasing to zero such

that

lim
C→0

lim inf
n→∞

inf
T̂n

sup
θ∈Θ

P [d(T̂n, θ) > Can] = 1 (33)

and

lim
C→∞

lim sup
n→∞

sup
θ∈Θ

P [d(θ̂n, θ) > Can] = 0. (34)
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To verify (33), we can use a variant of Proposition 5.1 under the additional assumption

that d(θ1, θ2) > 2Can for all (θ1, θ2) ∈ Θ2
n, θ1 6= θ2. For every estimator T̂n we have then

sup
θ∈Θ

Pθ[d(T̂n, θ) > Can] ≥ E

[
1−

(cardΘn)−2
∑

(θ1,θ2)∈Θ2
n

∑n
i=1K(Pθ1(Xi), Pθ2(Xi)) + log 2

log(card(Θn)− 1)

]
,

Under the previous setup, when Θ is the set of q-smooth functions on [0, 1]d,Θn =

Θ∗n, C = 0.5(0.125)1/rCq,r,a,d, an = bqn, K(Pθ1(x), Pθ2(x)),≤ C̃|θ1(x)− θ2(x)|M and d is the Lr

distance, 1 ≤ r <∞, we have that for every estimate T̂n and ε > 0, supθ∈Θ Pθ[||T̂n− θ||r >

Cbqn] > 1− ε for n ≥ n(ε) if bn ∼ (ε/n)1/(Mq+d) and

lim
C→0

lim inf
n→∞

inf
T̂n

sup
θ∈Θ

P [d(T̂n, θ) > Cn−q/(Mq+d)] = 1.

6 L1-upper bound on the Error in Nonparametric

Regression-Type Problems

We describe the idea for the approach in a general framework. Let (X ,A), (Yx,Ax), x ∈

X be spaces with their σ-fields and let X be a compact set in Rd, d ≥ 1. Θ is a family

of real-valued functions defined on X , compact in sup-norm || · ||∞ on C(X ). Let M =

{Px,θ(x); θ ∈ Θ, x ∈ X} be a family of probability measures on {Bx, x ∈ X} dominated by

a σ-finite measure µ. Pθ(x) will be used instead of Px,θ(x) for convenience. Let Y1, . . . , Yn

be independent r.vs, respectively, under Pθ(xi) with density f(y|xi, θ(xi)), i = 1, . . . , n.

Let P n
θ denote the product measure Pθ(x1)x . . . xPθ(xn) on (Yx1x . . . xYxn ,Bx1x . . . xBxn). An

estimate of θ is provided when the form of Pθ(x) is known.

Note that at each xi we have a density estimation problem. The approach in the density

estimation problem suggest using the empirical measure for the solution of the regression

type problem. Instead of using a MD criterion for choosing density fθ(xi) at the point xi,

we use a global criterionn involving densities at all the sample x1, . . . , xn that will allow

us to choose θ. Continuity of the regression function and assumption (A3) , which ensures

that the observed values x1, . . . , xn are sufficiently dense uniformly in X , will allow us to

construct an estimate which is satisfactory globally, in L1-distance.
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For the regression type problem (2)

Y |X = x ∼ Pθ(x)

it is assumed that θ is a q-smooth function in [0, 1]d, ı.e. θ ∈ Θq,d; q = p+α. As previously

discussed, Θq,d is sup-norm and totally-bounded so L1 totally-bounded and has Kolmogorov

entropy, log2N∞(a) ∼ log2NL1(a) ∼ ( 1
a
)d/q.

Fundamental for the results is a Proposition showing that if T̂n is an estimate of θ(x),

with both T̂n and θ elements of Θq,d, then it is easier to estimate θ than its mixed partial

derivatives θ(s) as upper error bounds indicate when estimating θ(s) by T̂
(s)
n .

Proposition 6.1 (Yatracos, 1989) Under the setup of the regression type problem, for

θ ∈ Θq,d and T̂n any estimator element of Θq,d,d ≥ 1, 1 ≤ [s] ≤ p,

||T̂ (s)
n − θ(s)||r ≤ C1γ

q−[s]
n + C2γ

−[s]
n ||T̂n − θ||r, r ≥ 1; (35)

C1, C2, γn are all positive constants. γn is the bandwidth of a kernel used to approximate

Tn and θ and can be chosen to minimize the upper bound in (35) when ||T̂n − θ||r ≤ an in

probability.

Assumptions

The following assumptions will be made on the distributions of the variables:

(A1) C1|t − s| ≤ ||f((·|x, t) − f((·|x, s)||1 ≤ C2|t − s|, where 0 < C1 ≤ C2 are constants

independent of x.

(A2) The form of the conditional density is known.

(A3) For every λ ∈ (0, 1/d), d ≥ 1, there exists a c > 0 such that

lim
n→∞

Qn(Cn,d,λ) = 1,

where

Cn,d,λ = {(X1, . . . , Xn) : #{i : |Xi − x| < n−λ} ≥ cn1−λd for all x ∈ [0, 1]d};

Qn is the distribution of X = (X1, . . . , Xn).

(A4) KL(Pθ1(x), Pθ2(x)) ≤ C[θ1(x) − θ2(x)]2, for every θ1, θ2 in Θq,d, x ∈ [0, 1]d; C is a

positive constant.
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Assumption (A1) is satisfied in the examples that follow. You can prove it, e.g. for

the normal and the binomial examples. Assumption (A2) is not needed when θ is the

conditional mean. When data is available f can be estimated locally, at each x, and

its functional form can be approximated. Assumption (A3) is nonvacuous and has been

used before in the literature; see, for example, Stone [(1982), Condition 3, page 1043].

Assumption (A4) holds under the assumptions in Proposition 5.2 and e.g. in Example 5.1.

Assumption (A1) is satisfied in the examples that follow. You can prove it, e.g. for the

normal and the binomial examples.

Example 6.1 Normal model. Let

f(y|x, θ(x), σ(x)) = (2π)−1/2(σ(x))−1 exp{−(y − θ(x))2/2σ2(x)},

where µ is the Lebesgue measure. If we are interested in θ(x) and σ(x) is bounded away

from 0 and infinity on then

||f(·|x, θ(x), σ(x))− f(·|x, 0, σ(x))||1 ∼ |θ(x)|,

where the elements of Θ take values in [−a, a] for all x. If we are interested in the standard

deviation and if the elements of Θ (i.e., the standard deviations) are bounded away from 0

and infinity uniformly for all x, then

||f(·|x, θ(x), σ(x))− f(·|x, 0, θ(x), σ̃(x))||1 ∼ |σ(x)− σ̃(x))||1.

If σ(x) is known, then the model fits into the framework with functional parameter θ(x)

and similarly for σ(x), if θ(x) is known.

Example 6.2 Exponential model. Let f(y|t) = te−ty where µ is the Lebesque measure on

[0,∞) and t ∈ [a, b] ⊂ (0,∞), the elements of Θ taking values in [a, b] for all x ∈ X .

Example 6.3 Poisson model. Let f(y|t) = tye−t/y! where µ is the counting measure on

the nonnegative integers, t ∈ [a, b] ⊂ (0,∞).

Example 6.4 Binomial model. Let f(y|t) =
(
N
y

)
ty(1 − t)N−y where µ is the counting

measure on the nonnegative integers, t ∈ [a, b] ⊂ (0, 1), the elements of Θ taking values in

[a, b] for all x ∈ X .
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Example 6.5 Uniform (0, θ) model. Let f(y|t) = t−1, 0 ≤ y ≤ t, where µ is the Lebesque

measure on [0,∞) and t ∈ [a, b] ⊂ (0,∞), the elements of Θ taking values in [a, b] for all

x ∈ X .

Example 6.6 Let f(y|t) = et−y, t ≤ y, where µ is the Lebesque measure on [0,∞) and

t ∈ [a, b] ⊂ (0,∞), the elements of Θ taking values in [a, b] for all x ∈ X .

Proposition 6.2 Let (X1, Y1), . . . , (Xn, Yn) be a sample as in the setup of the regression

type problem. Qn is the distribution of X = (X1, . . . , Xn), θ is an element of Θq,d, d ≥ 1,

and Yi|Xi = xi ∼ Pθ(xi). Assume (A1)-(A4) hold. Then we can construct L1-optimal

minimum distance estimators θ̂n of θ with upper rate of convergence in Probability

n−q/(2q+d) = an ∼ [
log2N(an)

n
]1/2; (36)

N(a) is the smallest number of || · ||∞-balls of radius a > 0 needed to cover Θq,d.

Proof: Fix an > O (to be determined later in order to obtain the best convergence

rate). Let Θn,q,d be the most economical an-|| · ||∞-dense subset of Θq,d with elements

θj, j = 1, . . . , N(an).

Given that X1 = x1, . . . , Xn = xn,let

Ak,l,i = {y :
dPθk(xi)

dµ
(y) >

dPθl(xi)
dµ

(y)}, i = 1, . . . , n, 1 ≤ k < l ≤ N(an). (37)

The Minimum Distance estimate θ̂n is defined by

sup

 1

n

∣∣∣∣∣∣
N(an)∑
i=1

[
IAk,l,i(Yi)− Pθ̂n(xi)

(Ak,l,i)
]∣∣∣∣∣∣ ; 1 ≤ k < l ≤ N(an)

 (38)

= inf

sup

 1

n

∣∣∣∣∣∣
N(an)∑
i=1

[
IAk,l,i(Yi)− Pθm(xi)(Ak,l,i)

]∣∣∣∣∣∣ ; 1 ≤ k < l ≤ N(an)

 ; 1 ≤ m ≤ N(an)

 .

An upper bound will be provided for
∫
|θ̂n(x)−θ(x)|dx on the event X = x ∈ Cn,d,λ defined

in (A3). [0, 1]d is covered with cubes Si, i = 1, . . . , b−dn , of side length bn. Let Ni be the

number of coordinates x = (x1, . . . , xn) in Si,M = min{Ni; 1 ≤ i ≤ b−dn }.
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Restricting attention to Si we will approximate θ̂n(x) (resp. θ(x)) with the Taylor

polynomial θ̂n,p(x;xj) (resp. θp(x;xj)) of order p around each xj ∈ Si. From the integral

form of the remainder term in Taylor’s theorem, the assumption that the cube Si has side

length bn and Holder’s condition that holds for θ̂
(p)
n (x) (resp. θ(p)(x)) one can see that

the remainder is bounded in absolute value by Cbqn in both cases; C is a positive generic

constant independent of x. From now on all constants will be denoted by C. Thus we have

on Si,∫
Si

|θ̂n(x)− θ(x)|dx ≤ 2Cbq+dn + bdn|θ̂n(xj)− θ(xj)|dx+
∑

1≤[s]≤p

b[s]
n

∫
Si

|θ̂(s)
n (xj)− θ(s)(xj)|dx.

(39)

We now consider Taylor expansions of θ̂
(s)
n (xj), θ

(s)(xj), 1 ≤ [s] ≤ p, in (39) around each x

in Si. Proposition 6.1 is used to bound the last term of (39). For any s, 1 ≤ [s] ≤ p,we

have, for the terms of the sum in (39),

b[s]
n

∫
Si

|θ̂(s)
n (xj)− θ(s)(xj)| dx ≤ b[s]

n

[
2Cbq+d−[s]

n +

∫
Si

|θ̂(s)
n,p−[s](xj;x)− θ(s)

p−[s](xj;x)| dx
]

≤ 2Cbq+dn +
∑

0≤[t]≤p−[s]

bs+tn

∫
Si

|θ̂(s+t)
n (x)− θ(s+t)(x)| dx, (40)

where s+ t is the usual sum between vectors.

From (39) and (40) we obtain∫
Si

|θ̂n(x)−θ(x)|dx ≤ Cbq+dn +bdn|θ̂n(xj)−θ(xj)|+C
∑

1≤[s]≤p

∑
0≤[t]≤p−[s]

bs+tn

∫
Si

|θ̂(s+t)
n (x)−θ(s+t)(x)| dx

≤ Cbq+dn + bdn|θ̂n(xj)− θ(xj)|+ C
∑

1≤[s]≤p

b[s]
n

∫
Si

|θ̂(s)
n (x)− θ(s)(x)| dx. (41)

Repeating (41) for M out of the Ni elements in Si and for all i we obtain

M ||θ̂n − θ||1 ≤ CMbqn + bdn

n∑
j=1

|θ̂n(xj)− θ(xj)|+ CM
∑

1≤[s]≤p

b[s]
n ||θ̂(s)

n − θ(s)||1. (42)

From (A3) on the event Cn,d,i with bn = n−λ, one has cn1−λd ≤ Ni for all i, and

cnbdn = cn1−λd ≤M = min{Ni; 1 ≤ i ≤ b−dn }.
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Thus,

||θ̂n − θ||1 ≤ Cbqn + n−1

n∑
j=1

|θ̂n(xj)− θ(xj)|+ C
∑

1≤[s]≤p

b[s]
n ||θ̂(s)

n − θ(s)||1. (43)

From assumption (A1) and the definition of θ̂n as minimum distance estimate via Θn,q,d

we obtain

n−1

n∑
j=1

|θ̂n(xj)−θ(xj)| ≤ Can+Cn−1 sup

{∣∣∣∣∣
n∑
j=1

[Pθ(xj)(Ak,l,j)− IAk,l,j(Yj)]

∣∣∣∣∣ 1 ≤ k < l ≤ N(an)

}
.

(44)

From (43), (44) and Proposition 6.1 with γn = D · bn, D a positive constant large enough,

we obtain

||θ̂n−θ||1(1−C
D

) ≤ Cbqn+Can+Cn−1 sup

{∣∣∣∣∣
n∑
j=1

[Pθ(xj)(Ak,l,j)− IAk,l,j(Yj)]

∣∣∣∣∣ 1 ≤ k < l ≤ N(an)

}
.

(45)

Note that in (45) it holds (1− C
D

) > 0, since D can be chosen as large as we wish.

A bound in probability can be derived for the random variable in the right side of (45)

as we have done previously to obtain with probability tending to one for x ∈ Cn,d,λ that

||θ̂n − θ||1 ≤ C

[
an + bqn +

(
log2N(an)

n

)1/2
]
. (46)

Thus, given x ∈ Cn,d,λ, an upper bound in (46) is obtained by choosing an and bn such

that an = bqn = n−q/(2q+d), an ∼ ( log2N(an)
n

)1/2. Note that λ = (q + 2d)−1 < d−1 as required

in (A3).

Finally,

P [||θ̂n − θ||1 > Can] = EQnP
[
||θ̂n − θ||1 > Can|X = x

]
I(x ∈ Cn,d,1/(2q+d))

+EQnP
[
||θ̂n − θ||1 > Can|X = x

]
I(x ∈ Cc

n,d,1/(2q+d))→ 0

as n increases to infinity by means of (46) and (A3).

This result holds also when p = 0. Using the Lipschitz condition we obtain inequalities

(39), (42), and (43) without the terms that involve derivatives; (45) holds with (1−C/D)

replaced by 1. The rest follows as in the case where p > 0. Using assumption (A4), the

estimate θ̂n is optimal in Example 5.1 for which

K(Pθ1(x), Pθ2(x)) ≤ C[θ1(x)− θ2(x)]2.
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Kernel estimates of a density f 1

Let X,X1, . . . , Xn be i.i.d. random variables, with density f and cumulative distribution

function F, F ′(x) = f(x). Here there is no unknown model parameter and f is unknown.

This is a nonparametric estimation problem. The goal is to estimate f(x). Recall that the

empirical distribution function

F̂n(x) =
1

n

n∑
i=1

I(Xi ≤ x) =
1

n

n∑
i=1

I(−∞,x](Xi),

f(x) = lim
h→0

F (x+ h)− F (x− h)

2h
≈ F (x+ h)− F (x− h)

2h
for h small.

Thus, an estimate of f is

f̂n,U(x) =
F̂n(x+ h)− F̂n(x− h)

2nh
=

1

nh

n∑
i=1

I(|Xi−x
h
| ≤ 1)

2
=

1

nh

n∑
i=1

KU(
Xi − x
h

)

with KU(y) a uniform density on (−1, 1), i.e. KU(y) = 1/2 if |y| ≤ 1 and vanishes other-

wise. The form of f̂n,U motivates its generalization using any density K :

f̂n(x) =
1

nh

n∑
i=1

K(
Xi − x
h

), h = hn (to be determined). (47)

Observe that ∫ +∞

−∞

1

h
K(

Xi − x
h

)dx =

∫ +∞

−∞
K(y)dy = 1→

∫ +∞

−∞
f̂n(x) = 1,

thus f̂n is a density when K is a density.

Question: Note that f̂n(x) = f̂n(x;X1, . . . , Xn).Using density estimate f̂n(x;X1, . . . , Xn),

calculate the estimates of the mean, EX, and the variance, E(X2) − (EX)2, which will

be both functions of X1, . . . , Xn and compare them, respectively, with the sample mean,

X̄n = 1
n

∑n
i=1Xi, and the sample variance, 1

n

∑n
i=1(Xi − X̄n)2.

Definition 6.1 A function K : R→ R is called Kernel when
∫ +∞
−∞ K(y)dy = 1.

1From B. Hansen’s “Lecture Notes on Nonparametrics” in the Web,

https://www.ssc.wisc.edu/ bhansen/718/NonParametrics1.pdf .
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A non-negative Kernel K is a density and then f̂n is a density. The j-th moment of Kernel

K is

mj =

∫ +∞

−∞
yjK(y)dy. (48)

For a symmetric around 0 Kernel K the odd moments m2j+1 are zero, j = 0, 1, . . . . Usually,

in nonparametric estimation symmetric Kernels K are used. The order ν of Kernel K is

the order of its first non-zero moment.

Higher order Kernel: any kernel for which ν > 2.

Examples of Kernels

Epanechnikov kernel: KE(y) = 3
4
(1− y)2, |y| ≤ 1 and 0 otherwise.

Gaussian kernel: KG(y) = 1√
2π
e−

y2

2 = φ(y), −∞ < y <∞.

What are the orders ν of KE, KG?

Kernels with order ν higher than 2 can be obtained from second order Kernels multiplied

with a polynomial in y2 of degree ν
2
− 1.

Construction for ν = 4-th order Kernel with KG: Since ν = 4 → (ν
2
− 1) = 1 the new

Kernel will have form

KNEW (y) = φ(y)(a+ by2).

Need two conditions to determine a, b :

1 =

∫ +∞

−∞
KNEW (y)dy = a+ b

0 =

∫ +∞

−∞
y2KNEW (y)dy = a+b

∫ +∞

−∞
y4φ(y)dy = a−b

∫ +∞

−∞
y3dφ(y) = a+3b

∫ +∞

−∞
y2φ(y)dy = a+3b.

Thus, b = −1
2
, a = 3

2
and KNEW (y) = 1

2
(3− u2)φ(u), u ∈ R.

Practice: Show that a) a 4-th order Kernel for KE is 15
8

(1− 7
3
y3)KE(y),−1 ≤ y ≤ 1 and

b) a 6-th order kernel for KG is 1
8
(15− 10y2 + y4)KG(y), u ∈ R.

Investigating local at x properties of the estimate f̂n(x;X1, . . . , Xn) of f(x)

Bias of f̂n(x;X1, . . . , Xn)

Ef̂n(x;X1, . . . , Xn) = E
1

nh

n∑
i=1

K(
Xi − x
h

) =
1

h
EK(

X1 − x
h

) =

∫ +∞

−∞

1

h
K(

y − x
h

)f(y)dy
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and with the transformation u = y−x
h
→ du = dy/h, y = x+ uh

Ef̂n(x;X1, . . . , Xn) =
1

h
EK(

X1 − x
h

) =

∫ +∞

−∞
f(x+ uh)K(u)du.

Since f is unknown, Taylor’s Theorem with Remainder will be used assuming f ∈ Ck+1, i.e.

has (k + 1)-continuous derivatives, obtaining the approximation:

f(x+ hu) = f(x) + huf ′(x) +
h2u2

2!
f (2)(x) + . . .+

hkuk

k!
fk)(x) + o(hk). (49)

Therefore, the bias of f̂n(x;X1, . . . , Xn) in estimating f(x) is

Ef̂n(x;X1, . . . , Xn)− f(x) = hm1f
′(x) +

h2

2!
m2f

(2)(x) + . . .+
hk

k!
fk)(x)mk + o(hk). (50)

Remark 6.1 For symmetric kernels with ν = 2, the order of the bias is h2

2!
m2f

(2)(x) but

for higher order kernels, e.g. ν = k(even) the order of the bias is proportional to hk, i.e.

reduced.

h is called bandwidth and observe that, as expected, the smaller h is the smaller the bias

in (50) is.

Variance of f̂n(x;X1, . . . , Xn)

Since X1, . . . , Xn are i.i.d.

V ar(f̂n(x;X1, . . . , Xn)) = V ar(
1

nh

n∑
i=1

K(
Xi − x
h

)) =
1

nh2
V ar(K(

X1 − x
h

))

=
1

nh2
[E(K(

X1 − x
h

)2)− (EK(
X1 − x
h

))2] =
1

nh2
E[K(

X1 − x
h

)2]− 1

n
[
1

h
EK(

X1 − x
h

)]2

From (49),
1

n
E

1

h
K(

X1 − x
h

) =
1

n
[f(x) + o(1)] = O(

1

n
),

and

1

nh2
E[K(

X1 − x
h

)2] =
1

nh

∫ +∞

−∞
K2(y)f(x+yh)dy =

1

nh

∫ +∞

−∞
K2(y)[f(x)+o(h)]dy =

f(x)
∫ +∞
−∞ K2(y)dy

nh
.

Therefore,

V ar(f̂n(x;X1, . . . , Xn)) ≈
f(x)

∫ +∞
−∞ K2(y)dy

nh
. (51)
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Remark 6.2 V ar(f̂n(x;X1, . . . , Xn)) increases as h decreases, in the opposite direction of

the bias.

Remark 6.3 Observe that V ar(f̂n) is not affected by the order of the kernel K unlike its

bias.

Mean Square Error (MSE) of f̂n(x;X1, . . . , Xn)

MSE(f̂n(x), f(x)) = E[f̂n(x)− f(x)]2 = V ar(f̂n(x)) +Bias2(f̂n(x))

It follows from (50) and (51) that for a kernel with order ν = k,

MSE(f̂n(x), f(x)) ≈
f(x)

∫ +∞
−∞ K2(y)dy

nh
+ h2ν [

f (ν)(x)mν

ν!
]2 = AMSE(f̂n(x), f(x)). (52)

Approximation (52) is a local at x asymptotic result in n with h = hn to be determined,

and this is why it is called Asymptotic MSE (AMSE). From (52), for the AMSE to decrease

to zero as n increases it should hold:

lim
n→∞

hn = 0 and lim
n→∞

n · hn =∞. (53)

Then, the interval (x− hn, x+ hn) used will be small enough for the bias to be controlled

(and decrease), but also large enough such that the proportion of the n observations it

contains, which is approximately n · f(x) · 2hn, will increase to infinity for the variance to

decrease to zero.

To derive an optimal value of hn = hn(x) that minimizes the AMSE(f̂n(x), f(x)) solve

the equation

0 =
d

dh
AMSE(f̂n(x), f(x)) = −

f(x)
∫ +∞
−∞ K2(y)dy

nh2
+ 2νh2ν−1[

f (ν)(x)mν

ν!
]2

= −C1(f(x), K)

nh2
+ C2(f (ν)(x),mν , ν)h2ν−1 → h = hn =

C1(f(x), K)

C2(f (ν)(x),mν , ν)n1/2ν+1
,

which minimizes AMSE(f̂n(x), f(x)) since C1(f(x), K) > 0, C2(f (ν)(x),mν , ν) > 0. The

constants of proportionality are usually unknown. Thus, the optimal bandwidth for the

AMSE is hn = O(n−
1

2ν+1 ); this confirms that higher order kernels can afford larger band-

width. The optimal AMSE(f̂n(x), f(x)) = O(n−
2ν

2ν+1 ).
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Global error for all x

One could look either at supx∈RAMSE(f̂n(x), f(x)) or at
∫
R
AMSE(f̂n(x), f(x))dx.

The latter is often called Asymptotic Mean Integrated Square Error,

AMISE(f̂n, f) =

∫
R

AMSE(f̂n(x), f(x))dx =

∫ +∞
−∞ K2(y)dy

nh
+ h2νm

2
ν

ν!2

∫
R

[f (ν)(x)]2dx.

(54)

For the optimal bandwidth the steps used for AMSE(f̂n(x), f(x)) are followed and the

results are similar, with the coefficients in the Big −O notation changed and

AMISEopt(f̂n, f)(K) = (1+2ν)[
(
∫
R
K2(y)dy)2ν ·m2

ν(K) ·
∫
R

(f (ν)(x))2dx

(ν!)2(2ν)2ν
]1/(2ν+1)·n−2ν/(2ν+1)

(55)

Observe that for a second-order kernel, i.e. with ν = 2, AMISEopt(f̂n, f) = O(n−4/5).

Making the MSE distance by taking its square root, the rate is
√
AMISEopt(f̂n, f) =

O(n−2/5). We have already seen rates of convergence of estimates with respect to other

distances. Observe also that since√
AMISEopt(f̂n, f)(K) ≤ Cn−ν/(2ν+1)

when ν →∞ the order of the upper bound converges to n−1/2 which is the parametric rate

of convergence for estimates.

Comparison of Kernel estimates

Given order ν Kernels K1, K2, one could compare them by looking at the ratio of

their AMISEopt. For estimation of the density function, the higher-order Epanechikov

kernel with optimal bandwidth yields the lowest possible AMISE. For this reason, the

Epanechikov kernel is often called the “optimal kernel”.

More on density estimates in the Lecture Notes by B. Hansen and the references there

in as well as the works of Devroye and his co-authors.
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