
ADVERSARIAL HYPOTHESIS TESTING (AHT)

• Use concepts from Adversarial Risk Analysis (ARA)

• Agent (Defender D, she) needs to ascertain which of several hypotheses holds,
based on observations from a source

• Another agent (Attacker A, he) alters the observations to induce the Defender to
make a wrong decision (and get a benefit)

• AHT problem studied from the Defender’s perspective

• Defender needs to forecast the Attacker’s decision, simulating from the correspond-
ing Attacker’s decision making problem
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AHT: SIMPLE EXAMPLE

• Defender D needs to decide whether a batch of e-mails includes spam or not

• D has beliefs about the standard flow of legit and spam messages

• Attacker A alters such flow in an attempt to confound the Defender and gain some
benefit

• Both agents obtain different rewards depending on whether

– batch is accepted or not by the Defender

– batch includes just legit messages or not
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ADVERSARIAL HYPOTHESIS TESTING

• Test of two simple hypotheses: Θ = {θ0, θ1}

• Observation x generated according to a model depending on θ

• x altered to y by A’s action a

• y observed by D ⇒ D’s decision d on θ based on y, without observing x

• Depending on d and actual θ ⇒ losses (utilities) for both agents

• Efforts by A in minimizing his loss

• Support for D in choosing θ to minimise her loss
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INFLUENCE DIAGRAMS

• Directed acyclic graph with three kinds of nodes:

– Square: decision node

– Circle: random node

– Hexagon: value node (e.g. utility/loss)

• Arrows into a value or uncertainty node indicate functional and probabilistic depen-
dence, respectively
⇒ utility function at the value node depends on its immediately preceding nodes and
probabilities at a chance node are conditional on the values of its direct predecessors

• Arrows into a decision node indicate that, when the decision is made, the values of
its preceding nodes are known
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AHT: BI-AGENT INFLUENCE DIAGRAM (BAID)

Θ

lD lAD A

X

Y

• Decisions: D (depending on Y ) and A

• Random: Θ → X → Y (Y influenced also by the decision A)

• Losses: lD and lA depending on Θ and related decisions (lA also on decision D)
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SOLVING THE DEFENDER’S PROBLEM
Influence diagram of the Defender’s decision problem

Θ

lDD A

X

Y

Attacker’s node is now random
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SOLVING THE DEFENDER’S PROBLEM
Assessed by Defender D:

• Belief πD(θ) on hypotheses:

pD(θ = θi) = πDi , i = 0,1, with πDi ≥ 0 and πD0 + πD1 = 1

• Belief πD(x|θ) on how data depend on the hypothesis:

X|θi ∼ πD(x|θi), i = 0,1

• Belief πD(y|x, a) on how action a ∈ A by Attacker modifies actual x into observed y

• Belief πD(a) on the attack a performed by the Attacker

• Standard 0-1-cD loss function lD(d, θ) with decision space D = {d0, d1} s.t.

dj = {Defender supports θj}, j = 0,1
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SOLVING THE DEFENDER’S PROBLEM
Defender’s loss function

Actual Hypothesis

θ0 θ1

D’s
Decision

d0 0 1

d1 cD 0

• 0 best loss, associated with the right decision

• cD ≤ 1 (without loss of generality)
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SOLVING THE DEFENDER’S PROBLEM

• Solve: argmind∈D
∑1

i=0 lD(d, θi)πD(θi|y)

• ⇒ d0, i.e. support for θ0, optimal solution for D if and only if πD(θ1|y) ≤ cD πD(θ0|y)

• From

πD(θi|y) =
πD(θi, y)

πD(y)
=

∫∫
πD(θi)πD(y|x, a)πD(x|θi)πD(a) dx da

πD(y)

=
πDi
∫∫

πD(y|x, a)πD(x|θi)πD(a) dx da
πD(y)

, i = 0,1

• ⇒ support for θ0, optimal decision for D if and only if

πD1

∫∫
πD(y|x, a)πD(x|θ1)πD(a) dx da ≤ cD π

D
0

∫∫
πD(y|x, a)πD(x|θ0)πD(a) dx da
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SOLVING THE ATTACKER’S PROBLEM
• All Defender’s beliefs obtained in standard way, except for πD(a)

• Defender’s belief πD(a) on Attacker’s action comes from considering his decision
problem

• Defender’s node is now random

Θ

lA AD

X

Y

176



SOLVING THE ATTACKER’S PROBLEM
Needed for Attacker A:

• Belief πA(θ) on hypotheses:

pA(θ = θi) = πAi , i = 0,1, with πAi ≥ 0 and πA0 + πA1 = 1

• Belief πA(x|θ) on how data depend on the hypothesis:

X|θi ∼ πA(x|θi), i = 0,1

• Belief πA(y|x, a) on consequences of his action a ∈ A, modifying actual x into y

• Belief πA(d|y) on the decision d taken by the Defender upon observing y

• Loss function lA(d, θ, a) = ljk(a), with

– j = 0,1 depending on Defender’s decision dj (i.e., supporting θj)

– k = 0,1 depending on actual θk

– No cost directly associated with chosen action a (but only on consequences)

177



SOLVING THE ATTACKER’S PROBLEM
Attacker’s loss function

Actual Hypothesis

θ0 θ1

D’s
Decision

d0 l00(a) l01(a)

d1 l10(a) l11(a)

• Better for the Attacker if the Defender makes mistakes

⇒ l00(a) ≥ l01(a) and l10(a) ≤ l11(a)
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SOLVING THE ATTACKER’S PROBLEM
Attacker’s loss function

Actual Hypothesis

θ0 θ1

D’s
Decision

d0 1 0

d1 c1A c2A

0 ≤ c1A ≤ c2A ≤ 1

• Best loss for Attacker (0) when Defender supports θ0 and she should not

• Worst loss for Attacker (1) when Defender supports θ0 and she should

• Intermediate cases: worse for Attacker when Defender supports θ1 and actual hy-
pothesis is θ1
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SOLVING THE ATTACKER’S PROBLEM

• Optimal decision for Attacker given by a∗ s.t.

a∗ = argmina∈A
∑1

j=0

∑1
i=0

∫∫
lA(dj, θi, a)πA(dj|y)πA(θi)πA(y|x, a)πA(x|θi) dy dx

• Defender does not know πA(θ), πA(x|θ), πA(y|x, a), πA(d|y) and lA(d, θ, a)

• ⇒ model uncertainty around them through random probabilities and losses
F = (ΠA(θ),ΠA(x|θ),ΠA(y|x, a),ΠA(d|y), LA(d, θ, a))

• ⇒ find optimal random attack

A∗ = argmina∈A
∑1

j=0

∑1
i=0

∫∫
LA(dj, θi, a)ΠA(dj|y)ΠA(θi)ΠA(y|x, a)ΠA(x|θi) dy dx

• ⇒ required distribution through πD(a) = Π(A∗ = a) (assuming discrete A, but
possible also for continuous one)
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SOLVING THE ATTACKER’S PROBLEM

• πD(a) approximated through simulation, sampling from F

• Samples
(
Πk
A(θi),Π

k
A(x|θi),Πk

A(y|x, a),Πk
A(dj|y), LkA(dj, θi, a)

)
, k = 1, ...,K

• ⇒ a∗k = argmina∈A
∑1

j=0

∑1
i=0

∫∫
LkA(dj, θi, a)Π

k
A(dj|y)Πk

A(θi)Π
k
A(y|x, a)Πk

A(x|θi) dy dx

• ⇒ π̂D(a) ≈ #{a∗k = a}/K
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SOLVING THE ATTACKER’S PROBLEM
Choice of random probabilities and loss F

• ΠA(θ) based on πD(θ) with some uncertainty around it

– ΠA(θ) modelled as a Dirichlet distribution with mean πD(θ), if discrete

– ΠA(θ) modelled as Dirichlet process with base measure πD(θ), if continuous

• ΠA(x|θ) based on πD(x|θ) with some uncertainty around it

• ΠA(y|x, a) based on πD(y|x, a) with some uncertainty around it

• Parametric form for LA(d, θ, a) with distribution over such parameters

• On the contrary, ΠA(d|y) requires strategic thinking as the Defender needs to as-
sess the Attacker’s beliefs about which decision d she will make, given that she
observes y

• ⇒ could be the start of a hierarchy of decision making problems!
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SOLVING THE ATTACKER’S PROBLEM

• Defender should solve the problem

argmind∈D
∑1

i=0 lD(d, θi)πD(θi|y) equivalent to

argmind∈D
∑1

i=0

∫ ∫
lD(d, θi)πD(θi)πD(y|x, a)πD(x|θi)πD(a) dx da

• Attacker does not know ingredients of above integral

• ⇒ assume uncertainty over them through random loss LAD(d, θ) and random distri-
butions ΠA

D(θ), ΠA
D(y|x, a), ΠA

D(x|θ) and ΠA
D(a)

• ⇒ get corresponding random optimal decision

• Assessment of ΠA
D(a) (what Defender believes that Attacker thinks about her beliefs

concerning the attack to be implemented)
⇒ strategic component leading to the next stage in the hierarchy

• Iterate until no further information is available, then choosing non-informative prior
over the involved probabilities and losses
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NUMERICAL EXAMPLE

• Two hypotheses: θ0 = 2 and θ1 = 1

• Two decisions: d0 chooses θ0 = 2 and d1 chooses θ1 = 1

• Priors over the hypotheses: πD0 = πD1 = 1/2

• Actual data X|θi exponentially distributed E(θi), with uncertainty about θi

• Data x modified by Attacker into y, with actions

– a0: x→ y = x (keeping)

– a1: x→ y = 2x (doubling)

– a-1: x→ y = x/2 (halving)

• Suppose (for illustration) Defender knows probabilities πD(a) used by Attacker to
choose actions:

πD(a0) = 1/2, πD(a1) = 1/6 and πD(a−1) = 1/3
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NUMERICAL EXAMPLE

• Two decisions: d0 chooses θ0 = 2 and d1 chooses θ1 = 1

• Loss function L(d, θ)

Actual Hypothesis

θ0 θ1

D’s
Decision

d0 0 1

d1 3/4 0
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NUMERICAL EXAMPLE
Adopt decision d0 (i.e., accept θ0 = 2) if and only if

πD1

[
θ1 e−θ1 y πD(a0) + θ1 e

−θ1 y2 πD(a1) + θ1 e−θ1 2y πD(a-1)
]

≤

3
4
πD0

[
θ0 e−θ0 y πD(a0) + θ0 e

−θ0 y2 πD(a1) + θ0 e−θ0 2y πD(a-1)
]

• ⇔ 2e−
y
2 +3e−y − 5e−2y − 6e−4y ≤ 0

• ⇔ y ≲ 0.3723 is observed

(Note that θ = 2 leads to a smaller mean w.r.t. θ = 1, i.e. 1/2 vs. 1)

• Note that a small change in probabilities, i.e. πD0 = 1/3 and πD1 = 2/3 (and other
probabilities and losses kept as before) ⇒ d1 optimal regardless of observed y
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NUMERICAL EXAMPLE
Defender does not accurately know πD(a) ⇒ ARA

• ΠA(θ1) drawn uniformly over [1/4,3/4], and ΠA(θ0) = 1−ΠA(θ1)

• ΠA(x|θ), where θ ∈ {θ0, θ1}, from a Gamma distribution Ga(α, β) with mean α/β =
θ and variance α/β2 = σ2 uniformly chosen over [1/2,2] s.t. variance randomness
induces that of ΠA(x|θ)

• ΠA(y|x, a) Dirac distributions coinciding with those of πD(y|x, a)

• ΠA(d|y) looking at the likelihood h(y|d, a) of y under different choices of d and a,
mixing them through a random allocation of probabilities to each action
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NUMERICAL EXAMPLE

• Attacker assumes the Defender is modelling the data with an exponential distribution

• Likelihood h(y|d, a) of y under different choices of d and a

– d0 chooses θ0 = 2 and d1 chooses θ1 = 1

– a0 (keeping), a1 (doubling) and a-1 (halving)

• Example

– y reported and a1 chosen ⇒ x = y/2 true value

– d0 chosen ⇒ h(y|d0, a1) = 2e−y

Actions

a0 a1 a-1

D’s
Decision

d0 2e−2y 2e−y 2e−4y

d1 e−y 2e−y/2 e−2y

188



NUMERICAL EXAMPLE

• Defender assessing the probabilities (ϵ0, ϵ1, ϵ-1) assigned by the Attacker to each
strategy through a Dirichlet distribution Dir(1,1,1)

• ⇒

PA(d = d1|ϵ0, ϵ1, ϵ-1, y)
∑1

j=-1 ϵj h(y|d1, aj)∑1
j=-1 ϵj h(y|d0, aj) +

∑1
j=-1 ϵj h(y|d1, aj)

=
ϵ0 e−yϵ1 e

−y
2 + ϵ-1 e−2y

2 (ϵ0 e−2y + ϵ1 e−y + ϵ-1 e−4y) + ϵ0 e−y + ϵ1 e
−y
2 + ϵ-1 e−2y

• Distribution of (ϵ0, ϵ1, ϵ-1) induces the randomness of PA(d = d1|y)

• PA(d = d0|y) = 1− PA(d = d1|y)

189



NUMERICAL EXAMPLE
Random loss function LA(d, θ, a) based on table below

• C1
A fixed at 0

• C2
A uniformly drawn from [1/2,1]

Actual Hypothesis

θ0 θ1

D’s
Decision

d0 1 0

d1 C1
A C2

A
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NUMERICAL EXAMPLE

• Attacker’s random expected losses for the three actions

•

ΨA(a0) =

∫ [
ΠA(d0|y = x)ΠA(θ0)ΠA(x|θ0) + C2

AΠA(d1|y = x)ΠA(θ1)ΠA(x|θ1)
]

dx

ΨA(a1) =

∫ [
ΠA(d0|y = 2x)ΠA(θ0)ΠA(x|θ0) + C2

AΠA(d1|y = 2x)ΠA(θ1)ΠA(x|θ1)
]

dx

ΨA(a-1) =

∫ [
ΠA(d0|y = x

2
)ΠA(θ0)ΠA(x|θ0) + C2

AΠA(d1|y = x
2
)ΠA(θ1)ΠA(x|θ1)

]
dx

• Random models induce randomness in these expected losses

• K = 100,000 observations drawn from the corresponding distributions

• ⇒ Estimates π̂D(a0) ≈ 0.04, π̂D(a1) ≈ 0.85 and π̂D(a-1) ≈ 0.11

• Optimal action: d0 when y ≲ 0.7374 (different from previous solution)
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NUMERICAL EXAMPLE

1 Set pj = 0, -1 ≤ j ≤ 1.

2 For k = 1 to K

3 Generate π1,kA ∼ U(1/4, 3/4). Compute π0,kA = 1− π1,kA .

4 Generate σ20,k ∼ U(1/2, 2). Compute αk
0 = θ20/σ

2
0,k ; βk0 = θ0/σ

2
0,k.

5 Generate σ21,k ∼ U(1/2, 2). Compute αk
1 = θ21/σ

2
1,k ; βk1 = θ1/σ

2
1,k

6 Generate (ǫk0 , ǫ
k
1 , ǫ

k
-1) ∼ Dir(1, 1, 1)..

7 Generate C2,k
A ∼ U(1/2, 1).

8 ψk
A(a0) = π0,kA

∫
(1− g(ǫ0, ǫ1, ǫ-1, x)) f(x|αk

0 , β
k
0 ) dx

+ C2,k
A π1,kA

∫
g(ǫ0, ǫ1, ǫ-1, x) f(x|αk

1 , β
k
1 ) dx

9 ψk
A(a1) = π0,kA

∫
(1− g(ǫ0, ǫ1, ǫ-1, 2x)) f(x|αk

0 , β
k
0 ) dx

+ C2,k
A π1,kA

∫
g(ǫ0, ǫ1, ǫ-1, 2x) f(x|αk

1 , β
k
1 ) dx

10 ψk
A(a-1) = π0,kA

∫
(1− g(ǫ0, ǫ1, ǫ-1, x/2)) f(x|αk

0 , β
k
0 ) dx

+ C2,k
A π1,kA

∫
g(ǫ0, ǫ1, ǫ-1, x/2) f(x|αk

1 , β
k
1 ) dx

11 Determine j∗ = argmin
-1≤j≤1

ψk
A(aj).

12 Set pj∗ = pj∗ + 1.

13 Set π̂D(aj) = pj/K, -1 ≤ j ≤ 1.
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BATCH ACCEPTANCE MODEL
• Problem: deciding whether to accept a batch of items received over a period of time,

some of which could be faulty, thus entailing potential security and/or performance
problems

• Type of issues arising in areas such as screening containers at international ports,
accepting batches of electronic messages or admitting packages of perishable prod-
ucts or electronic components, among others

• Consider different scenarios for a batch with m items in a period;

– Loss depending if at least one faulty item is included (1 or m faulty items give
the same loss)

– Loss depending on the number of included faulty items among the m

• Consider different Attacker’s strategies:

– S1. Attacker adds some, new faulty items

– S2. Attacker modifies few original items converting them into faulty ones

– S3. Attacker combines strategies S1 and S2
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BATCH ACCEPTANCE MODEL

• Problem: deciding whether to accept a batch of items received over a period of time,
some of which could be faulty, thus entailing potential security and/or performance
problems

• Type of issues arising in areas such as screening containers at international ports,
accepting batches of electronic messages or admitting packages of perishable prod-
ucts or electronic components, among others

• We first outline a non-adversarial hypothesis testing problem which we then modify
to include adversaries
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BATCH ACCEPTANCE MODEL

• Decision maker D (Defender ) receives a batch with two types of items x

– 0 (acceptable items)

– 1 (faulty items)

• D needs to decide whether to accept (d0) or reject (d1) the batch

• D observes the batch size, modelled by a Poisson distribution Po(λ) over a unit
period (or a homogeneous Poisson process, HPP, of parameter λ)

• Distribution on λ as a consequence of past experience:

– Gamma prior Ga(a, b) on λ

– r items arrived after t periods ⇒ posterior λ|t, r ∼ Ga(a+ r, b+ t)

• λ will have no impact when D observes the actual value of m
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BATCH ACCEPTANCE MODEL

• Item acceptable with probability θ

Z designates item acceptability, s.t. z = 0 acceptable and z = 1 faulty

⇒ pD(z = 0|θ) = θ and pD(z = 1|θ) = 1− θ

• Acceptability of an item independent of the arrival process ⇒ arrival of acceptable
items is HPP of parameter λθ (Coloring or Thinning Theorem)

• Beta prior Be(α, β) for θ

• Suppose r received items with s acceptable (and r − s faulty)

⇒ posterior θ|r, s ∼ Be(α+ s, β+ r − s)

• To fix ideas, in a unit period we shall have

– Total number of items m|λ ∼ Po(λ)
– Total number of acceptable items x|λ, θ ∼ Po(λθ)
– (Conditional on m) total number of acceptable items x|m, θ ∼ Bin(m, θ)
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BATCH ACCEPTANCE MODEL
Influence diagram for batch acceptance problem without adversaries

X

lDD

Θ Λ

M
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BATCH ACCEPTANCE MODEL
Scenario A: Winner takes it all

• Batch with m items in a period

• Allowing one faulty item is as bad as allowing several of them, because of the en-
tailed security or performance problems

• Loss function given by

Batch of m Items

All Acceptable Some Faulty

p = θm p = 1− θm Exp. Loss

D’s
Decision

Accept, d0 0 1 1− θm

Reject, d1 c 0 c θm
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BATCH ACCEPTANCE MODEL

• Suppose batch size m known to Defender D ⇒ λ not relevant

• Expected losses of both decisions

lD(d0) = Eθ [1− θm] = 1− Eθ [θm]

lD(d1) = Eθ [c θm] = cEθ [θm]

• Decision: accept the batch (d0) if and only if

1− Eθ [θ
m] ≤ cEθ [θ

m] ⇐⇒ Eθ [θ
m] ≥ 1

1+ c

• Eθ [θm] decreases as m increases ⇒ threshold value mA

⇒ rejection of the batch (d1) if m > mA

• mA recursively obtained for posterior Be(α+ s, β+ r − s) on θ from

Eθ [θm] =
∏m−1
k=0

α+ s+ k

α+ β+ r+ k
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BATCH ACCEPTANCE MODEL

• Suppose batch size m unknown to Defender D, with distribution p(m|λ),m ∈ N

• Expected losses of both decisions (now summing over all possible values of m)

lD(d0) = 1− Eθ
(
Eλ
(∑∞

m=0 θ
mp(m|λ)

))

lD(d1) = cEθ
(
Eλ
(∑∞

m=0 θ
mp(m|λ)

))

• Decision: accept the batch (d0) if and only if

Eθ

(
Eλ

( ∞∑

m=0

θmp(m|λ)
))

>
1

c+1

• If p(m|λ) Poisson, then accept the batch (d0) if and only if

Eθ

(
Eλ

(
eλ(θ−1)

))
>

1

c+1
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BATCH ACCEPTANCE MODEL

• Gamma distribution Ga(a, p) over λ and Beta distribution Be(α, β) over θ

• Eλ(eλ(θ−1)) =

∫ ∞

0
e−λ(1−θ)

pa

Γ(a)
λa−1e−pλdλ =

pa

(p+1− θ)a

Eθ(Eλ(e
λ(θ−1))) = Eθ(

pa

(p+1− θ)a
)

=

∫ 1

0

pa

(p+1− θ)a
θα−1(1− θ)β−1

B(α, β)
dθ

=
pa

(p+1)aB(α, β)

∫ 1

0
θα−1(1− θ)β−1(1− θ

p+1
)−adθ

=
pa

(p+1)a
2F1(a, α;α+ β;

1

p+1
)

• ⇒ accept the batch when
pa

(p+1)a
2F1(a, α;α+ β;

1

p+1
) >

1

c+1
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BATCH ACCEPTANCE MODEL
Scenario B: Each fault counts

• Batch with m items in a period

• Loss depending on the number of included faulty items

• Loss function given by

Batch of m Items

All Acceptable x Acceptable

p = θm p =
(
m
x

)
θx (1− θ)m−x Exp. Loss

D’s
Decision

Accept, d0 0 (m− x) c′ mc′ (1− θ)

Reject, d1 c 0 c θm
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BATCH ACCEPTANCE MODEL

• Suppose batch size m known to Defender D ⇒ λ not relevant

• Expected losses of both decisions

lD(d0) = Eθ [mc′ (1− θ)] = mc′ (1− Eθ [θ])

lD(d1) = Eθ [c θm] = cEθ [θm]

• Decision: accept the batch (d0) if and only if

mc′ (1− Eθ [θ]) ≤ cEθ [θ
m] ⇐⇒ Eθ [θm]

m
≥ c′

c
(1− Eθ [θ])

• Eθ [θm] decreases as m increases ⇒ threshold value mB ⇒ rejection of the batch
(d1) if m > mB

• mB recursively obtained for posterior Be(α + s, β + r − s) on θ as the smallest
integer satisfying

Eθ [θm]

m
≤ c′

c

β+ r − s

α+ β+ r
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ADVERSARIAL BATCH ACCEPTANCE MODEL

• Attacker might alter the batch X to Y and, thus, perturb the data flow process to
confound the Defender and reach some objectives

• Batch of size m, with m known by Attacker A

• Attacker A might add items to get a final batch of size n

• Defender D observes n before making her decision

• Gain bigger for A if D accepts one of A’s faulty items rather than a faulty item from
another source
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ADVERSARIAL BATCH ACCEPTANCE MODEL

X

lD lAD A

Y

Θ Λ

MN
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ADVERSARIAL BATCH ACCEPTANCE MODEL
We study three possible attack strategies, identifying

• Attacker’s decision variables

• how the item arrival process changes

• Attacker’s loss function

• how to solve the problem

The strategies are:

• S1. Attacker adds some, new faulty items

• S2. Attacker modifies few original items converting them into faulty ones

• S3. Attacker combines strategies S1 and S2
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ADVERSARIAL BATCH ACCEPTANCE MODEL
• n: number of items in a batch observed by Defender D

• x: acceptable items in the batch

• m− x: original faulty items (O-faults)

• n−m: faulty items produced by the Attacker A (A-faults)

X

lDD A

Y

Θ Λ

MN

(a) Defender’s problem

X

lAD A

Y

Θ Λ

MN

(b) Attacker’s problem
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ADVERSARIAL BATCH ACCEPTANCE MODEL
S1. Attacker adds y1 new faulty items

• m+ y1 data received by Defender include

– x acceptable items

– m− x O-faults

– y1 A-faults

• Attacker needs to decide y1, which is random to Defender

• Suppose first that Defender knows pD(y1|m), distribution of Y1|m

• Loss structure for Defender

Final Batch of n Items

All Acceptable Some Faulty

p = q1(n|λ) p = 1− q1(n|λ) Exp. Loss

D’s
Decision

Accept, d0 0 1 1− q1(n|λ)
Reject, d1 c 0 c q1(n|λ)
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ADVERSARIAL BATCH ACCEPTANCE MODEL

• n = m+ y1

• Probability of having a final batch of n items reflects all possible initial sizes of the
batch and included faulty items, not just m and y1, respectively:

p1(n|λ) =
n∑

m=0

pD(m|λ) pD(y1 = n−m|m)

• Probability that all items are acceptable (i.e., x = m = n and y1 = 0)

q1(n|λ) =
pD(m = n|λ) pD(y1 = 0|m = n)

p1(n|λ)
θn

• λ relevant here since it provides information on m
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ADVERSARIAL BATCH ACCEPTANCE MODE
Final Batch of n Items

All Acceptable Some Faulty

p = q1(n|λ) p = 1− q1(n|λ) Exp. Loss

D’s
Decision

Accept, d0 0 1 1− q1(n|λ)
Reject, d1 c 0 c q1(n|λ)

• Expected losses of both decisions

lD(d0) = 1− Eθ [Eλ [q1(n|λ)]]

lD(d1) = cEθ [Eλ [q1(n|λ)]]

• Decision: accept the batch (d0) if and only if

Eθ [Eλ [q1(n|λ)]] ≥
1

1+ c

• Decision obtained through simulation
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ADVERSARIAL BATCH ACCEPTANCE MODE
• pD(y1|m) (and thus q1(n|λ)) unknown to Defender D ⇒ use ARA

• x ∈ {0,1, . . . ,m} acceptable items

• y1 ∈ {0,1, . . .} added A-faults

• h unitary gain (for A) due to each O-fault

• g unitary gain (for A) due to each A-fault

• f unitary cost (for A) for adding each A-fault

• Attacker A’s loss function, depending on batch composition and decision by D

Final Batch Composition

Acceptable O-Fault A-Fault

x m− x y1

D’s
Decision

Accept, d0 0 −h f − g

Reject, d1 0 0 f
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ADVERSARIAL BATCH ACCEPTANCE MODE

Final Batch Composition

Acceptable O-Fault A-Fault

x m− x y1

D’s
Decision

Accept, d0 0 −h f − g

Reject, d1 0 0 f

• Attacker A’s losses associated to Defender D’s decisions when A chooses y1

lA(d0, y1, x) = −h (m− x) + (f − g) y1

lA(d1, y1) = f y1
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ADVERSARIAL BATCH ACCEPTANCE MODE

• Losses: lA(d0, y1, x) = −h (m− x) + (f − g) y1 and lA(d1, y1) = f y1

• Problem faced by A: choose y1 to minimise expected loss for original batch size m

ψA(y1|m) = pA(d0|m+ y1)

∫ ( m∑

x=0

pA(x|m, θ) lA(d0, y1, x)
)
pA(θ) dθ

+ (1− pA(d0|m+ y1)) lA(d1, y1)

= y1 (f − g pA(d0|m+ y1))

− h pA(d0|m+ y1)

∫ ( m∑

x=0

pA(x|m, θ) (m− x)

)
pA(θ) dθ,

• pA(d0|m+ y1) reflects A’s beliefs about D’s decision d0 to accept the batch given
that she knows the batch size is n = m+ y1
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ADVERSARIAL BATCH ACCEPTANCE MODE

• Defender does not know Attacker’s probabilities and parameters of his loss function
⇒ (F,G,H, PA(d0|n), PA(θ), PA(x|m, θ)) random quantities

• Look for random optimal attack Y ∗
1 (m) defined through

argmin
y1





y1 (F −GPA(d0|m+ y1))

−H PA(d0|m+ y1)

∫ ( m∑

x=0

PA(x|m, θ) (m− x)

)
PA(θ) dθ

• Draw from random quantities and get sample {Y ∗
1k(m)}Kk=1 of size K from Y ∗

1 (m)

• Estimate p̂D(y1|m) = P (y∗1(m) = y1) ≈ #{Y ∗
1k(m) = y1}/K

⇒ get the optimal amount of added faulty items (e.g. from the mode)
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ADVERSARIAL BATCH ACCEPTANCE MODE
Typical assumptions about Attacker’s random utilities and probabilities

• Gains and costs uniformly distributed:

– F ∼ U(f1, f2)

– G ∼ U(g1, g2)

– H ∼ U(h1, h2)

• PA(x|m, θ) Binomial distribution Bin(m, θ) (i.e. not a random distribution)

• PA(θ) from a Dirichlet process with Beta distribution Be(α+ s, β + r − s) as base
parameter and concentration parameter ρ

• PA(d0|n) modelled through a uniform distribution, although this might require further
recursion if deeper strategic thinking is considered
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ADVERSARIAL BATCH ACCEPTANCE MODE

• Other two strategies:

– S2. Attacker modifies few original items converting them into faulty ones

– S3. Attacker modifies few original items converting them into faulty ones and
adds some new ones

• Very similar approach: not presented here except for the Attacker A’s loss function,
depending on batch composition and decision by D
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ADVERSARIAL BATCH ACCEPTANCE MODE
S2. Attacker modifies few original items converting them into faulty ones

• h unitary gain (for A) due to each O-fault

• g unitary gain (for A) due to each A-fault

• e unitary cost (for A) for changing any item to make it faulty

Final Batch Composition

Acceptable O-Fault A-Fault

x− y02 m− x− y12 y2

D’s
Decision

Accept, d0 0 −h e− g

Reject, d1 0 0 e
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ADVERSARIAL BATCH ACCEPTANCE MODE
S3. Attacker modifies few original items converting them into faulty ones and adds some
new ones

• h unitary gain (for A) due to each O-fault

• g unitary gain (for A) due to each A-fault

• e unitary cost (for A) for changing any item to make it faulty

• f unitary cost (for A) for adding each A-fault

Final Batch Composition

Acceptable O-Fault
A-Fault

Injected Modified

x− y02 m− x− y12 y1 y2

D’s
Decision

Accept, d0 0 −h f − g e− g

Reject, d1 0 0 f e
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DISCUSSION

• New ARA approach to dealing with the AHT problem

• Symmetric losses and strong common knowledge assumptions typical of non-cooperative
game theory have been avoided

• Multiple Attackers and/or multiple Defenders cases in the AHT problem are also of
interest

– need to differentiate when Attackers are completely independent or totally coor-
dinated or are such that their attacks influence somehow each other

– possibility of several Defenders, possibly cooperating but with different observa-
tions of the data flow

• New strategies, e.g. Attacker could add (apparently) acceptable items to confound
the Defender

• Possible application in adversarial signal processing, such as in Electronic Warfare
where pulse/signal environment is generally very complex with many different radars
transmitting simultaneously and signals possibly jammed by hostile radars
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ACCEPTANCE SAMPLING
Work stemming from Lindley and Singpurwalla (1991)

• Manufacturer M (she) is trying to sell a batch of items to a consumer C (he) who
may either accept (A) or reject (R) the batch provided by M

• C ’s decision depends on the evidence provided by M to C, based on a sample from
an inspection that M may perform

• The decision M faces is whether to offer a sample to C and, if so, the size of such
sample

• Both M and C are assumed to be expected utility maximisers

• Lindley and Singpurwalla assume that M , who decides before C, knows C ’s pref-
erences and beliefs, as well as they share other relevant distributions, a too strong
common knowledge assumption

• ARA allows us to overcome such issue (for Bernoulli acceptance sampling problem)

• Addressed also a life testing problem
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ACCEPTANCE SAMPLING: GAME THEORY
Sequential problem

• M decides the sample size n to offer to C (⇒ C knows n)

• C has available

– pC(θ), i.e., beliefs about the product quality θ

– pC(d|θ, n), i.e., beliefs about the experiment result d (number of defective items)
given θ and decision n of M

– uC(c, θ), i.e., utility function based on decision c: accept (A) or reject (R) the
batch
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ACCEPTANCE SAMPLING: GAME THEORY

• C computes for each d and n

– Posterior distribution pC(θ|d, n) ∝ pC(θ)pC(d|θ, n)
– Expected utility ψC(d, n, c) =

∫
uC(c, θ)pC(θ|d, n)dθ

– Optimal decision c, given d and n:

c∗(d, n) = argmax
c∈{A,R}

ψC(d, n, c)

• All the above known by M who switches to her problem
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ACCEPTANCE SAMPLING: GAME THEORY
M knows pC(θ|d, n), ψC(d, n, c) and c∗(d, n) for each d and n

• M has available

– pM(θ), i.e., beliefs about the product quality θ

– pM(d|θ, n), i.e., beliefs about the experiment result d (number of defective items)
given θ and decision n of M

– uM(c, θ), i.e., utility function based on decision c: accept (A) or reject (R) the
batch
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ACCEPTANCE SAMPLING: GAME THEORY

• M computes for each d and n

– ψM(n, d, θ) = uM(c∗(d, n), n, θ), i.e., utility based on C ’s decision (known un-
der the common knowledge assumption)

– ψM(n, θ) =
∫
ψM(n, d, θ)pM(d|θ, n) dd, i.e., expected utility (w.r.t. d)

– ψM(n) =
∫
ψM(n, θ)pM(θ) dθ, i.e., expected utility (w.r.t. θ)

– n∗ = argmaxψM(n), i.e. optimal decision by M
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ACCEPTANCE SAMPLING: ARA

• pM(θ), pM(d|θ, n) and uM(c, n, θ) available as before

• Earlier c∗(d, n) was known but now pM(c|d, n) is needed (and its computation re-
quires thinking about C ’s behaviour)

• ⇒ Need to compute ψM(n, d, θ) =
∑

c∈{A,R} uM(c, n, θ)pM(c|d, n) to get rid of c

• pC(θ), pC(d|θ, n), and uC(c, θ) unknown to M (no common knowledge)

• ⇒ random utilities and probabilities generated from F = (UC(c, θ), PC(θ), PC(d|θ, n))

• Computation of random functional Ψ∗
C(d, n, c) =

∫
UC(c, θ)PC(θ)PC(d|θ, n)dθ

• Computation of the random optimal alternative, given d and n:

C∗(d, n) = argmax
c∈{A,R}

Ψ∗
C(d, n, c)

• ⇒ empirical distribution of C∗(d, n) to estimate pM(c|d, n)
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BERNOULLI ACCEPTANCE SAMPLING
The manufacturer’s viewpoint

• Sample of size n offered by manufacturer possibly defective with probability θ

• Sampling model binomial for d defective items with pM(d|θ, n) ∼ Bin(n, θ)

• θ with a beta distribution pM(θ) ∼ βe(β1, β2)

• Utility function uM(c, n, θ) as in Lindley and Singpurwalla (1991):

– uM(A, n, θ) = b1 + b2θ+ b4n,

– uM(R, n, θ) = b3 + b4n

– b4 unit cost of providing each sample unit

– b2 penalty for defectiveness; the higher θ, the worse the corresponding cost

– b1 > b3: preference for accepted items rather than rejected

– b3 > b1 + b2: preference for rejection rather than acceptance of very low quality
lot (for reputation)
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BERNOULLI ACCEPTANCE SAMPLING
Assumptions on C

• Same sampling model binomial for d defective items with pM(d|θ, n) ∼ Bin(n, θ)

• Random distribution PC(θ) given by

– Beta distribution pc(θ) ∼ βe(α1, α2)

– Uniform distributions α1 ∼ U ∈ [a11, a12], and α2 ∼ U ∈ [a21, a22]

– Compare with Lindley and Singpurwalla (1991) who considered pc(θ) ∼ βe(α1, α2),
with known α1 and α2

• Random utility UC(c, θ), similar to Lindley and Singpurwalla (1991):

– uC(A, θ) = a1 + a2θ,

– uC(R, θ) = a3,

– where a1 > a3 > a1 + a2 and a2 < 0
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BERNOULLI ACCEPTANCE SAMPLING
An example (values of the parameters omitted)

n = 0 1 2 3 4 5 6 7 ...
p̂M(A|d, n) d = 0 x 0.4 0.49 0.55 0.61 0.65 0.68 0.71

d = 1 x 0.22 0.34 0.42 0.49 0.54 0.58 0.62
d = 2 x x 0.19 0.29 0.37 0.44 0.49 0.53
d = 3 x x x 0.16 0.26 0.33 0.4 0.45
... x x x x 0.14 0.23 0.3 0.36

Acceptance probabilities for various manufacturer decisions and experimental results
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BERNOULLI ACCEPTANCE SAMPLING

n = 1 2 3 4 5 6
ψM(n) 4.25 4.325 4.374 4.408 4.43 4.444

... 7 8 9 10 11 12
ψM(n) 4.453 4.456 4.457 4.456 4.451 4.444

Expected utilities of various manufacturer decisions (n = 9 optimal decision)
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CLASSIFICATION

• Classification: widely used supervised learning method, applied, e.g., in computer
vision, genomics, credit scoring and spam detection

• Currently, a major research area in Statistics and Machine Learning (ML)

• Most efforts focused on obtaining more accurate algorithms

• Less attention for a relevant aspect: presence of adversaries manipulating data to
deceive the classifier in order to obtain a benefit (e.g. credentials of bank account)

• Example: Fraud detection

– ML algorithms developed for detection ⇒ fraudsters learn how to evade them

– Detection more likely for huge transactions ⇒ smaller ones more frequently

• No common knowledge ⇒ Adversarial Risk Analysis (ARA)
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ADVERSARIAL HYPOTHESIS TESTING (AHT)

• Use concepts from Adversarial Risk Analysis (ARA)

• Agent (Defender D) needs to ascertain which of several hypotheses holds, based on
observations from a source

• Another agent (Attacker A) alters the observations to induce the Defender to make
a wrong decision (and get a benefit)

• AHT problem studied from the Defender’s perspective

• Lack of common knowledge about decision strategies

• Defender needs to forecast the Attacker’s decision, simulating from the guess about
Attacker’s decision making problem (based on Defender’s decision problem)
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ADVERSARIAL HYPOTHESIS TESTING

• Test of two simple hypotheses: Θ = {θ0, θ1}

• Observation x generated according to a model depending on θ

• x altered to y by A’s action a

• y observed by D ⇒ D’s decision d on θ based on y, without observing x

• Depending on d and actual θ ⇒ losses (utilities) for both agents

• Efforts by A in minimising the loss

• Support for D in choosing θ to minimise the loss
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BINARY CLASSIFICATION
• Classifier C receives two types of objects: malicious (y = +) or innocent (y = −)

• Objects have features x whose distribution depends on their type y

• Classification problems broken down into two separate stages:

– inference about pC(y|x), C ’s beliefs about type given features

– decision about class assignment yC, based on pC(y|x) and utility uC(yC, y)

• Node: decision (square), uncertainty (circle), deterministic (double), utility (hex.)

• Arrow: conditional relation (solid), information available at decision time (dashed)
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ADVERSARIAL CLASSIFICATION
• Adversary A chooses attack a s.t. actual x→ x′ = a(x) observed by C

• A attacks only for malicious instances (y = +)

• Nodes in bi-agent influence diagram: grey (A), white (C), striped (both A and C)

• Decisions: attack a by A and classification yC by C

• Utilities: uC(yC, y) for C and uA(yC, y, a) for A
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CLASSIFIER PROBLEM
Find class c(x′) = argmax

yC

∑

y∈{+,−}
uC(yC, y)pC(y|x′)

(divide by pC(y)) = argmax
yC

[
uC(yC,−)pC(x

′|−)pC(−)

+ uC(yC,+)pC(+)
∑

x∈X ′

pC(ax→x′|x,+)pC(x|+)

]

• Expected utility maximisation

• A(x): set of possible attacks for actual x

• X ′ = {x : a(x) = x′ for some a ∈ A(x)}: x’s potentially leading to observed x′

• pC(y): beliefs about the class distribution

• pC(x|y): beliefs about feature distribution given the class (under no attacks)

• uC(yC, y): utility in classifying yC with actual y

• pC(a|x, y): beliefs about A’s action, given x and y (Think of A’s behaviour!)
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ATTACKER PROBLEM• Find optimal attack

a∗(x, y) = argmax
a

∫ [
uA(+,+, a) p+ uA(−,+, a) (1− p)

]
fA(p|a(x))dp

= argmax
a

[uA(+,+, a)− uA(−,+, a)] pAa(x) + uA(−,+, a)
• A: modify x so that C classifies malicious instances as innocent (A’s maximum

expected utility)

• A: modify only malicious instances, i.e. y = +, and not innocent, i.e. y = −

• C ’s decision: uncertain for A

• uA(yC, y, a): utility for A when C says yC, actual label is y and the attack is a

• pA(c(x′)|x′): A’s beliefs about the classification result when C observes x′

• p = pA(c(a(x)) = +|a(x)): A’s beliefs about C classifying as malicious after
observing x′ = a(x)

• Uncertainty on p modelled via density fA(p|a(x)) with expectation pA
a(x).
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CLASSIFIER PROBLEM
• Find a∗(x, y) = argmaxa [uA(+,+, a)− uA(−,+, a)] pAa(x) + uA(−,+, a)

• C does not know A’s utilities uA and probabilities pA
a(x)

• C ’s uncertainty modelled through random utility UA and random expectation PA
a(x)

• Solve for the random optimal attack, optimising the random expected utility

A∗(x,+) = argmaxa

(
[UA(+,+, a)− UA(−,+, a)]PA

a(x) + UA(−,+, a)
)

• ⇒ pC(ax→x′|x,+) = Pr(A∗(x,+) = ax→x′), assuming a discrete set of attacks

• Approximation through simulation of K samples
(
Uk
A(yC,+, a), P

A,k
a(x)

)
from random

utilities and probabilities

⇒ A∗
k(x,+) = argmaxa

([
Uk
A(+,+, a)− Uk

A(−,+, a)
]
PA,k
a(x) + Uk

A(−,+, a)
)

• Estimation: p̂C(ax→x′ |x,+) = #{A∗
k(x,+) = ax→x′}/K
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RANDOM UTILITY

• Random utility UA(yC,+, a) includes two components

– A’s gain from C ’s decision

– random cost B of implementing an attack

• YyCy: gain when C decides yC with y actual label

• −Y++ ∼ Ga(α1, β1) with expected gain α1/β1 = −d for A and variance α1/β2
1

• Y−+ ∼ Ga(α2, β2) with expected gain α2/β2 = e for A, and variance α2/β2
2

• Y+− = Y−− = δ0, Dirac at 0: no gain for A from innocent instances

• ⇒ A’s gain (YyCy −B)

• If A risk prone ⇒ UA(yC, y, a) = exp(ρ (YyCy − B)) with random risk proneness
coefficient ρ ∼ U [a1, a2], a1 > 0
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RANDOM PROBABILITY

• PA
a(x), A’s (random) expected probability that C classifies as malicious for x′ = a(x)

• C guesses A’s beliefs about C ’s classification when observing x′ ⇒ delicate

• Hierarchy of decisions: A should know what C does when knowing what A does ...

• Probabilities to be specified at each stage until no more available information
⇒ non-informative distribution at that stage

• Heuristic at first stage based on PrC(c(x′) = +|x′) = r (C classifies as malicious
observing x′), with some uncertainty around it
⇒ PA

a(x) ∼ βe(δ1, δ2), with mean δ1/(δ1 + δ2) = r and adequate variance

• In general, given observed x′, consider all instances leading to it

– p1: proportion of instances originally malicious

– p2: proportion of instance originally innocent

– ⇒ r = p1/(p1 + p2)

239



SPAM DETECTION

• m emails as bag-of-words: binary features about presence (1) or not (0) of n words

• Label indicates whether the message is spam (+) or not (−)

• Email as n-dimensional vector x = (x1, x2, .., xn) of 0’s or 1’s, with label y

• Only word insertion attacks ⇒ 0’s replaced by 1’s

• Interest in insertion of one word at most

• I(x): set of indices s.t. xi = 0 in x ⇒ A(x) = {a0, ai; ∀i ∈ I(x)} set of possible
attacks with identity a0 and ai transforming i-th 0 into 1

• J(x′): set of indices with value 1 in x′ received by C ⇒ X ′ = {x′, x′j; ∀j ∈ J(x′)}
and x′j message potentially leading to x′, with j-th 1 in x′ replaced with 0
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SPAM DETECTION

• uC(yC, y) standard

• pC(y) and pC(x|y) standard if considering only exploratory attacks and using
generative classifier to estimate them

• Strategic component for pC(ax→x′|x, y) and use of ARA to approximate it

• Adversary’s random utilities obtained as before

• Beta distribution for PA
a(x) with adequate variance and mean ra

– q0 = pC(x′|−)pC(−): original label − left unchanged by A

– qj = pC(x′j|+)pC(+), ∀j ∈ J(x′): original label + changed by A

– qn+1 = pC(x′|+)pC(+): original label + left unchanged by A

– ra =

∑
i∈J[a(x)] qi + qn+1

q0 +
∑

i∈J[a(x)] qi + qn+1
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SPAM DETECTION
• Spambase Data Set from UCI Machine Learning repository

– 4601 emails, out of which 1813 are spam

– 54 relevant words for each email ⇒ 54 dimensional vector x of 0’s and 1’s

– data randomly split into training (75%) and test (25%) sets, with 100 repetitions

• Training not affected by attacks ⇒ p̂C(y) and p̂C(x|y) from Naive Bayes classifier

• Simulations (sample size 1000) with 4 utilities for C and different variances for ran-
dom expected probability PA

a(x) (increasing percentages k of maximum value)

• Comparison between ACRA and Naive Bayes: accuracy, utility, false positive (FPR)
and false negative rates

• ACRA more robust w.r.t. attacks, identifying more attacked spam emails, even for
larger k, i.e. variance, worsening the performance

• ACRA ⇒ lower FPR, i.e. less non-spam are rejected as spam (more important than
accepting spam)
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SPAM DETECTION
• Checking utility robustness through 4 utilities for C:

– 0/1 Utility ⇒ 1 if correctly classified and 0 o.w.

– Three utilities taking values

∗ 1 if correctly classified

∗ -1 for spam classified as legit

∗ −2/− 5/− 10 for legit classified as spam

• Random utilities for A (m=mean, v=variance)

– −UA(+,+, a) ∼ Ga(2500,0.002) ⇒ m = 5, v = 0.01

– UA(−,+, a) ∼ Ga(2500,0.002) ⇒ m = 5, v = 0.01

– UA(−,−, a) = UA(+,−, a) = δ0

• Random cost B = d(a) · α, with d(a) = # word changes and α ∼ U [0.4,0.6]

• Random risk proneness coefficient ρ ∼ U [0.4,0.6]
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SPAM DETECTION

• Beta distribution for PA
a(x) with mean r = PrC(c(a(x)) = +|a(x))

– Concave to avoid malicious a(x) concentrated around 0 or 1

– ⇒ variance ≤ ∆ = min
{
[r2(1− r)]/(1 + r), [r(1− r)2]/(2− r)

}

– Adjustable variance at k∆ with k ∈ {0.01,0.1,0.2, · · · ,0.9}

• K = 1000 Monte Carlo sample size
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SPAM DETECTION

• Starting problem for C: find c(x′) = argmaxyC
∑

y∈{+,−} uC(yC, y)pC(y|x′)

• 0/1 utility function, i.e. 1 for correctly classified instance and 0 otherwise

• Naive Bayes: NB-Plain for original data and NB-Tainted for attacked data

• k: percentage of maximum variance for PA
a(x)
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SPAM DETECTION

• Naive Bayes: NB-Plain and NB-Tainted behave similarly since A is not modifying
innocent instances

• Increasing k (and variance for PA
a(x)) ⇒ increases FPR

• Reducing FPR crucial in spam detection, as filtering out a non-spam is worse than
letting spam reach the user
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DISCUSSION ABOUT ACRA

• So far ACRA tested with A’s distributions centered around the expected values of
C ’s, but it proves quite robust even when moving away

• Changing all words in the spam detection problem ⇒ 2n possible attacks

– Ad hoc procedure, e.g., changing only one word and from 0 to 1

– Smaller sample size

– Approximations, parallelisation

• Further extensions

– From binary classification to multi-label (e.g. malware: trojan, adware, virus)

– From exploratory to poisoning attacks, i.e. attacks also during training

– Attacks not only on malicious instances but also on innocent ones

– From generative classifiers (P (X,Y )) to discriminative ones (P (Y |X = x))
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DISCRIMINATIVE CLASSIFIERS
• In the earlier approach (generative classifier) we supposed to know p(y) and p(x|y),

e.g. from a classifier applied to the training set

• Here we suppose to know only p(y|x) and address the problem of classifying an
instance when x′ is observed ⇒ solve argmaxyC ψ(yC) where

ψ(yC) =

∫

Xx′




k∑

y=1

u(yC, y)p(y|x = a−1(x′)


 p(x|x′)dx

=
k∑

y=1

u(yC, y)

[∫

Xx′

p(y|x = a−1(x′))p(x|x′)dx
]

• p(y|x) is based on untainted x

• Xx′, the set of reasonable instances x leading to x′ if attacked

• Optimisation solved via Monte Carlo using sample {xn}Nn=1 from p(x|x′) but ...

• ... there is a problem: we do not know p(x|x′) and we have to estimate it
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AB-ACRA
• Suppose p(x) unknown and p(x′|x) known as result of strategic thinking, as before,

about the possible attacks

• Efficient approach to sample from p(x|x′) making use of samples from p(x′|x)
• Sample from p(x|x′) ∝ p(x′|x)p(x) for x and x′ discrete

– Proposal x̃ from transition distribution q(x→ x̃)

– Sampled x̃′ ∼ p(X ′|X = x̃)

– ⇒ accept x̃ if x̃′ = x′ with probability α = min
{
1, p(x̃)q(x̃→xi)

p(xi)q(xi→x̃)

}

– Very slow convergence

• Sample from p(x|x′) for x and x′ continuous
– x̃ and x̃′ generated as above

– Based on Approximate Bayesian Computation (ABC) techniques, accept x̃ if
ϕ(x̃′, x′) < ϵ for a given distance ϕ and tolerance ϵ

– For high dimensions, use summary statistics s to accept x̃ if ϕ(s(x̃′), s(x′)) < ϵ
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CONCLUSIONS ABOUT ACRA

• Here more emphasis on modelling and conceptual aspects whereas the papers con-
tains many details about algorithmic ones and comparisons with classical classifiers

• Like in ABC, the choice of summary statistics in AB-ACRA might be critical

• AB-ACRA and ACRA become computationally expensive for large scale problems
⇒ differentiable classifiers as an alternative

• Adaptive attackers can be dealt with changing random probability and random utility
accordingly

• Here we have considered attacks to i.i.d. sequences but data could come, say, from
an autoregressive model

250



ADVERSARIAL SOFTWARE TESTING

• Software subject to (possibly expensive and dangerous) failures in programming or
system design

• ⇒ software must undergo rigorous testing, both during development and operation,
to verify its reliability

• Optimal policies for software release ⇒ important issue in software engineering

• Challenges due to several, often uncertain, complicating factors

• Endogenous factors

– number of bugs in the software

– skill in detecting bugs

• Exogenous factors

– release decisions made by competitors

– eventual purchasing decision by software buyers
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ADVERSARIAL SOFTWARE TESTING

• Monetary aspects

– costs related to time on test

– costs related to bugs discovering and their fixing during testing

– costs related to bugs discovering and their fixing after the release

– monetary gain for the software sale

• Reputational aspects

• Early software release ⇒ larger commercial advantage over competitors

• Less intensely tested software ⇒ possible lower quality ⇒ potential advantage to
competitors
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ADVERSARIAL SOFTWARE TESTING

• Singpurwalla and Wilson (2012): Review of software reliability and testing

• Anand, Singh, Das (2015): evaluation of two types (simple and serious) failures in
successive versions of a software, during testing and operational phases

• Wilson and O’Riordain (2018): optimal release policy of new versions of Mozilla
Firefox based on bug detection data

• Saraf and Iqbal (2019): software reliability model based on NHPP, performing fault
detection, observation and correction in two stages and multiple versions

• Mishra, Kapur, Srivastava (2018): reliability growth of software over multiple versions

• Kenett, Ruggeri, Faltin (2018): thorough review of analytic methods in systems and
software testing

• Ay, Landon, Ruggeri, Soyer (2022): software testing with possible introduction of
bugs
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ADVERSARIAL SOFTWARE TESTING

• Ruggeri, Soyer (2018): overview of games and decision models for software testing

• Forman, Singpurwalla (1977, 1979) and Okumoto, Goel (1979): introduction of
stopping time models to support software release decisions

• Dalal, Mallows (1988): pioneer work on decision theoretic models for release

• Morali, Soyer (2003): sequential Bayesian decision theoretic setup for developing
optimal stopping policies for software testing

• Zeephongsekul, Chiera (1995): first game theoretic approach looking for optimal
release policies through Nash equilibrium

– Dohi, Teraoka, Osaki (2000): different approach since previous solution
restricted to particular case and computationally intractable

– Saito, Dohi (2022): uncovered faults in the earlier two papers showing the
existence of Nash equilibrium under some parametric conditions
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ADVERSARIAL SOFTWARE TESTING

• Overview of Zeephongsekul and Chiera (1995)

• First work to consider also actions and costs of a competitor

• Two competitors (i = 1,2) produce software performing the same set of tasks and
with life cycle length non exceeding T

• Competitor i, i = 1,2, decides to release the software at any time t in [0, T ] and
sells the product with probability Ai(t) to the only buyer (who buys from one
competitor at most)

• Ai(t), i = 1,2, continuously differentiable, concave and s.t. Ai(0) = Ai(T ) = 0
with a unique maximum at time ηi

– Choice of Ai(t) not only for mathematical convenience but also justified by
actual behaviour

– Success probability expected to be close to 0 both at the beginning and the end
of the life cycle [0, T ], because of initial poor reliability and final obsolescence,
respectively
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ADVERSARIAL SOFTWARE TESTING

• Introduction of expected cost function ci(t) incurred by player i in releasing the
software at time t

• ci(t) = c1it+ c2im(t) + c3i (m(T )−m(t))

– c1i cost of testing per unit time

– c2i cost of removing a fault during testing

– c3i cost of removing a fault during operation, with c3i > c2i since fixing an error
is more expensive after release than before it

– m(t) expected number of faults detected up to time t

– increasing, concave and differentiable m(t), with m(0) = 0

• ⇒ ci(t) convex function with minimum at γi s.t. ⇒ m
′

i(γi) =
ci1

(c3i − c2i)

• T is sufficiently large so that γi < T
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ADVERSARIAL SOFTWARE TESTING

• pi > 0: selling price of the software produced by player i

• If player 1 releases software at time x and player 2 at time y ⇒ Mi(x, y) is the
expected unit profit to player i, with

M1(x, y) =

{
p1A1(x)− c1(x) 0 ≤ x < y ≤ T

p1(1−A2(y))A1(x)− c1(x) 0 ≤ y < x ≤ T

• M2(x, y) can be described similarly and M1(x, y) ̸=M2(x, y) in general

• ⇒ optimal release policies among Nash equilibrium points in this non-zero sum
game (with concerns about the results as mentioned earlier)

• The paper, and all game theoretic work in the field, entails common knowledge as-
sumptions, debatable in competitive business settings as in software development

• ⇒ Adversarial Risk Analysis ⇒ Adversarial Software Testing
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ADVERSARIAL SOFTWARE TESTING
• Guevara, Pierce, Rios Insua, Ruggeri, Soyer (submitted)

• Support for producer X against competitor Y , trying both to sell software to buyer Z
(purchasing from one producer at most)

• X can release the software at any time x ∈ [0, T ]

• In absence of competitors, X would succeed in selling the product at the price pX
with probability AX(x), with AX(0) = AX(T ) = 0 (less restrictive than before)

• Y releases at time y ∈ [0, T ] independently, succeeding to sell at fixed price pY with
probability AY (y), with similar properties as AX

• Consider a stochastic number NX(t) of faults found until time t, instead of the
expected number mX(t) = E[NX(t)]

• NX(t) NHPP with intensity λX(t) and mean value function mX(t) =

∫ t

0
λX(u)du

• Similar definitions apply to Y
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ADVERSARIAL SOFTWARE TESTING
Tri-agent influence diagram representing the basic problem
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• Global perspective

• Different colours for different agents

• Square nodes: Decisions by producers (X and Y ) and buyer (Z)

• Circle nodes: Uncertain features of X (ΘX) and Y (ΘY ), like number of bugs

• Hexagonal nodes: Utilities UX, UY , UZ for X,Y, Z
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ADVERSARIAL SOFTWARE TESTING
Tri-agent influence diagram representing the basic problem
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• Perspective from producer X, the one we are taking in the work

• Y ’s decision now as a circle since it is uncertain for X
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ADVERSARIAL SOFTWARE TESTING

• cX(t) = c1Xt+ c2XNX(t) + c3X [NX(T )−NX(t)]

– c1i cost of testing per unit time

– c2i cost of removing a fault during testing

– c3i > c2i cost of removing a fault during operation

• We assume that no new bugs are introduced during the debugging phase

• We assume that fault arrivals can be described by the same process during
debugging and operational phase after the software has been released

• There are other assumptions leading to further developments, e.g., price fixed in
advance, only two producers, only one buyer, fixed purchase probability
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ADVERSARIAL SOFTWARE TESTING

• X and Y release their software at times x and y, respectively (x ̸= y a.s.)

• X stops testing if the buyer does not purchase its software, either because it rejects
the product or because it has already bought it from Y

• gX(x, y) (random) gain of producer X given such release times

• Start with x < y and rename gX as gX1

• ⇒ gX1(x, y) = AX(x) [pX − cX(x)]− [1−AX(x)] [c1X x+ c2XNX(x)]

• First term: expected gain if Z buys X ’s software given by purchase probability at
time x times the difference between selling price and costs due to debugging until x
and fault removals after the release up to time T

• Second term: expected loss due to refusal by Z and costs incurred until release time

• Note that gX1(x, y) does not depend on y
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ADVERSARIAL SOFTWARE TESTING

• Similarly, Y ’s gain, for y < x, not dependent on x:

• gY 1(x, y) = AY (y) [pY − cY (y)]− [1−AY (y)] [c1Y y+ c2YNY (y)]

• When x > y, the X ’s gain is renamed as gX2

gX2(x, y) = −AY (y) [c1Xy+ c2XNX(y)] + [1−AY (y)] {AX(x) [pX − cX(x)]−
− [1−AX(x)] [c1Xx+ c2XNX(x)]}

• First term: Z buys Y ’s software and X stops debugging its own

• Second and third term: like earlier, but after Z ’s refusal of buying Y ’s software

• Similar result for Y when y > x
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ADVERSARIAL SOFTWARE TESTING

• Assuming risk neutrality ⇒ expected gain hX(x, y) replacing NX(t) with its
expectation, like for x < y

hX1(x, y) = AX(x) [pX − (c1Xx+ c2XmX(x) + c3X [mX(T )−mX(x)])]
− [1−AX(x)] [c1Xx+ c2XmX(x)]

• As an anticipation of what is next, X can also consider AY (y) as random and
compute its expectation when x > y

hX2(x, y) = −E(AY (y))[c1Xy+ c2XmX(y)] + (1− E(AY (y)))×

×[[AX(x)[pX − (c1Xx+ c2XmX(x) + c3X[mX(T )−mX(x)]]− [1−AX(x)]×
×[c1Xx+ c2XmX(x)]]]

• Similar results apply to Y
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ADVERSARIAL SOFTWARE TESTING

• πXY (y): density modelling X ’s beliefs about Y ’s release decision being time y

• Expected gain associated with release decision x
MX(x) =

∫
hX(x, y)πXY (y)dy =

∫ x
0 hX2(x, y)πXY (y)dy+

∫ T
x
hX1(x, y)πXY (y)dy

• Optimal release time for X: x∗ = argmax0≤x≤T MX(x)

• Above arguments slightly modified in absence of risk neutrality, i.e., when consider-
ing a utility function uX

gX1(x, y) = AX(x)×uX(pX−cX(x))+[1−AX(x)]×uX(−(c1X(x)+c2XNX(x)))

gX2(x, y) = AY (y)× uX(− [c1Xy+ c2XNX(y)]) + [1−AY (y)]×
×{AX(x)uX([pX − cX(x)]) + [1−AX(x)]uX(− [c1Xx+ c2XNX(x)])}
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ADVERSARIAL SOFTWARE TESTING

• All the elements introduced above are standard in the decision analysis and software
reliability literature and practice, except for those entailing strategic thinking:

– AY (y) (purchase probability of Y ’s software)

– πXY (y) (X ’s beliefs about Y releasing its product at time y)

• Need for procedures to facilitate their assessment, starting with πXY (y)

• Look at Y ’s perspective on product release

• Remember that Y has a cost function cY (t) and a purchase probability function
AY (t) for a fixed price pY , with similar properties and definitions than those of X

• Presenting now an approach to obtain an estimate π̂XY (t) of πXY (t) reflecting upon
the optimisation problem faced by Y
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ADVERSARIAL SOFTWARE TESTING

• Suppose X has complete knowledge about Y ’s behaviour, i.e., c1Y , c2Y , c3Y , pY ,
λY (t), AY (t) and πYX(t) (which models Y ’s beliefs about X ’s release time)

• ⇒ X could guess Y ’s actual optimal release time y∗, using the previous
computations by interchanging X and Y

• But we have uncertainty about Y ’s elements so that we

– model such uncertainty through probability measures ΠY
X(t), C1Y , C2Y , C3Y ,

PY , AY and NY (t) over the space of suitable densities πYX(t), constants c1Y ,
c2Y , c3Y , pY , functions AY and processes NY (t), respectively

– make a sufficiently large number of draws from these components, compute the
corresponding optimal release time y∗ for each draw, and estimate an empirical
distribution over y∗, which will be considered as the estimate π̂XY (y)

– ⇒ X will be able to compute its optimal release time x∗
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ADVERSARIAL SOFTWARE TESTING

• The random ingredients could be specified gathering all information available and
modelling with standard expert judgement

• Here we consider several heuristics based on adding some uncertainty to the
judgements concerning X

• Y ’s random beliefs about X ’s decision ΠY
X(t)

– Transform the time interval [0, T ] into the unit interval via the transformation
t→ t/T , 0 ≤ t ≤ T

– Consider suitable densities πYX(t) in the space of all beta densities over [0,1]
or a proper subset, if X feels capable of adding some constraints about their
parameters, e.g. by fixing lower and/or upper bounds over mean and/or variance
of the beta distributions

– Randomly generate densities from such class, e.g., drawing a uniform
distribution over both parameters of the beta distribution or its mean-variance
pair
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ADVERSARIAL SOFTWARE TESTING

• Y ’s random beliefs about X ’s decision ΠY
X(t)

– Use distortion function as in Arias-Nicolas, Ruggeri and Suárez-Llorens (2016)

– Start from an absolutely continuous (for simplicity) pdf πX(t) and its cdf ΠX(t),
expressing X ’s opinion on Y ’s release time and build a random space of cdf’s
πYX(t) around it

– Consider distortion functions h(t), i.e. non-decreasing functions such that
h : [0,1] → [0,1], h(0) = 0, h(1) = 1

– Apply h(·) to ΠX(t) and obtain random pdf’s ΠY
hX(t) = h(ΠX(t)) and cdf’s

πYhX(t) = h
′
(ΠX(t))πX(t)

– Consider a band around ΠX(t) taking one convex and one concave distortion
function to get, respectively, its lower and upper bounds

– A useful choice for a distortion function is h(t) = tα, which is convex for
0 < α < 1 and concave for α > 1

– Randomness is induced by, say, considering that α follows a uniform distribution
on a certain interval
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ADVERSARIAL SOFTWARE TESTING
• Uncertainty about Y ’s costs

– Model X ’s uncertainty about c1Y , c2Y and c3Y considering independent
(Gaussian) distributions centered around the corresponding values c1X, c2X, c3X

– Alternatively, if X can provide upper and lower bounds for c1Y , c2Y and
dY = c3Y −c2Y , then independent shifted beta distributions could be considered

– The variances of those distributions will be determined by X depending on the
confidence about the chosen means

• Uncertainty about Y ’s price PY

– In absence of further information consider a (Gaussian) distribution with mean
pX and variance σ2 denoting the degree of uncertainty around pX

• Uncertainty about Y ’s purchase probability AY (y)

– Transform AX(x) → a [AX(x)]
b, with a ∈ [0,1] (decreasing effect) and

b ∈ [0,1] (increasing effect)

– a and b randomly generated to obtain values of AY (y)

270



ADVERSARIAL SOFTWARE TESTING

• Uncertainty about Y ’s fault discovery process NY (t)

– Suppose X has chosen a functional form for NX(t) and estimated its
parameters and obtained an estimate m̃X(t) for its mean value function

– First alternative: generate values of the parameters of NY (t) from distributions
centered around X ’s estimated parameters (e.g. posterior distributions)

– Second alternative: Bayesian non-parametric approach with mean value
function as a random measure M , generated by a Gamma process, conjugate
w.r.t. the Poisson process (Lo, 1982)

– Gamma process centered around m̃X(t) so that at each interval [t0, t1] the
mean value function is generated by a Gamma distribution with mean
m̃X(t1)− m̃X(t0)

– The variance of the Gamma distribution could determine how close the fault
discovery process NY (t) is to NX(t)

– Further details can be found in Cavallo and Ruggeri (2001)
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ADVERSARIAL SOFTWARE TESTING: EXAMPLE

• Example based on Zeephongsekul and Chiera (1995)

• Life cycle length T = 2000 days

• Cost parameters: c1X = 0.5, c2X = 1, c3X = 5

• Selling price pX = 5000

• Purchase probability AX(t) = 0.0002t(10− 0.005t)

• Fault discovery process NX(t): NHPP with mean value function mX(t) = atc

(power law process) and MLEs of parameters given by â = 0.256 and ĉ = 0.837,
from Zeephongsekul and Chiera (1995) and based on data from Okumoto (1979)

• Cost function with utility function uX assumed to be the identity (⇒ Risk neutrality)
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ADVERSARIAL SOFTWARE TESTING: EXAMPLE

• Cost parameters follow distributions centered around the cX values:

– c1Y ∼ N(0.5,0.02) = N(c1X,0.02)

– c2Y ∼ N(1,0.05) = N(c2X,0.05)

– c3Y ∼ N(5,0.5) = N(c3X,0.5)

• Selling price pY ∼ N(5000,250) = N(pX,250)

• Random purchase probability AY (t) ∼ d̃AX(t)b̃, with d̃ ∼ U(0,1) and b̃ ∼ U(0,1)

• The random fault discovery process NY (t) is a NHPP with random mean value
function mY (t) = ãtc̃ with ã ∼ N(0.256,0.05) and c̃ ∼ N(0.837,0.05)

• Beliefs of Y over X ’s release time t given by t/T ∼ βe(α, α), with α ∼ U(1,3)

• Y ’s random cost function cY (t) = c1Y t+ c2YNY (t) + c3Y [NY (T )−NY (t)]

• Deterministic utility function UY : identity ⇒ risk neutrality
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ADVERSARIAL SOFTWARE TESTING: EXAMPLE

• Forecasting Y ’s release decision

– Maximise the objective function MY (y) =
∫
hY (x, y)πYX(x)dx

– For i = 1, ...,K

∗ Sample c1Y , c2Y , c3Y , pY , AY , NY , α (for πYX , i.e. Y ’s beliefs on X ’s release)

∗ Given the sampled αi
· generate a sample zj ∼ βe(αi, αi), j = 1, ..., N

· get xj = zj × T , j = 1, ..., N

∗ Monte Carlo approximation M i
Y (y) through

1
N

∑N
j=1 hY (xj, y) = 1

N
[
∑

xj<y
hY 2(xj, y) +

∑
y<xj

hY 1(xj, y)] = (omitted)

∗ ⇒ find y∗i = argmax0≤x≤T M i
Y (y)

– ⇒ Get approximate df Π̂X
Y (y) = card{y∗i : y∗i ≤ y}/K
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ADVERSARIAL SOFTWARE TESTING: EXAMPLE

• Deciding X ’s optimal release

– Find x∗ = argmax0≤x≤T MX(x)

– Maximise the objective function MX(x) =
∫
hX(x, y)πXY (y)dy

– Approximate df Π̂X
Y (y) = card{y∗i : y∗i ≤ y}/K

– Monte Carlo approximation through
1
K

∑K
i=1 hX(x, y

∗
i ) = 1

K
[
∑

y∗
i≤x hX2(x, y∗i ) +

∑
y∗
i≥x hX1(x, y∗i )] = (omitted)
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ADVERSARIAL SOFTWARE TESTING: EXAMPLE

• βe(α, α) distribution (mean 0.5) on X ’s release ⇒ guess 1000 = 0.5 ∗ 2000

• LEFT: Y ’s optimal release time up to 800 days (out of 2000) with some incentive to
very early release but the optimal ones are between 300 and 700

• RIGHT: bimodality in X ’s optimal release, with two possible strategies, one before
Y ’s release and one after it

• X ’s optimal release occurs on day 483 for an expected gain of 2,442
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ADVERSARIAL SOFTWARE TESTING: EXAMPLE

• X thinks that Y thinks that X will release later
⇒ βe(α, α) onX ’s release replaced with βe(3α, α) ⇒ guess 1,500 = 0.75∗2000

• LEFT: Y ’s optimal release up to 1200 days with some incentive to very early release
and optimal ones between 700 and 900 (compare with 300 and 700)

• RIGHT: X ’s optimal release is before Y ’s one

• X ’s optimal release on day 663 for an expected gain of 3,091 (earlier 483 and 2,442)

277



ADVERSARIAL SOFTWARE TESTING: EXAMPLE

• X thinks that Y thinks that X will release earlier
⇒ βe(α, α) on X ’s release replaced with βe(α,3α) ⇒ guess 500 = 0.25 ∗ 2000

• LEFT: Y ’s optimal release up to 800 days with some incentive to very early release
and high-risk early release between 200 and 500 (earlier 300 & 700 and 700 & 900)

• RIGHT: X ’s optimal release is well after the Y ’s high-risk one

• X ’s optimal release on day 978 with expected gain of 2,619 (earlier 483 & 2,442 and
663 & 3,091)
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ADVERSARIAL SOFTWARE TESTING: EXAMPLE

• Risk averse X ⇒ identity utility replaced with constant absolute risk averse (CARA)
model given by u(x) = 1− exp(−ρx), with risk aversion parameter ρ = 0.001

• LEFT: Y ’s optimal release between 300 and 700 unchanged w.r.t. the first plot

• RIGHT: Still bimodal distribution for X ’s optimal release, but tendency to be more
conservative and wait more

• X ’s optimal release on day 1003 (483 under identity) with expected utility (no more
gain!) of 0.48
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AST: CURRENT WORK

• Multiple producers

– Instead of x < y and x > y, consider order statistics and position X ’s release
time between x(i−1) and x(i+1) for all i’s

– Similar formulas w.r.t. previous ones

• Multiple decision variables

– So far theAX purchase probability has been considered only as a function of the
release time but it should depend also on other variables, like price and quality
of the software

• Multiple buyers
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