ADVERSARIAL HYPOTHESIS TESTING (AHT)

Use concepts from Adversarial Risk Analysis (ARA)

Agent (Defender D, she) needs to ascertain which of several hypotheses holds,
based on observations from a source

Another agent (Attacker A, he) alters the observations to induce the Defender to
make a wrong decision (and get a benefit)

AHT problem studied from the Defender’s perspective

Defender needs to forecast the Attacker’s decision, simulating from the correspond-
ing Attacker’s decision making problem

167

AHT: SIMPLE EXAMPLE

Defender D needs to decide whether a batch of e-mails includes spam or not
D has beliefs about the standard flow of legit and spam messages

Attacker A alters such flow in an attempt to confound the Defender and gain some
benefit

Both agents obtain different rewards depending on whether
— batch is accepted or not by the Defender

— batch includes just legit messages or not

168

ADVERSARIAL HYPOTHESIS TESTING

Test of two simple hypotheses: © = {6p, 01}

Observation = generated according to a model depending on 6

x altered to y by A’s action a

y observed by D = D’s decision d on 6 based on y, without observing x
Depending on d and actual 8 =- losses (utilities) for both agents

Efforts by A in minimizing his loss

Support for D in choosing 0 to minimise her loss

169

INFLUENCE DIAGRAMS

e Directed acyclic graph with three kinds of nodes:
— Square: decision node
— Circle: random node
— Hexagon: value node (e.g. utility/loss)
e Arrows into a value or uncertainty node indicate functional and probabilistic depen-
dence, respectively

= utility function at the value node depends on its immediately preceding nodes and
probabilities at a chance node are conditional on the values of its direct predecessors

e Arrows into a decision node indicate that, when the decision is made, the values of
its preceding nodes are known

170

AHT: BI-AGENT INFLUENCE DIAGRAM (BAID)

i e Cap——
A

1

|

\

\

\

e Decisions: D (dependingon Y) and A

e Random: © — X — Y (Y influenced also by the decision A)

e Losses: [p and 4 depending on © and related decisions (I 4 also on decision D)

171

SOLVING THE DEFENDER’'S PROBLEM

Influence diagram of the Defender’s decision problem

b ()
A

I

|

|

1

Attacker’s node is now random
172

SOLVING THE DEFENDER’'S PROBLEM
Assessed by Defender D:

e Belief 7 (6) on hypotheses:
pp(0=0,)=rP, i=0,1,with7P? >0and) + P =1

e Belief 7p(x|0) on how data depend on the hypothesis:
X|92N7TD(x|02)7 Z:O,l

e Belief mp(y|z,a) on how action a € A by Attacker modifies actual x into observed y
e Belief 7p(a) on the attack a performed by the Attacker

e Standard 0-1-cp loss function Ip(d, 6) with decision space D = {do, d1} s.t.

d; = {Defender supports 6;}, 7 = 0,1

173

SOLVING THE DEFENDER’'S PROBLEM

Defender’s loss function

Actual Hypothesis

0o 01
D’s do | O 1
Decision di | cp 0

e O best loss, associated with the right decision

e cp < 1 (without loss of generality)

174

SOLVING THE DEFENDER’'S PROBLEM

Solve: arg mingep S, Ip(d, 6;) 7p(6:]y)

= dp, i.e. support for 6p, optimal solution for D if and only if 7p(01|y) < c¢p wp(oly)

From
oy = T2 _ [[n@) oyl a) mp(elf:) mp(a) dvda
’ () ™ (y)
— 7Tz'D ffﬂp(y\x,a) mp(z|0;) mp(a) dx da 0.1
7o (y) ! !

= support for 6y, optimal decision for D if and only if

e // 7p(ylz,a) 7p(x|01) mp(a) dxda < cp 7 // mp(y|x,a) m7p(x|0o) 7p(a) dx da

175

SOLVING THE ATTACKER'S PROBLEM
e All Defender’s beliefs obtained in standard way, except for wp(a)

e Defender’s belief wp(a) on Attacker’s action comes from considering his decision
problem

e Defender’s node is now random

® FOSSE

176

SOLVING THE ATTACKER'S PROBLEM
Needed for Attacker A:

e Belief m4(0) on hypotheses:
pa(0 = 0;) =7T;-4, Z'=O,1,Wi’[h7rz‘-4 > Oand7r64—|—7r‘14: 1

Belief w4 (x|0) on how data depend on the hypothesis:

Belief w4 (y|x, a) on consequences of his action a € A, modifying actual x into y

Belief w4 (d|y) on the decision d taken by the Defender upon observing y

e Loss function l4(d,8,a) = l;x(a), with
— j = 0, 1 depending on Defender’s decision d; (i.e., supporting 6;)
— k = 0, 1 depending on actual 6y,

— No cost directly associated with chosen action a (but only on consequences)

177

SOLVING THE ATTACKER'S PROBLEM

Attacker’s loss function

Actual Hypothesis

0o 01

D’s do
Decision dy

loo(a) lo1(a)
l10(a) l11(a)

e Better for the Attacker if the Defender makes mistakes
= loo(a) > lo1(a) and l10(a) < l11(a)

178

SOLVING THE ATTACKER'S PROBLEM

Attacker’s loss function

Actual Hypothesis

0o 01
D’s do | 1 0
Decision d1 0114 0124

0< c}4 < Ci <1
e Best loss for Attacker (0) when Defender supports 6o and she should not
e Worst loss for Attacker (1) when Defender supports 6o and she should

e Intermediate cases: worse for Attacker when Defender supports 1 and actual hy-
pothesis is 61

179

SOLVING THE ATTACKER'S PROBLEM

Optimal decision for Attacker given by a* s.t.
a* = arg Minges > o o [1a(dy, 0i,a) ma(dsly) ma(0:) wa(ylw, a) wa(x|6;) dy da

Defender does not know 74 (60), wa(x|0), ma(y|z,a), ma(d]ly) and l4(d, 0, a)

= model uncertainty around them through random probabilities and losses
F = (I_IA(0>7 nA(Cﬁle), I_IA(y|x, CL), I_IA(dly)7 LA(d7 07 CL))

= find optimal random attack
A* = arg Minges > i—q Yo [La(dy, 0i,a) Ma(d;ly) MNa(6:) Nalyle, a) Na(|6;) dy da

= required distribution through 7p(a) = M(A* = a) (assuming discrete A, but
possible also for continuous one)

180

SOLVING THE ATTACKER'S PROBLEM

mp(a) approximated through simulation, sampling from F

Samples (M%(6;), N% (x|6;), N4 (ylz, a), N5 (d;ly), L5 (dj, 0:,a)), k= 1,..., K

iak—argmlnaeAZj OZZ OffL (dj,Qz,a)l_l (d; |y)ﬂ (H)I_I (y|x, a)l_l (x]6;) dy da

= 7ip(a) = #{a; = a}/K

181

SOLVING THE ATTACKER'S PROBLEM

Choice of random probabilities and loss F

M4(0) based on wp(0) with some uncertainty around it
— M4(0) modelled as a Dirichlet distribution with mean = (6), if discrete

— M4(6) modelled as Dirichlet process with base measure «(6), if continuous
M4(x|0) based on wp(x|0) with some uncertainty around it
Ma(y|x,a) based on 7p(y|x, a) with some uncertainty around it
Parametric form for L 4(d, 6, a) with distribution over such parameters

On the contrary, M 4(d|y) requires strategic thinking as the Defender needs to as-
sess the Attacker’s beliefs about which decision d she will make, given that she
observes y

= could be the start of a hierarchy of decision making problems!

182

SOLVING THE ATTACKER'S PROBLEM

Defender should solve the problem
arg mingep S0 Ip(d, 6;) 7p(6;]y) equivalent to

arg mingep o, [[1p(d, 6;) mp(6;) mp(y|z, a) 7p(x|6;) 7p(a) dz da
Attacker does not know ingredients of above integral

= assume uncertainty over them through random loss L% (d, #) and random distri-
butions M4 (9), N4 (y|x,a), N4(x]|0) and M4 (a)

= get corresponding random optimal decision

Assessment of M4 (a) (what Defender believes that Attacker thinks about her beliefs
concerning the attack to be implemented)
= strategic component leading to the next stage in the hierarchy

lterate until no further information is available, then choosing non-informative prior
over the involved probabilities and losses

183

NUMERICAL EXAMPLE

Two hypotheses: g =2 and 6; = 1

Two decisions: dp chooses §p = 2 and d; chooses 6; = 1

Priors over the hypotheses: 7)) = nP =1/2

Actual data X|0; exponentially distributed £(6;), with uncertainty about 9;

Data = modified by Attacker into y, with actions
— ao: x — y = x (keeping)
- a1: x — y = 2z (doubling)
- a-1: x — y = x/2 (halving)

Suppose (for illustration) Defender knows probabilities wp(a) used by Attacker to
choose actions:

7TD(CL0) = 1/2, 7TD((11) = 1/6 and 7TD(CL_1) = 1/3

184

NUMERICAL EXAMPLE

e Two decisions: dg chooses 6o = 2 and d; chooses 61 = 1

e Loss function L(d,)

Actual Hypothesis

0o 01
D’S do 0 1
Decision di | 3/4 0

185

NUMERICAL EXAMPLE

Adopt decision dj (i.e., accept g = 2) if and only if

Yy
ﬂ'? [91 e_ely ﬂ'D(ao) + 64 6_91 2 7TD(a1) + 64 6_91 2y 7TD(CL-1)}

<

y
%Wg [90 eV wp(ag) +0oe P2 mp(ar) 4 Ope %2 WD(G-l)}

Yy
o &2e¢ 243V -5 —6e <0

e & y < 0.3723is observed
(Note that & = 2 leads to a smaller mean w.r.t. 6 = 1,i.e. 1/2vs. 1)

e Note that a small change in probabilities, i.e. 75 = 1/3 and =¥ = 2/3 (and other
probabilities and losses kept as before) =- d; optimal regardless of observed y

186

NUMERICAL EXAMPLE

Defender does not accurately know 7p(a) = ARA

M.4(61) drawn uniformly over [1/4,3 /4], and M4(0p) = 1 — M(61)

Ma(x|0), where 6 € {00, 01}, from a Gamma distribution Ga(«a, 8) withmean a/8 =
6 and variance «/3? = o2 uniformly chosen over [1/2, 2] s.t. variance randomness
induces that of M 4(xz|0)

M4(y|xz, a) Dirac distributions coinciding with those of 7p(y|x, a)

M4(d|y) looking at the likelihood h(y|d, a) of y under different choices of d and a,
mixing them through a random allocation of probabilities to each action

187

NUMERICAL EXAMPLE

e Attacker assumes the Defender is modelling the data with an exponential distribution

e Likelihood h(y|d, a) of y under different choices of d and a
— dp chooses 6o = 2 and d; chooses /1 = 1

— ag (keeping), a1 (doubling) and a-1 (halving)

e Example
— y reported and a; chosen = =z = y/2 true value

— dp chosen = h(y|dp,a1) = 2e7Y

Actions
ao aq a-1
D’s do | 2e=2 2e7Y e~ 4
Decision ds oY De—U/2 =2y

188

NUMERICAL EXAMPLE

Defender assessing the probabilities (eo, €1, €-1) assigned by the Attacker to each
strategy through a Dirichlet distribution Dir(1,1,1)

=
S € h(ylda, a;)
St e hyldo, a;) + S0 € h(yldy, ay)

Pa(d = dileo, €1, €-1,9)

_y
ecoe Yer1e 2 4+ €1 e 2y

_y
2 (60 e 2y 4+ e1e Y+ eq €—4y) +ecoe V4t e1e 24 €1 e—2y

Distribution of (eg, €1, €-1) induces the randomness of Ps(d = d1|y)

Ps(d = dpoly) = 1 — Pa(d = d1ly)

189

NUMERICAL EXAMPLE

Random loss function L 4(d, 8, a) based on table below

° C’}l fixed at O

e (% uniformly drawn from [1/2, 1]

Actual Hypothesis

0o 01
D’s do | 1 o)
Decision d1 Ci Cfl

190

NUMERICAL EXAMPLE

Attacker’s random expected losses for the three actions

W 4(ap) = / [Ma(doly = z) NMa(6o) Ma(z|0o) + C3 Na(dily =) Ma(61) MNa(z|61)] dz
Wa(ar) = / [Ma(doly = 22) Ma(60) Na(x|00) + C5 Na(dily = 2x) Ma(61) Malx[61)]

Wy(a-1) = / [Ma(doly = £) Ma(60) Ma(z|60) + C1Naldily = £) Ma(61) Na(x]61)] dz

Random models induce randomness in these expected losses

K = 100, 000 observations drawn from the corresponding distributions
= Estimates 7p(ag) ~ 0.04, 7p(a1) ~ 0.85 and 7p(a-1) ~ 0.11
Optimal action: do when y < 0.7374 (different from previous solution)

191

[

10

i3

NUMERICAL EXAMPLE

Set p; = O, -1 << 7 < 1.

For £k =1 to K
Generate 7r114k ~U(1/4,3/4). Compute 71-21]‘” = 1 — 71-}4k
Generate O_g,k ~U(1/2,2). Compute of§ = 98/0‘8716; B = 9()/0-8,,6.
Generate O_l2k ~U(1/2,2). Compute af = 9%/0_%,/%; = 91/0_%,/&-

Generate (e§,e%,eF) ~ Dir(1,1,1)..

Generate C’jk ~uU(1/2,1).

Vh(ao) — 7% [(1 — gleo.cr,er) Flwlal, 55 Az
Oz w}f/gceo,el,e_l,@f<x|a’f,5f>dx

L (ar) — o / (1 — g(eos €1, -1, 22)) f(x|ak, BE) da
I w;k/g@o,ehe_hzm)f<x|a’f,5f’>dx

L5 (aer) — wg;’f/ (1 — g(eo, €1, -1, 2/2)) f(x|lak, 8E) da

OBkt [gleoser e w/2) S llad, 5 aw

Determine 7" — arg min ?,bf?‘(a})
—1=5=1 '

Set pj+ = py+~ + 1.

Set wp(a;) = p; /K, -1 =75 = 1.

192

BATCH ACCEPTANCE MODEL

Problem: deciding whether to accept a batch of items received over a period of time,
some of which could be faulty, thus entailing potential security and/or performance
problems

Type of issues arising in areas such as screening containers at international ports,
accepting batches of electronic messages or admitting packages of perishable prod-
ucts or electronic components, among others

Consider different scenarios for a batch with m items in a period;

— Loss depending if at least one faulty item is included (1 or m faulty items give
the same loss)

— Loss depending on the number of included faulty items among the m

Consider different Attacker’s strategies:
— &i. Attacker adds some, new faulty items
— &». Attacker modifies few original items converting them into faulty ones

— Ss. Attacker combines strategies S; and S»

193

BATCH ACCEPTANCE MODEL

e Problem: deciding whether to accept a batch of items received over a period of time,
some of which could be faulty, thus entailing potential security and/or performance
problems

e Type of issues arising in areas such as screening containers at international ports,
accepting batches of electronic messages or admitting packages of perishable prod-
ucts or electronic components, among others

e We first outline a non-adversarial hypothesis testing problem which we then modify
to include adversaries

194

BATCH ACCEPTANCE MODEL

Decision maker D (Defender) receives a batch with two types of items x
— 0 (acceptable items)

— 1 (faulty items)
D needs to decide whether to accept (dp) or reject (d1) the batch

D observes the batch size, modelled by a Poisson distribution Po(\) over a unit
period (or a homogeneous Poisson process, HPP, of parameter)\)

Distribution on A as a consequence of past experience:
— Gamma prior Ga(a,b) on A

— r items arrived after ¢ periods =- posterior A|t,r ~ Ga(a + r,b + t)

A will have no impact when D observes the actual value of m

195

BATCH ACCEPTANCE MODEL

ltem acceptable with probability 6
Z designates item acceptability, s.t. z = 0 acceptable and z = 1 faulty
= pp(z=0|0) =0andpp(z=11) =1-0

Acceptability of an item independent of the arrival process = arrival of acceptable
items is HPP of parameter \@ (Coloring or Thinning Theorem)

Beta prior Be(a, 3) for 6

Suppose r received items with s acceptable (and » — s faulty)
= posterior 8|r,s ~ Be(aa + 5,8+ r — s)

To fix ideas, in a unit period we shall have
— Total number of items m|\ ~ Po(\)
— Total number of acceptable items x|\, 6 ~ Po(A0)

— (Conditional on m) total number of acceptable items x|m, 8 ~ Bin(m,)

196

BATCH ACCEPTANCE MODEL

Influence diagram for batch acceptance problem without adversaries

o -(2)
A
|
|

197

BATCH ACCEPTANCE MODEL

Scenario A: Winner takes it all

e Batch with m items in a period

e Allowing one faulty item is as bad as allowing several of them, because of the en-
tailed security or performance problems

e Loss function given by

Batch of m Items
All Acceptable Some Faulty

p =" p=1—-6" | Exp. Loss
D’s Accept, do 0 1 1—0m
Decision | Rpeiect, d; c 0 co™

198

BATCH ACCEPTANCE MODEL

Suppose batch size m known to Defender D = X not relevant

Expected losses of both decisions
Ip(do) = Eg[1 —0™] =1— Ey[0™]
Ip(di1) = Ey[cO™] = c Ey [0™]

Decision: accept the batch (dp) if and only if

Ey [0™] decreases as m increases =- threshold value m 4
= rejection of the batch (dy) if m > m4

m 4 recursively obtained for posterior Be(a + s, 8 + r — s) on 6 from

e a+ s+ k
Ey [0™] = kzola—l—ﬁ-l-r—l—k

199

BATCH ACCEPTANCE MODEL

Suppose batch size m unknown to Defender D, with distribution p(m|\), m € N

Expected losses of both decisions (now summing over all possible values of m)

Ip(do) =1 — Ey (Ex (Xp_o 0™p(m|N)))
Ip(d1) = cEg (Ex (Y pm_q 0™p(m|N)))

Decision: accept the batch (dp) if and only if

£ (B (S o)) > 2

m=0

If p(m|A) Poisson, then accept the batch (dp) if and only if

(5 () >

200

BATCH ACCEPTANCE MODEL

e Gamma distribution Ga(a, p) over A and Beta distribution Be(a, 3) over 6

B\ (eX0-1) :/oo ~A1-6) P p* A Llo=PAg) = p?
PN = r(a) b+ 1-0)"
(B (X0-1) — p®
o(Ex(e) 9((p+1—9)“)
_ /1 A ¢ Sl Dy
o w+1-0) B(a,p)
0
= 0° (1 —0) (1 — ——)""db
(p+1)“B(a,6)/ (==
— (pil) 5 1(aaa+5—)
p* . 1 1
e —- accept the batch when o+ 1)a2F1(a,oz,a—|—B,p+ 1) > i

201

Scenario B: Each fault counts

BATCH ACCEPTANCE MODEL

e Batch with m items in a period

e Loss depending on the number of included faulty items

e Loss function given by

Batch of m Items

All Acceptable x Acceptable
p=0m" p= (ZL) 0* (1 —6)™* | Exp. Loss
D’s Accept, do 0 (m—x)c mdc (1 —26)
Decision | geiect, d; c 0 co™

202

BATCH ACCEPTANCE MODEL

Suppose batch size m known to Defender D = X not relevant

Expected losses of both decisions
Ip(do) = Ep[mc (1 —0)] =mc (1 - Ey[6])
Ip(di1) = Ey[cO™] = c Ey [0™]

Decision: accept the batch (dp) if and only if

md (1 - B <cm] = P a g

Ey [0™] decreases as m increases = threshold value mp =- rejection of the batch
(d1) if m > mp

mp recursively obtained for posterior Be(a + s,8 + r — s) on 6 as the smallest
integer satisfying

Ey [0™] <5’ B4+r—s
m — ca+B+r

203

ADVERSARIAL BATCH ACCEPTANCE MODEL

Attacker might alter the batch X to Y and, thus, perturb the data flow process to
confound the Defender and reach some objectives

Batch of size m, with m known by Attacker A
Attacker A might add items to get a final batch of size n
Defender D observes n before making her decision

Gain bigger for A if D accepts one of A’s faulty items rather than a faulty item from
another source

204

ADVERSARIAL BATCH ACCEPTANCE MODEL

\ 1
\ 1
\ /
\ /
\ /
\ /
\ /
\ /
~ s
~ - _ -~

205

ADVERSARIAL BATCH ACCEPTANCE MODEL

We study three possible attack strategies, identifying
e Attacker’s decision variables
e how the item arrival process changes
e Attacker’s loss function
e how to solve the problem
The strategies are:
e Si. Attacker adds some, new faulty items
o So. Attacker modifies few original items converting them into faulty ones

e Ss3. Attacker combines strategies S; and S»

206

ADVERSARIAL BATCH ACCEPTANCE MODEL

e n: number of items in a batch observed by Defender D
e x: acceptable items in the batch
e m — x: original faulty items (O-faults)

e n — m: faulty items produced by the Attacker A (A-faults)

(a) Defender’s problem (b) Attacker’s problem

207

ADVERSARIAL BATCH ACCEPTANCE MODEL

S1. Attacker adds y; new faulty items

e m + y; data received by Defender include

— x acceptable items

- m — x O-faults

— y1 A-faults

e Attacker needs to decide y1, which is random to Defender

e Suppose first that Defender knows pp(y1|m), distribution of Y1 |m

e Loss structure for Defender

Final Batch of n Items

All Acceptable Some Faulty

p=aq(n]A) p=1-q(n|A) | Exp.Loss
D’s Accept, do 0 1 1 —qi(n|N)
Decision Reject, d1 c 0 cqi(n|A)

208

ADVERSARIAL BATCH ACCEPTANCE MODEL

n=m-+y

Probability of having a final batch of n items reflects all possible initial sizes of the
batch and included faulty items, not just m and y1, respectively:

p1(n|]A) = Y pp(m|A) pp(y1 = n —m|m)

m=0

Probability that all items are acceptable (i.e., xt = m = n and y; = 0)

po(m = n|A) pp(y1 = Olm = n)

97’1,
p1(n|A)

q1(n|A) =

A relevant here since it provides information on m

209

ADVERSARIAL BATCH ACCEPTANCE MODE

Final Batch of n Items

All Acceptable Some Faulty

p=q(n|A) p=1-q(n/A) | Exp.Loss
D’s Accept, do 0 1 1 —qi(n|N)
Decision Reject, d; c 0 cqi(n|A)

e Expected losses of both decisions
Ip(do) =1 — Ey [E) [q1(n|N)]]

Ip(d1) = c Eg [E) [q1(n|N)]]

e Decision: accept the batch (dp) if and only if
1

155 (B3 [(W) > =

e Decision obtained through simulation

210

ADVERSARIAL BATCH ACCEPTANCE MODE

pp(y1|lm) (and thus ¢q1(n|A)) unknown to Defender D = use ARA
x € {0,1,...,m} acceptable items

y1 € {0,1,...} added A-faults

h unitary gain (for A) due to each O-fault

g unitary gain (for A) due to each A-fault

f unitary cost (for A) for adding each A-fault

Attacker A’s loss function, depending on batch composition and decision by D

Final Batch Composition
Acceptable O-Fault A-Fault

x m —x Y1
D’s Accept, dg 0 —h f—g
Decision RejeCt, dq 0 0 f

211

ADVERSARIAL BATCH ACCEPTANCE MODE

Final Batch Composition

Acceptable O-Fault A-Fault
X m — X Y1
D’s Accept, dg o) —h f—g
Decision | peiact, d; 0 0 f

e Atitacker A’s losses associated to Defender D’s decisions when A chooses y1
la(do,y1,2) = —h(m—z) + (f —g)n

laldi,y1) = fu

212

ADVERSARIAL BATCH ACCEPTANCE MODE

o Losses: l4(do,y1,2) = —h(m —z) + (f —g)yrand l4(d1,y1) = fuy1

e Problem faced by A: choose y1 to minimise expected loss for original batch size m
Ya(yilm) = pa(do|lm + yl)/ (Z palz|m, 0) la(do, y1, w)) pa(0)do
=0

+ (1 — paldolm + y1)) la(d1, y1)

= y1 (f —gpa(do|lm + y1))

~ hpa(dolm+1) [(Z pa(alm, 6) (m — a:>> pa(6) db,
=0

e pa(dolm + y1) reflects A’s beliefs about D’s decision dp to accept the batch given
that she knows the batch sizeisn = m + y1

213

ADVERSARIAL BATCH ACCEPTANCE MODE

Defender does not know Attacker’s probabilities and parameters of his loss function
= (F,G, H, Ps(do|n), P4(8), P4a(x|m,0)) random quantities

Look for random optimal attack Y;"(m) defined through

y1 (F' — G Pa(dolm + y1))

(

arg min < m
7 — H Pa(do|m + 1) / (Z Pa(z|m,0) (m — :c>> P4(9) d6
=0

\

Draw from random quantities and get sample {Y7" (m)}_, of size K from Y;*(m)

Estimate pp(y1|m) = P(yj(m) = y1) = #{Y},(m) = y1}/K
= get the optimal amount of added faulty items (e.g. from the mode)

214

ADVERSARIAL BATCH ACCEPTANCE MODE

Typical assumptions about Attacker’s random utilities and probabilities

e Gains and costs uniformly distributed:

- F~U(f1, f2)
- G ~U(g1,92)
— H ~U(h1,h2)

e P4(x|m,0) Binomial distribution Bin(m, @) (i.e. not a random distribution)

e P,(6) from a Dirichlet process with Beta distribution Be(a + s, 8 + r» — s) as base
parameter and concentration parameter p

e P,(dp|n) modelled through a uniform distribution, although this might require further
recursion if deeper strategic thinking is considered

215

ADVERSARIAL BATCH ACCEPTANCE MODE

e Other two strategies:
— &>, Attacker modifies few original items converting them into faulty ones
— S3. Attacker modifies few original items converting them into faulty ones and
adds some new ones

e Very similar approach: not presented here except for the Attacker A’s loss function,
depending on batch composition and decision by D

216

ADVERSARIAL BATCH ACCEPTANCE MODE

So. Attacker modifies few original items converting them into faulty ones

e h unitary gain (for A) due to each O-fault

e ¢ unitary gain (for A) due to each A-fault

e ¢ unitary cost (for A) for changing any item to make it faulty

Final Batch Composition

Acceptable O-Fault A-Fault

Xr — yg m — I — y% Y2
D’s Accept, dg 0 —h e—g
Decision Reject, d; 0 0] &

217

ADVERSARIAL BATCH ACCEPTANCE MODE

S3. Attacker modifies few original items converting them into faulty ones and adds some
new ones

e A unitary gain (for A) due to each O-fault
e ¢ unitary gain (for A) due to each A-fault
e e unitary cost (for A) for changing any item to make it faulty

e f unitary cost (for A) for adding each A-fault

Final Batch Composition
Acceptable O-Fault A-Fault
Injected Modified
T yg m-x- y% Y1 Yo
D’s Accept, do 0 _h Fp .
Decision Reject, ds 0 -) e

218

DISCUSSION

New ARA approach to dealing with the AHT problem

Symmetric losses and strong common knowledge assumptions typical of non-cooperative
game theory have been avoided

Multiple Attackers and/or multiple Defenders cases in the AHT problem are also of
interest

— need to differentiate when Attackers are completely independent or totally coor-
dinated or are such that their attacks influence somehow each other

— possibility of several Defenders, possibly cooperating but with different observa-
tions of the data flow

New strategies, e.g. Attacker could add (apparently) acceptable items to confound
the Defender

Possible application in adversarial signal processing, such as in Electronic Warfare
where pulse/signal environment is generally very complex with many different radars
transmitting simultaneously and signals possibly jammed by hostile radars

219

ACCEPTANCE SAMPLING

Work stemming from Lindley and Singpurwalla (1991)

Manufacturer M (she) is trying to sell a batch of items to a consumer C' (he) who
may either accept (.A) or reject (R) the batch provided by M

C’s decision depends on the evidence provided by M to C, based on a sample from
an inspection that M may perform

The decision M faces is whether to offer a sample to C and, if so, the size of such
sample

Both M and C' are assumed to be expected utility maximisers

Lindley and Singpurwalla assume that M, who decides before C, knows C’s pref-
erences and beliefs, as well as they share other relevant distributions, a too strong
common knowledge assumption

ARA allows us to overcome such issue (for Bernoulli acceptance sampling problem)

Addressed also a life testing problem

220

ACCEPTANCE SAMPLING: GAME THEORY

Sequential problem

e M decides the sample size n to offer to C' (= C knows n)

e (' has available
— pc(0), i.e., beliefs about the product quality 6

— pc(d|,n), i.e., beliefs about the experiment result d (number of defective items)
given 6 and decision n of M

— uc(c, 0), i.e., utility function based on decision c: accept (A) or reject (R) the
batch

221

ACCEPTANCE SAMPLING: GAME THEORY

e (' computes for each d and n
— Posterior distribution po(0|d, n) < pc(0)pc(d|6,n)
— Expected utility 1c(d, n,c) = [uc(c,0)pc(8]d,n)do
— Optimal decision ¢, given d and n:

c*(d,n) = arg max vc(d,n,c)
ce{ AR}

e All the above known by M who switches to her problem

222

ACCEPTANCE SAMPLING: GAME THEORY

M knows pc(0|d, n), ¥o(d,n,c) and ¢*(d,n) for each d and n

e M has available
— pum(0), i.e., beliefs about the product quality 6

- pu(d|0,n), i.e., beliefs about the experiment result d (humber of defective items)
given 6 and decision n of M

— upn(c, 0), i.e., utility function based on decision c: accept (A) or reject (R) the
batch

223

ACCEPTANCE SAMPLING: GAME THEORY

e M computes for each d and n

— Yy(n,d,0) = upy(c*(d,n),n,0),i.e., utility based on C’s decision (known un-
der the common knowledge assumption)

— Yu(n,0) = [Yu(n,d,0)pr(d|f,n) dd, i.e., expected utility (w.r.t. d)

— Yu(n) = [a(n, 0)pa(0) db, i.e., expected utility (w.r.t. 6)
— n* = arg maxyys(n), i.e. optimal decision by M

224

ACCEPTANCE SAMPLING: ARA

pu(0), par(d|0,n) and uy(c, n, 0) available as before

Earlier ¢*(d,n) was known but now py;(c|d,n) is needed (and its computation re-
quires thinking about C’s behaviour)

= Need to compute ¥y, (n,d,) = ZCQ{A,R} upr(e,n, 0)prr(cld, n) to get rid of ¢
pc(0), pc(d|8,n), and uc(c, #) unknown to M (no common knowledge)

=- random utilities and probabilities generated from F' = (U (¢, 0), Pc(0), Po(d|0,n))
Computation of random functional W (d, n,c) = [Uc(c, 0) Pc(8) Po(d|9,n)do

Computation of the random optimal alternative, given d and n:

C*(d,n) = argmax V5(d,n,c)
ce{ AR}

=- empirical distribution of C*(d, n) to estimate py;(c|d, n)

225

BERNOULLI ACCEPTANCE SAMPLING

The manufacturer’s viewpoint

Sample of size n offered by manufacturer possibly defective with probability 6

Sampling model binomial for d defective items with p,,(d|0,n) ~ Bin(n, @)

6 with a beta distribution py,(8) ~ Be(B1, B2)

Utility function u,/(c, n, 0) as in Lindley and Singpurwalla (1991):
- ’LLM(.A, n, (9) == bl —|— b29 —|— b4n,
— upy(R,n,0) = bz 4+ ban

— ba unit cost of providing each sample unit

— by penalty for defectiveness; the higher 6, the worse the corresponding cost
— b1 > b3: preference for accepted items rather than rejected

— b3z > b1 + bo: preference for rejection rather than acceptance of very low quality
lot (for reputation)

226

BERNOULLI ACCEPTANCE SAMPLING

Assumptions on C

e Same sampling model binomial for d defective items with py,(d|0,n) ~ Bin(n,0)

e Random distribution P-(8) given by
— Beta distribution p.(0) ~ Be(a1, as)
— Uniform distributions a1 ~ U € [a11,a12], and ar ~ U € [ar1, axo]
— Compare with Lindley and Singpurwalla (1991) who considered p.(6) ~ Be(a1, asz),

with known «; and a»

e Random utility Us(c, 6), similar to Lindley and Singpurwalla (1991):
- uc(A,0) = ar + asb,
— uc(R,0) = as,

— wherea; > az > a1 +a>»andar < 0

227

BERNOULLI ACCEPTANCE SAMPLING

An example (values of the parameters omitted)

n=20 1 2 3 4 5 6 7
pu(Ald,n) d=0 X 0.4 049 055 0.61 065 0.68 0.71
d=1 X 0.22 0.34 042 0.49 0.54 058 0.62
d=2 X X 0.19 0.29 037 0.44 0.49 0.53
d=3 X X X 0.16 0.26 033 0.4 0.45
X X X X 0.14 0.23 0.3 0.36

Acceptance probabilities for various manufacturer decisions and experimental results

228

BERNOULLI ACCEPTANCE SAMPLING

n=1 2 3 4 5 6
Yy(n) 425 4325 4374 4.408 4.43 4.444
7 8 9 10 11 12

Dy (n) 4.453 4.456 4.457 4.456 4.451 4.444

Expected utilities of various manufacturer decisions (n = 9 optimal decision)
229

CLASSIFICATION

Classification: widely used supervised learning method, applied, e.g., in computer
vision, genomics, credit scoring and spam detection

Currently, a major research area in Statistics and Machine Learning (ML)
Most efforts focused on obtaining more accurate algorithms

Less attention for a relevant aspect: presence of adversaries manipulating data to
deceive the classifier in order to obtain a benefit (e.g. credentials of bank account)

Example: Fraud detection
— ML algorithms developed for detection =- fraudsters learn how to evade them

— Detection more likely for huge transactions = smaller ones more frequently

No common knowledge = Adversarial Risk Analysis (ARA)

230

ADVERSARIAL HYPOTHESIS TESTING (AHT)

Use concepts from Adversarial Risk Analysis (ARA)

Agent (Defender D) needs to ascertain which of several hypotheses holds, based on
observations from a source

Another agent (Attacker A) alters the observations to induce the Defender to make
a wrong decision (and get a benefit)

AHT problem studied from the Defender’s perspective
Lack of common knowledge about decision strategies

Defender needs to forecast the Attacker’s decision, simulating from the guess about
Attacker’s decision making problem (based on Defender’s decision problem)

231

ADVERSARIAL HYPOTHESIS TESTING

Test of two simple hypotheses: © = {6p, 01}

Observation = generated according to a model depending on 6

x altered to y by A’s action a

y observed by D = D’s decision d on 6 based on y, without observing x
Depending on d and actual 8 =- losses (utilities) for both agents

Efforts by A in minimising the loss

Support for D in choosing 8 to minimise the loss

232

BINARY CLASSIFICATION

Classifier C receives two types of objects: malicious (y = +) or innocent (y = —)
Objects have features x whose distribution depends on their type y

Classification problems broken down into two separate stages:
— inference about pc(y|x), C’s beliefs about type given features

— decision about class assignment y¢, based on po(y|x) and utility ue(yo, v)
Node: decision (square), uncertainty (circle), deterministic (double), utility (hex.)

Arrow: conditional relation (solid), information available at decision time (dashed)

233

ADVERSARIAL CLASSIFICATION

Adversary A chooses attack a s.t. actual — 2’ = a(xz) observed by C

A attacks only for malicious instances (y = +)

Nodes in bi-agent influence diagram: grey (A), white (C), striped (both A and C)
Decisions: attack a by A and classification yo by C

Utilities: uc(yc, y) for C and ua(yc,y, a) for A

234

CLASSIFIER PROBLEM

Find class c¢(z’) = argmax E uc(yo, v)po(ylz')
Ye
ye{+,—}

(divide by pe(y)) = argmax [uo<yo, pe(@|-)pe(=)

Yc

+ uc(ye, Hpo(+) > pe(awswlz, +)pc(z]|+)

Expected utility maximisation TEX!

A(x): set of possible attacks for actual x

X'={x :a(x) = 2’ forsome a € A(x)}: x’s potentially leading to observed '
pc(y): beliefs about the class distribution

pc(x|y): beliefs about feature distribution given the class (under no attacks)
uc(yc, y): utility in classifying yo with actual y

pc(alz, y): beliefs about A’s action, given x and y (Think of A’s behaviour!)

235

ATTACKER PROBLEM

e Find optimal attack

o*(z,y) = argmax / [uA<+,+,a>p+uA<—,+,a> (1=)| Fa(pla(e))dp

a

= argmax [uA(—I_? +7 CL) - UA(_a +7 CL)] pf(x) + UA(_a +7 CL)

e A: modify x so that C classifies malicious instances as innocent (A’s maximum
expected utility)

e A: modify only malicious instances, i.e. y = -+, and not innocent, i.e. y = —
e (s decision: uncertain for A

e us(yc,y,a): utility for A when C says y¢, actual label is y and the attack is a
e pa(c(x)|x’): A’s beliefs about the classification result when C observes z’

o p = pa(cla(z)) = +|a(x)): A’s beliefs about C classifying as malicious after
observing 2’ = a(x)

e Uncertainty on p modelled via density fa(p|la(x)) with expectation pf(x).

236

CLASSIFIER PROBLEM
Find a*(x,y) = arg max, [ua(+, +,a) — ua(—, +, a)] pf(x) + ua(—,+,a)
C does not know A’s utilities w4 and probabilities pf(x)
C’s uncertainty modelled through random utility U4 and random expectation P} ()
Solve for the random optimal attack, optimising the random expected utility
A*(z,+) = arg max, ([UA(-I-, +,a) = Ua(—,+,a)] Pir,y + Ua(— +,a)>
= pc(az—e|z, +) = Pr(A*(xz,+) = as—), assuming a discrete set of attacks

Approximation through simulation of K samples (U (yc, +, a), P’y e)) from random
utilities and probabilities

= Aj(z,+) = argmax, (Uk (4,4, 0) = US(=, +,)] P 4+ Uk (- +,a>)

Estimation: pc(az—qa |z, +) = #{A(z,+) = arso}/K

237

RANDOM UTILITY

Random utility U4 (yc, 4+, a) includes two components
— A’s gain from C’s decision

— random cost B of implementing an attack
Y,y gain when C decides yc with y actual label
~Y44 ~ Ga(aa, B1) with expected gain a1 /81 = —d for A and variance a1 /32
Y_4+ ~ Ga(az, B2) with expected gain az/B> = e for A, and variance ax /33
Yy =Y__ = Jo, Dirac at 0: no gain for A from innocent instances
= A’s gain (Y., — B)

If A risk prone = Ux(yc,y,a) = exp(p (Yyy — B)) with random risk proneness
coefficient p ~ Ula1,as], a1 > 0O

238

RANDOM PROBABILITY

P;%x), A’s (random) expected probability that C classifies as malicious for ' = a(x)

C guesses A’s beliefs about C’s classification when observing =/ = delicate
Hierarchy of decisions: A should know what C does when knowing what A does ...

Probabilities to be specified at each stage until no more available information
= non-informative distribution at that stage

Heuristic at first stage based on Prqo(c(x’) = +|x’) = r (C classifies as malicious
observing x’), with some uncertainty around it

= Pﬁx) ~ Be(d1,82), with mean 61 /(81 + J2) = r and adequate variance

In general, given observed x’, consider all instances leading to it
— p1: proportion of instances originally malicious

— po: proportion of instance originally innocent

- = r =p1/(p1 + p2)

239

SPAM DETECTION

m emails as bag-of-words: binary features about presence (1) or not (0) of n words
Label indicates whether the message is spam (+) or not (—)

Email as n-dimensional vector x = (&1, x>, .., x,) of 0’s or 1’s, with label y

Only word insertion attacks = O’s replaced by 1’s

Interest in insertion of one word at most

I(x): set of indices s.t. z; = 0inz = A(x) = {ao,a;; Vi € I(x)} set of possible
attacks with identity ag and a; transforming i-th 0 into 1

J(z'): set of indices with value 1 in z’ received by C = X" = {2/, 2;Vj € J(z')}
and z’; message potentially leading to ', with j-th 1 in 2’ replaced with 0

240

SPAM DETECTION

uc(yc,y) standard

pc(y) and po(x|y) standard if considering only exploratory attacks and using
generative classifier to estimate them

Strategic component for po(a.— |z, y) and use of ARA to approximate it
Adversary’s random utilities obtained as before

Beta distribution for P;%x) with adequate variance and mean r,

— qo = pc(x’'|—)pc(—): original label — left unchanged by A
- q; = pc(z|+)pc(+),Vj € J(a'): original label + changed by A
- gnt+1 = po(&'|+)pc(+): original label + left unchanged by A

R — ZZ’EJ[a(:I:)] ¢ + qn+1
qo + ZiEJ[a(x)] g + dn+1

241

SPAM DETECTION

Spambase Data Set from UCI Machine Learning repository
— 4601 emails, out of which 1813 are spam
— 54 relevant words for each email = 54 dimensional vector z of 0’s and 1’s

— data randomly split into training (75%) and test (25%) sets, with 100 repetitions
Training not affected by attacks = pc-(y) and po(x|y) from Naive Bayes classifier

Simulations (sample size 1000) with 4 utilities for C' and different variances for ran-
dom expected probability P;%w) (increasing percentages k& of maximum value)

Comparison between ACRA and Naive Bayes: accuracy, utility, false positive (FPR)
and false negative rates

ACRA more robust w.r.t. attacks, identifying more attacked spam emails, even for
larger k, i.e. variance, worsening the performance

ACRA = lower FPR, i.e. less non-spam are rejected as spam (more important than
accepting spam)

242

SPAM DETECTION

Checking utility robustness through 4 utilities for C:
— 0/1 Utility = 1 if correctly classified and 0 o.w.

— Three utilities taking values
x 1 if correctly classified

* -1 for spam classified as legit

x —2/ —5/ — 10 for legit classified as spam

Random utilities for A (m=mean, v=variance)

— —Us(4+,4+,a) ~ Ga(2500,0.002) = m = 5,v = 0.01

— Us(—,+,a) ~ Ga(2500,0.002) = m = 5,v = 0.01

= Ua(—,—,a) =Ua(+,—,a) = do
Random cost B = d(a) - «, with d(a) = # word changes and o« ~ U[0.4, 0.6]
Random risk proneness coefficient p ~ U[0.4, 0.6]

243

SPAM DETECTION

e Beta distribution for P4 | with mean r = Prc(c(a(z)) = +|a(x))

a(x)
— Concave to avoid malicious a(x) concentrated around 0 or 1
— = variance < A = min{[r?(1 —r)]/(1 4+ 7),[r(1 —=7)?]/(2—1)}

— Adjustable variance at kA with £ € {0.01,0.1,0.2,--- ,0.9}

e K = 1000 Monte Carlo sample size

244

0.93
0.92
0.91
0.90
0.89

Accuracy

0.80
0.75
0.70

—

0.85

SPAM DETECTION

0-1 Utility
NB-Plain —4— ACRA

0.65"

k(%)

Starting problem for C': find c(z’) = arg max,, Zye{—I—,—} uc(ye, y)pce(yl|x')

0/1 utility function, i.e. 1 for correctly classified instance and 0 otherwise

Naive Bayes: NB-Plain for original data and NB-Tainted for attacked data

k: percentage of maximum variance for Pc?(:c)

245

SPAM DETECTION

0-1 Utility

++ NB-Plain —%— ACRA -%-- NB-Tainted
0.08

IR L._% L
T

0.05

FPR

0.04

0.03

0.02

k(%)

Naive Bayes: NB-Plain and NB-Tainted behave similarly since A is not modifying
innocent instances

Increasing k£ (and variance for P;%x)) = increases FPR

Reducing FPR crucial in spam detection, as filtering out a non-spam is worse than
letting spam reach the user

246

DISCUSSION ABOUT ACRA

e So far ACRA tested with A’s distributions centered around the expected values of
C's, but it proves quite robust even when moving away
e Changing all words in the spam detection problem = 2™ possible attacks
— Ad hoc procedure, e.g., changing only one word and from 0 to 1
— Smaller sample size

— Approximations, parallelisation

e Further extensions
— From binary classification to multi-label (e.g. malware: trojan, adware, virus)
— From exploratory to poisoning attacks, i.e. attacks also during training
— Attacks not only on malicious instances but also on innocent ones

— From generative classifiers (P(X, Y)) to discriminative ones (P(Y|X = x))

247

DISCRIMINATIVE CLASSIFIERS

In the earlier approach (generative classifier) we supposed to know p(y) and p(z|y),
e.g. from a classifier applied to the training set

Here we suppose to know only p(y|xz) and address the problem of classifying an
instance when z’ is observed =- solve arg max,,, ¢ (yc) where

k

[X wtwemntle = a7 @) | pale)ds

y=1

Y(yc)

k

= S uye,w) [| pole = a @ ptelayie

y=1
p(y|z) is based on untainted x
X, the set of reasonable instances x leading to ' if attacked
Optimisation solved via Monte Carlo using sample {z,,}2_, from p(z|z’) but ...
... there is a problem: we do not know p(z|x") and we have to estimate it

248

AB-ACRA

Suppose p(x) unknown and p(z’|x) known as result of strategic thinking, as before,
about the possible attacks

Efficient approach to sample from p(z|x") making use of samples from p(z’|x)

Sample from p(z|x") < p(z’|z)p(x) for x and z’ discrete
— Proposal z from transition distribution g(z — %)

— Sampled &’ ~ p(X'| X = Z)

- = if 7 — 2 Wi il — i p(Z)q(Z—a,)
= accept z if ' = 2’ with probability o = min {1, p(wi)qm%)}

— Very slow convergence
Sample from p(z|x’) for x and z’ continuous
— ¥ and Z’ generated as above

— Based on Approximate Bayesian Computation (ABC) techniques, accept z if
o(Z',2") < e for a given distance ¢ and tolerance ¢

— For high dimensions, use summary statistics s to accept z if ¢(s(z’), s(z')) < e

249

CONCLUSIONS ABOUT ACRA

Here more emphasis on modelling and conceptual aspects whereas the papers con-
tains many details about algorithmic ones and comparisons with classical classifiers

Like in ABC, the choice of summary statistics in AB-ACRA might be critical

AB-ACRA and ACRA become computationally expensive for large scale problems
= differentiable classifiers as an alternative

Adaptive attackers can be dealt with changing random probability and random utility
accordingly

Here we have considered attacks to i.i.d. sequences but data could come, say, from
an autoregressive model

250

ADVERSARIAL SOFTWARE TESTING

Software subject to (possibly expensive and dangerous) failures in programming or
system design

= software must undergo rigorous testing, both during development and operation,
to verify its reliability

Optimal policies for software release = important issue in software engineering
Challenges due to several, often uncertain, complicating factors

Endogenous factors
— number of bugs in the software

— skill in detecting bugs

Exogenous factors
— release decisions made by competitors

— eventual purchasing decision by software buyers

251

ADVERSARIAL SOFTWARE TESTING

Monetary aspects
— costs related to time on test
— costs related to bugs discovering and their fixing during testing
— costs related to bugs discovering and their fixing after the release

— monetary gain for the software sale
Reputational aspects

Early software release = larger commercial advantage over competitors

Less intensely tested software =- possible lower quality = potential advantage to

competitors

252

ADVERSARIAL SOFTWARE TESTING

Singpurwalla and Wilson (2012): Review of software reliability and testing

Anand, Singh, Das (2015): evaluation of two types (simple and serious) failures in
successive versions of a software, during testing and operational phases

Wilson and O’Riordain (2018): optimal release policy of new versions of Mozilla
Firefox based on bug detection data

Saraf and Igbal (2019): software reliability model based on NHPP, performing fault
detection, observation and correction in two stages and multiple versions

Mishra, Kapur, Srivastava (2018): reliability growth of software over multiple versions

Kenett, Ruggeri, Faltin (2018): thorough review of analytic methods in systems and
software testing

Ay, Landon, Ruggeri, Soyer (2022): software testing with possible introduction of
bugs

253

ADVERSARIAL SOFTWARE TESTING

Ruggeri, Soyer (2018): overview of games and decision models for software testing

Forman, Singpurwalla (1977, 1979) and Okumoto, Goel (1979): introduction of
stopping time models to support software release decisions

Dalal, Mallows (1988): pioneer work on decision theoretic models for release

Morali, Soyer (2003): sequential Bayesian decision theoretic setup for developing
optimal stopping policies for software testing

Zeephongsekul, Chiera (1995): first game theoretic approach looking for optimal
release policies through Nash equilibrium

— Dohi, Teraoka, Osaki (2000): different approach since previous solution
restricted to particular case and computationally intractable

— Saito, Dohi (2022): uncovered faults in the earlier two papers showing the
existence of Nash equilibrium under some parametric conditions

254

ADVERSARIAL SOFTWARE TESTING

Overview of Zeephongsekul and Chiera (1995)
First work to consider also actions and costs of a competitor

Two competitors (¢ = 1, 2) produce software performing the same set of tasks and
with life cycle length non exceeding T’

Competitor i, i« = 1,2, decides to release the software at any time ¢ in [0, T] and
sells the product with probability A;(¢) to the only buyer (who buys from one
competitor at most)

A;(t), 1 = 1,2, continuously differentiable, concave and s.t. A;(0) = A;,(T) =0
with a uniqgue maximum at time »;

— Choice of A;(t) not only for mathematical convenience but also justified by
actual behaviour

— Success probability expected to be close to 0 both at the beginning and the end
of the life cycle [0, T'], because of initial poor reliability and final obsolescence,
respectively

255

ADVERSARIAL SOFTWARE TESTING

e Introduction of expected cost function ¢;(¢) incurred by player i in releasing the
software at time ¢

o ¢i(t) = crit + coim(t) + c3; (m(T) — m(t))

o = ¢;(t) convex function with minimum at +; s.t. = m,(v;) =

c1; cost of testing per unit time
co; cost of removing a fault during testing

c3; cost of removing a fault during operation, with c3; > cp; since fixing an error
is more expensive after release than before it

m(t) expected number of faults detected up to time ¢
increasing, concave and differentiable m(t), with m(0) = 0O

Ci1
(c3i — c2i)

e T is sufficiently large so that v, < T

256

ADVERSARIAL SOFTWARE TESTING

p; > 0: selling price of the software produced by player ¢

If player 1 releases software at time x and player 2 at time y = M;(x,y) is the
expected unit profit to player ¢, with

_ p1Ai(z) — c1(x) O0<z<y<T
Mi(x,y) = { p1(1 = As(y)Ai1(z) —ci(z) O0<y<az<T
Mo>(x,y) can be described similarly and M;(z,y) %= M>(x,y) in general

= optimal release policies among Nash equilibrium points in this non-zero sum
game (with concerns about the results as mentioned earlier)

The paper, and all game theoretic work in the field, entails common knowledge as-
sumptions, debatable in competitive business settings as in software development

=- Adversarial Risk Analysis =- Adversarial Software Testing

257

ADVERSARIAL SOFTWARE TESTING

Guevara, Pierce, Rios Insua, Ruggeri, Soyer (submitted)

Support for producer X against competitor Y, trying both to sell software to buyer Z
(purchasing from one producer at most)

X can release the software at any time = € [0, T]

In absence of competitors, X would succeed in selling the product at the price px
with probability Ax (x), with Ax(0) = Ax(T") = 0 (less restrictive than before)

Y releases at time y € [0, T'] independently, succeeding to sell at fixed price py with
probability Ay (y), with similar properties as Ax

Consider a stochastic number Nx (¢) of faults found until time ¢, instead of the
expected number mx (t) = E[Nx(t)]

t
Nx (t) NHPP with intensity Ax (¢) and mean value function mx (t) = / Ax (u)du
0

Similar definitions apply to Y

258

ADVERSARIAL SOFTWARE TESTING

Tri-agent influence diagram representing the basic problem

g = o

e Global perspective

Different colours for different agents

e Square nodes: Decisions by producers (X and Y') and buyer (2)

Circle nodes: Uncertain features of X (©x) and Y (©y), like number of bugs

Hexagonal nodes: Utilities Ux, Uy, U, for X, Y, Z

259

ADVERSARIAL SOFTWARE TESTING

Tri-agent influence diagram representing the basic problem

\

X

)

e Perspective from producer X, the one we are taking in the work

e Y'’s decision now as a circle since it is uncertain for X

260

ADVERSARIAL SOFTWARE TESTING

CX(t) = ci1xt + CQXNX(t) + c3x [NX(T) — NX(t)]
— c1; cost of testing per unit time
— cp; cost of removing a fault during testing

— c3; > cp; cost of removing a fault during operation
We assume that no new bugs are introduced during the debugging phase

We assume that fault arrivals can be described by the same process during
debugging and operational phase after the software has been released

There are other assumptions leading to further developments, e.g., price fixed in
advance, only two producers, only one buyer, fixed purchase probability

261

ADVERSARIAL SOFTWARE TESTING

X and Y release their software at times x and y, respectively (z # y a.s.)

X stops testing if the buyer does not purchase its software, either because it rejects
the product or because it has already bought it from Y

gx(z,vy) (random) gain of producer X given such release times
Start with x < y and rename gx as gx1
= gx1(z,y) = Ax(z) [px — ex(2)] — [1 — Ax(@)] [c1x + cox Nx ()]

First term: expected gain if Z buys X'’s software given by purchase probability at
time x times the difference between selling price and costs due to debugging until =
and fault removals after the release up to time T’

Second term: expected loss due to refusal by Z and costs incurred until release time

Note that gx1(x,y) does not depend on y

262

ADVERSARIAL SOFTWARE TESTING

Similarly, Y’s gain, for y < x, not dependent on z:

gy1(z,y) = Ay (y) [py — ey ()] — [1 — Ay (y)] [c1y ¥ + coy Ny (y)]

When x > y, the X's gain is renamed as gx»

gx2(z,y) = —Ay(y)[cixy + coxNx(y)] + [1 — Ay (y)]{Ax(x) [px — cx(x)] —
—[1 - Ax(z)] [cixz + cox Nx(z)]}

First term: Z buys Y'’s software and X stops debugging its own
Second and third term: like earlier, but after Z’s refusal of buying Y’s software

Similar result for Y wheny > «

263

ADVERSARIAL SOFTWARE TESTING

e Assuming risk neutrality = expected gain hx (x, y) replacing Nx (¢) with its
expectation, like for z < y

hxi(z,y) = Ax(z)[px — (cixz + coxmx(x) + cax [mx(T) — mx(x)])]
—[1 — Ax(2)] [cixz + coxmx(x)]

e As an anticipation of what is next, X can also consider Ay (y) as random and
compute its expectation when x > y

hxo(z,y) = —E(Ay(y))[cixy + coxmx(y)] + (1 — E(Ay(y))) x
X[[Ax(z)[px — (cixx + coxmx(z) + cax[mx(T) — mx(z)]] — [1 — Ax(z)] %

X[cixx + coxmx (x)]]]

e Similar results apply to Y

264

ADVERSARIAL SOFTWARE TESTING

mX (y): density modelling X'’s beliefs about Y'’s release decision being time y

Expected gain associated with release decision x
Mx(z) = [hx(z,y)m5 (@)dy = [T hxo(z, y)ms (v)dy + [hxi(z, y)ms (y)dy

Optimal release time for X: z* = arg maXg<,<r Mx(x)

Above arguments slightly modified in absence of risk neutrality, i.e., when consider-
ing a utility function ux

gx1(z,y) = Ax(z)xux(px—cx(x))+[1 — Ax(z)] xux(—(c1x(x)+caxNx(z)))

gx2(z,y) = Ay(y) X ux(—[cixy + coxNx(y)]) + [1 — Ay (y)] X
X {Ax(@)ux([px — cx(x)]) + [1 — Ax(z)] ux(— [cixx + cox Nx(x)]) }

265

ADVERSARIAL SOFTWARE TESTING

All the elements introduced above are standard in the decision analysis and software
reliability literature and practice, except for those entailing strategic thinking:

— Ay (y) (purchase probability of Y’s software)

— w5 (y) (X’s beliefs about Y releasing its product at time)

Need for procedures to facilitate their assessment, starting with =¥ ()
Look at Y’s perspective on product release

Remember that Y has a cost function cy(¢) and a purchase probability function
Ay (t) for a fixed price py, with similar properties and definitions than those of X

Presenting now an approach to obtain an estimate 75} (¢) of =¥ (¢) reflecting upon
the optimisation problem faced by Y

266

ADVERSARIAL SOFTWARE TESTING

e Suppose X has complete knowledge about Y’s behaviour, i.e., c1v, coy, c3y, py,
Ay (t), Ay (t) and 7% (¢) (which models Y'’s beliefs about X'’s release time)

e — X could guess Y'’s actual optimal release time y*, using the previous
computations by interchanging X and Y
e But we have uncertainty about Y'’s elements so that we

— model such uncertainty through probability measures M. (¢), C1y, Cay, Cay,

Py, Ay and Ny (t) over the space of suitable densities w¥.(¢), constants ciy,
coy, €3y, Py, functions Ay and processes Ny (t), respectively

— make a sufficiently large number of draws from these components, compute the
corresponding optimal release time y* for each draw, and estimate an empirical
distribution over y*, which will be considered as the estimate 7* ()

— = X will be able to compute its optimal release time x*

267

ADVERSARIAL SOFTWARE TESTING

e The random ingredients could be specified gathering all information available and
modelling with standard expert judgement

e Here we consider several heuristics based on adding some uncertainty to the
judgements concerning X

e Y'’s random beliefs about X’s decision M%.(¢)

— Transform the time interval [0, T'] into the unit interval via the transformation
t—t/T,0<t<T

— Consider suitable densities 7} (¢) in the space of all beta densities over [0, 1]
or a proper subset, if X feels capable of adding some constraints about their
parameters, e.g. by fixing lower and/or upper bounds over mean and/or variance
of the beta distributions

— Randomly generate densities from such class, e.g., drawing a uniform
distribution over both parameters of the beta distribution or its mean-variance
pair

268

ADVERSARIAL SOFTWARE TESTING

e Y’s random beliefs about X’s decision M3 (t)

Use distortion function as in Arias-Nicolas, Ruggeri and Suarez-Llorens (2016)

Start from an absolutely continuous (for simplicity) pdf 7x (¢) and its cdf Mx (%),
expressing X'’s opinion on Y'’s release time and build a random space of cdf’s
n¥ (¢) around it

Consider distortion functions h(t), i.e. non-decreasing functions such that
h:[0,1] — [0,1], A(0) =0,h(1) =1

Apply h(-) to Mx(t) and obtain random pdf’s M}, (t) = h(MNx(t)) and cdf’s
i (t) = h'(Nx(t))mx (t)

Consider a band around M (¢) taking one convex and one concave distortion
function to get, respectively, its lower and upper bounds

A useful choice for a distortion function is h(t) = t*, which is convex for
O < a < 1 and concave for a > 1

Randomness is induced by, say, considering that « follows a uniform distribution
on a certain interval

269

ADVERSARIAL SOFTWARE TESTING

e Uncertainty about Y’s costs

— Model X'’s uncertainty about c1y, coy and c3y considering independent
(Gaussian) distributions centered around the corresponding values c¢1 x, cox, c3x

— Alternatively, if X can provide upper and lower bounds for c¢1y, coy and
dy = c3y —coy, then independent shifted beta distributions could be considered

— The variances of those distributions will be determined by X depending on the
confidence about the chosen means

e Uncertainty about Y'’s price Py

— In absence of further information consider a (Gaussian) distribution with mean
px and variance o2 denoting the degree of uncertainty around px

e Uncertainty about Y’s purchase probability Ay (y)

— Transform Ax(x) — a [AX(a:)]b, with a € [0, 1] (decreasing effect) and
b € [0, 1] (increasing effect)

— a and b randomly generated to obtain values of Ay (y)

270

ADVERSARIAL SOFTWARE TESTING

e Uncertainty about Y’s fault discovery process Ny ()

Suppose X has chosen a functional form for Nx (¢) and estimated its
parameters and obtained an estimate m x (¢) for its mean value function

First alternative: generate values of the parameters of Ny (t) from distributions
centered around X'’s estimated parameters (e.g. posterior distributions)

Second alternative: Bayesian non-parametric approach with mean value
function as a random measure M, generated by a Gamma process, conjugate
w.r.t. the Poisson process (Lo, 1982)

Gamma process centered around mx (¢) so that at each interval [to,t1] the
mean value function is generated by a Gamma distribution with mean

mx (t1) — mx(to)

The variance of the Gamma distribution could determine how close the fault
discovery process Ny (t) isto Nx(t)

Further details can be found in Cavallo and Ruggeri (2001)

271

ADVERSARIAL SOFTWARE TESTING: EXAMPLE

Example based on Zeephongsekul and Chiera (1995)
Life cycle length T' = 2000 days

Cost parameters: c1x = 0.5, co0x = 1,c3x = 5
Selling price px = 5000

Purchase probability Ax(t) = 0.0002¢(10 — 0.005t)

Fault discovery process Nx(t): NHPP with mean value function mx(t) = at®
(power law process) and MLEs of parameters given by a = 0.256 and ¢ = 0.837,
from Zeephongsekul and Chiera (1995) and based on data from Okumoto (1979)

Cost function with utility function ux assumed to be the identity (= Risk neutrality)

272

ADVERSARIAL SOFTWARE TESTING: EXAMPLE

Cost parameters follow distributions centered around the cx values:
— c1y ~ N(0.5,0.02) = N(c1x, 0.02)
— coy ~ N(1,0.05) = N(exx,0.05)
— c3y ~ N(5,0.5) = N(c3x,0.5)

Selling price py ~ N (5000, 250) = N(px, 250)
Random purchase probability Ay (¢) ~ dAx(¢)?, with d ~ U(0,1) and b ~ U(0, 1)

The random fault discovery process Ny (t) is a NHPP with random mean value
function my (t) = at® witha ~ N(0.256,0.05) and ¢ ~ N(0.837,0.05)

Beliefs of Y over X'’s release time ¢ given by t/T ~ Be(a, o), with a ~ U (1, 3)
Y’s random cost function cy (t) = c1yt 4+ coy Ny (t) + c3y [Ny (T) — Ny (t)]
Deterministic utility function Uy : identity = risk neutrality

273

ADVERSARIAL SOFTWARE TESTING: EXAMPLE

e Forecasting Y'’s release decision
— Maximise the objective function My (y) = [hy (z,y) 7w (x)dx
— Fori=1,..,.K
+ Sample c1y, coy, cay, py, Ay, Ny, a (for 7%, i.e. Y’s beliefs on X’s release)
x @iven the sampled «;
- generate a sample z; ~ fe(a;,), 7 =1,...., N
-getz; =2 xT,5=1,..,N
+ Monte Carlo approximation M. (y) through
~ E;V:l hy (z5,9) = %[, o, hvalaj,y) + 30, ., hyi(z;, y)] = (omitted)
+ = find y = arg maxo< <7 My ()

— = Get approximate df M:¥(y) = card{y; : y; < y}/K

274

ADVERSARIAL SOFTWARE TESTING: EXAMPLE

e Deciding X'’s optimal release
— Find 2* = arg maxg<,<r Mx(x)
— Maximise the objective function Mx (z) = [hx(z,y)ms (y)dy
— Approximate df M5 (y) = card{y; : y; <y}/K

— Monte Carlo approximation through
LS hx(a,yp) = 2[5, hxa(a,y7) + 3,5, hxi(z, y7)] = (omitted)

275

ADVERSARIAL SOFTWARE TESTING: EXAMPLE

Density Plot of Optimal ¥ Decision Expected Gain of Company X
2500 4

0.0025
2000
0.0020 -
1500 4

0.0015 -
>

B

=
“ 1000 -
=l

[=]
0.0010 | & 500 1
w

0.0005
—500 A

0.0000 T T T T T T T T T T T T T T
0 200 400 600 800 1000 0 250 500 750 1000 1250 1500 1750 2000

Time Time

Be(a,) distribution (mean 0.5) on X’s release = guess 1000 = 0.5 x 2000

LEFT: Y’s optimal release time up to 800 days (out of 2000) with some incentive to
very early release but the optimal ones are between 300 and 700

RIGHT: bimodality in X’s optimal release, with two possible strategies, one before

Y’s release and one after it

X's optimal release occurs on day 483 for an expected gain of 2,442

276

ADVERSARIAL SOFTWARE TESTING: EXAMPLE

Density Plot of Optimal ¥ Decision Expected Gain of Company X

3000 4

0.0020 1 2500 4

2000 4
0.0015 -

1500 4

1000 +

Expected Gain

2 0.0010

500 4

0.0005 A

—500

0.0000 T T T T T T —1000 ~— T T T T T T T T
0 200 400 600 800 1000 1200 0 250 500 750 1000 1250 1500 1750 2000

Time Time

X thinks that Y thinks that X will release later

= Be(a,) on X'’s release replaced with Be(3a, o) = guess 1,500 = 0.75%2000

LEFT: Y’s optimal release up to 1200 days with some incentive to very early release
and optimal ones between 700 and 900 (compare with 300 and 700)

RIGHT: X’s optimal release is before Y’s one

X's optimal release on day 663 for an expected gain of 3,091 (earlier 483 and 2,442)

277

ADVERSARIAL SOFTWARE TESTING: EXAMPLE

Density Plot of Optimal Y Decision Expected Gain of Company X

0.0025 A
2500

2000

-, O
=

10001

Expected Gain

@
a

0.0010 500 -

0.0005 A
—500 A

0.0000

0 100 200 300 400 500 600 700 800 0 250 500 750 1000 1250 1500 1750 2000
Time Time

X thinks that Y thinks that X will release earlier
= Be(a, o) on X’s release replaced with Be(a, 3a) = guess 500 = 0.25 x 2000

LEFT: Y’s optimal release up to 800 days with some incentive to very early release
and high-risk early release between 200 and 500 (earlier 300 & 700 and 700 & 900)

RIGHT: X’s optimal release is well after the Y'’s high-risk one

X's optimal release on day 978 with expected gain of 2,619 (earlier 483 & 2,442 and
663 & 3,091)

278

ADVERSARIAL SOFTWARE TESTING: EXAMPLE

Density Plot of Optimal ¥ Decision Expected Utility of Company X
0.50

0.0020 0.25 1

0.00 4

0.0015 c
S —0.25 -

(U]

=l

2 —0.50 1

] 1

9 0.0010 g

& -0.75 4

—1.00 4
0.0005 4

—-1.25 9

—=1.50 1

T T T T T T T T T T T T T T

0 200 400 600 800 1000 0 250 500 750 1000 1250 1500 1750 2000
Time Time

0.0000

Risk averse X =- identity utility replaced with constant absolute risk averse (CARA)
model given by u(x) = 1 — exp(—px), with risk aversion parameter p = 0.001

LEFT: Y’s optimal release between 300 and 700 unchanged w.r.t. the first plot

RIGHT: Still bimodal distribution for X’s optimal release, but tendency to be more

conservative and wait more

X’s optimal release on day 1003 (483 under identity) with expected utility (no more
gain!) of 0.48

279

AST: CURRENT WORK

e Multiple producers

— Instead of z < y and x > y, consider order statistics and position X'’s release
time between x(;,_1y and x;4.1) for all i’s

— Similar formulas w.r.t. previous ones

e Multiple decision variables

— So far the Ax purchase probability has been considered only as a function of the
release time but it should depend also on other variables, like price and quality
of the software

e Multiple buyers

280

REFERENCES

Banks, D., Rios, J., and Rios Insua, D. (2015). Adversarial Risk Analysis (Vol. 343).
CRC Press.

Rios Insua, D., Rios, J. and Banks, D. (2009). Adversarial risk analysis. Journal of
the American Statistical Association, 104, 841-854.

Gonzalez-Ortega, J., Soyer, R., Rios Insua, D. and Ruggeri, F. (2021), An Adversar-
ial Risk Analysis Framework for Batch Acceptance Problem. Decision Analysis, 18,
25-40.

Rios Insua, D., Ruggeri, F., Soyer, R. and Rasines, D.G. (2018), Adversarial issues
in reliability. European Journal of Operational Research, 266, 1113-1119.

Rios Insua, D., Ruggeri, F., Soyer, R. and Wilson S. (2020), Advances in Bayesian
Decision Making in Reliability. European Journal of Operational Research, 282, 1-
18.

281

REFERENCES

Gonzalez-Ortega, J., Rios Insua, D., Ruggeri, F. and Soyer, R. (2021), Hypothesis
Testing in Presence of Adversaries. The American Statistician, 75, 31-40.

Naveiro, R., Redondo, A., Rios Insua, D. and Ruggeri, F. (2019), Adversarial classifi-
cation: An adversarial risk analysis approach. International Journal of Approximate
Reasoning, 113, 133-148.

Gallego, V., Naveiro, R., Redondo, A., Rios Insua, D. and Ruggeri, F., Protecting
Classifiers From Attacks. Under revision for Statistical Science.

Soyer, R., Ruggeri, F., Rios Insua, D., Pierce, C. and Guevara, C., An adversarial
risk analysis framework for software release decision support. Submitted.

Rios Insua, D., Ruggeri, F., Alfaro, C. and Gomez, J. (2016), Robustness for Adver-
sarial Risk Analysis. In Robustness Analysis in Decision Aiding, Optimization and
Analytics, M. Doumpos, C. Zopounidis and E. Grigoroudis Eds., Springer, 19-58.

282

REFERENCES

Arias, P., Ruggeri, F. and Suarez-Llorens, A. (2016), New classes of priors based on
stochastic orders and distortion functions. Bayesian Analysis, 11, 1107-1136.

Ruggeri, F., Sanchez-Sanchez, M., Sordo, M.A. and Suarez-Llorens, A. (2020), On
a new class of multivariate prior distributions: theory and application in reliability.
Bayesian Analysis, 16, 31-60.

Rios Insua, D. and Ruggeri, F. Eds. (2000), Robust Bayesian Analysis, Springer,
New York, USA.

Cavallo, D. and Ruggeri, F. (2001), Bayesian models for failures in a gas network,
Safety and Reliability, E. Zio, M. Demichela and N. Piccinini, Eds. , pp. 1963-1970,
Politecnico di Torino Editore.

283

