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1 Integral transforms
Fix H ∈ Dal (a Hamiltonian). Let f : R → R, t 7→ f(t), be a real piecewise-
continuous function which decays faster than any power of t. For any quasi-local
observable a we can define a new observable

IH,f (a) =
∫ ∞

−∞
f(t)αH(t)(a)dt. (1)

It is easy to see that if a traceless, so is IH,f (a), and that if a is anti-self-adjoint,
so is IH,f (a).

Lemma 1. If a ∈ Aaℓ, then IH,f (a) ∈ Aaℓ.

Sketch of a proof: pick an r > 0 and let T = r/C for some constant C. Since
f(t) decays faster than any power, it is sufficient to check that∫ T

−T
f(t)αH(t)(a)dt

can be approximated by a local observable with O(r−∞) accuracy. By Lieb-
Robinson bound, if we choose C sufficiently large, for any t ∈ [−T, T ] αH(t)(a)
has tails outside a ball of radius r which are of order O(r−∞). Therefore the
integral over [−T, T ] also has tails of the same order.

Further, the map IH,f continuous. More precisely, for any a-localized A ∈ dal
we have

∥IH,f (A)∥j,α ≤ Cα∥A∥j,α, α ∈ N0 (2)

where Cα > 0 depends on H, f and a. This estimate implies that IH,f is
continuous but is stronger than continuity because Cα does not depend on j.
In other words, the map IH,f is equicontinuous w. r. to a family of metrics
on dal labeled by j. This ensures that IH,f extend to continuous chain maps
IH,f : C• → C•. On k-chains with k ≥ 0 it is defined by

IH,f (a)j0...jk
= IH,f (aj0...jk

), (3)
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while on derivations it is defined by

IH,f (A)Y =
∑
Z

(
IH,f (AZ)

)Y
. (4)

If αH(t) preserves a state ψ, then IH,f preserves the subspace dψal of anti-self-
adjoint traceless observables not exciting ψ and the subcomplex Cψ• . Indeed, for
any a, b ∈ dal we have

⟨[IH,f (a), b]⟩ψ =
∫ +∞

−∞
f(t)⟨[a, αH(−t)(b)]⟩ψdt. (5)

Therefore if a ∈ dψal, then IH,f (a) ∈ dψal.
Finally, also have the following easy result:

IH,f ([H, a]) = −IH, df
dt

(a). (6)

2 Integral transforms in the presence of an en-
ergy gap

Now suppose ψ is a gapped ground state of H with gap ≥ ∆ > 0. Then one
can choose f so that IH,f (a) does not excite ψ. Namely, we let f(t) = w∆(t)
where w∆ is an even continuous function whose Fourier transform is supported
on some interval contained in (−∆,∆). It will be convenient to normalize w∆
so that

∫
w∆(t)dt = 1.

Lemma 2. For any a ∈ dal and b ∈ dal we have

⟨IH,w∆(a)b⟩ψ = ⟨IH,w∆(a)⟩ψ⟨b⟩ψ, (7)

and thus IH,w∆(A) ∈ dψal and IH,w∆(N•) ⊆ N
ψ
• .

Proof. Let π be the GNS representation corresponding to ψ and dPω, ω ∈ R, be
the projection-valued measure on R corresponding to the self-adjoint operator
Ĥ. Then

⟨IH,w∆(a)b⟩ψ =
∫ +∞

−∞
dω

∫ +∞

−∞
dtw∆(t)e−iωt⟨0|π(a)dPωπ(b)|0⟩ =

=
∫ +∆′

−∆′
dω

∫ +∞

−∞
dtw∆(t)e−iωt⟨0|π(a)dPωπ(b)|0⟩ =

=
∫ +∞

−∞
dtw∆(t)⟨a⟩ψ⟨b⟩ψ = ⟨IH,w∆(a)⟩ψ⟨b⟩ψ. (8)
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The proof is just a formalization of the observation that IH,w∆ projects out
all matrix elements of a which separate states with energy ≥ ∆ and in particular
project out matrix elements of a between the ground state and excited states.

Next, let us show that if ψ is a gapped ground state for H, then one can
choose the ”energy density” h, ∂h = H, in such a way that h does not excite ψ.

Lemma 3. For any H ∈ Dal with a gapped ground state ψ there exists hψ ∈
C0(dψal) such that H = ∂hψ.

Proof. Suppose H = ∂h for some h ∈ C0(dal). Let hψ = IH,w∆(h). Then for any
a ∈ Aaℓ we have

∂hψ(a) =
∫ +∞

−∞
w∆(t)αH(t)H(αH(−t)(a))dt =

=
∫ +∞

−∞
w∆(t)H(a)dt = H(a). (9)

Remark 1. The construction of hψ by means of the map IH,w∆ is due to A.
Kitaev (”Anyons in an exactly solved model”).

Another useful choice of f is as follows. Let w∆(t) be as above. Let u∆ be
an odd piecewise-continuous function which decays faster than any power of t
and satisfies

du∆(t)
dt

= w∆(t) − δ(t). (10)

The Dirac δ on the r.h.s. is needed because
∫
w∆(t)dt = 1, while the integral of

the l.h.s. vanishes. Note that the Fourier transform of u(t) satisfies

ũ∆(E) = 1
iE

(11)

for |E| ≥ ∆. So the matrix elements of IH,u∆(a) between states separated by
energy E ≥ ∆ are simply the matrix elements of a times (iE)−1.

Theorem 1. Let ψ be a gapped state. For any Q ∈ Dψ
al there exists qψ ∈ Cψ1

such that ∂qψ = Q.

Proof. Suppose Q = ∂q. Let hψ ∈ Cψ1 be a 0-chain such that ∂hψ = H (such a
0-chain exists by the preceding lemma). Let

qψ = IH,w∆(q) + IH,u∆([hψ,Q]).

The first term is in Cψ1 by Lemma 2. The second term is in Cψ1 because
[hψ,Q] ∈ C1

ψ. Finally:

∂qψ = IH,w∆(Q) + IH,u∆([H,Q]) = IH,w∆(Q) − IH, du∆
dt

(Q) = Q.

Here we used the differential equation (11).
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Similarly, one can prove the following more general result:

Theorem 2. Let ψ be a gapped state. If q ∈ Cψp satisfies ∂q = 0, then there
exists p ∈ Cψp+1 such that ∂p = q. In other words, the homology of the chain
complex (Cψ• , ∂) vanishes.

3 The Hall conductance
Let A be a finite set and Ua, a ∈ A, be cones with apex 0 such that ∪aUa = R2

and Ua ∩ Ub = {0} unless a = b, a = b + 1 or b = a + 1. Let ψ be a gapped
U(1)-invariant state. Let Q ∈ Dψ

al be the electric charge (generator of U(1)
transformations). By the result of the previous section, there exists q ∈ Cψ1 such
that ∂q = Q.

Lemma 4. One can choose q so that [Q, q] = 0.

Proof. We take any q and average over U(1), i.e. let

q′ = 1
2π

∫ 2π

0
αQ(ϕ)(q)dϕ.

It is easy to check that q′ satisfies all the conditions.

Now let’s form a 2-chain [q, q] with components [qi, qj ]. This 2-chain is
actually a cycle thanks to [Q, q] = 0. Let’s define the following derivations:

Fab =
∑

i∈Ua,j∈Ub

[qi, qj ], a, b ∈ I.

Clearly, Fab ∈ Dψ
al and satisfies [Q,Fab] = 0. Also, each Fab decays rapidly away

from Ua ∩ Ub.

Lemma 5. Fab is an inner derivation, i.e. there is fab ∈ dal
ψ such that

Fab(c) = [fab, c] for any c ∈ Aaℓ.

Proof. If b ̸= a± 1, this is clear. If b = a+ 1, we note that one hand Fa,a+1 is
localized near the cone Ua∩Ua+1 and on the other hand Fa,a+1 = −

∑
b ̸=a Fb,a+1

and thus it is localized near ∪b ̸=aUb ∩ Ua+1. Therefore it is localized near 0.

Thus ψ(fab) ∈ iR is well-defined.

Lemma 6. If b ̸= a± 1, then ψ(fab) = 0.

Proof. For b ̸= a± 1 we have an explicit formula for fab:

fab =
∑

j∈Ua,k∈Ub

[qj , qk].

This sum is convergent, so we can first do the average over ψ and then sum.
Since qj does not excite ψ, the average of each summand vanishes, and thus
ψ(fab) = 0.
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Thus we are left with the numbers ψ(fa,a+1). There is no simple formula for
fa,a+1. Let us pick some numbers βa and form a linear combination

⟨F, β⟩ =
∑
a

βaψ(fa,a+1).

Lemma 7. This number is unchanged under βa 7→ βa + γa − γa+1.

Proof. One can easily see that the change is∑
a

γaψ(fa,a+1 + fa,a−1).

But since
∑
a Fab = 0, we have fa,a+1 + fa,a−1 = −

∑
b ̸=a−1,a+1 fab, and the

average of the latter vanishes.

Note that the set of numbers βa modulo the above equivalence is isomorpic
to R. In fact, this quotient is the the degree-1 Cech cohomology of S1 at infinity.
We can normalize by requiring

∑
a βa = 1.

Conclusion: we get a single well-defined number σ = ⟨F, β⟩.

Remark 2. We assumed a rather special choice of cones which induce a cover of
S1 which does not have any triple overlaps. As a result, the cocycle condition on
the 1-cochain β was vacuous. One can generalize the argument to an arbitrary
conical cover. Then ⟨F, β⟩ is inner iff β is a 1-cocycle. So one gets a single
numerical invariant of a state for any choice of the conical cover.

Lemma 8. The number σ is independent of the choice of q.

Proof. The ambiguity in the choice of q is q 7→ q + ∂m where m ∈ Cψ2 . Easy
to check that under such a change the derivation Fa,a+1 changes by an inner
derivation whose ψ-average vanishes.

Finally, we need to check the choice of the cones Ua does not matter. It is
sufficient to show that refining the conical ”cover” does not change σ.

Lemma 9. σ is invariant under a refinement of cover.

Proof. If a cover refines another cover, a choice of q with respect to the finer
cover obviously gives a choice of q for the coarser cover. Since the choice of ∂q
does not affect σ, the lemma is proved.

To summarize, to every gapped U(1)-invariant state ψ we can assign a number
σ. There are two more things to check.

• σ does not depend on the choice of the origin in R2.

• σ is unaffected by the action of a U(1)-invariant LGA.

The latter is rather obvious, as all constructions are invariant under such LGAs.
To prove the former, one should generalize to covers which are only conical
sufficiently far from the origin. This is also fairly straightforward.
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Remark 3. One can show that the invariant σ is proportional to the Hall
conductance at zero temperature. This requires some manipulations with the
Kubo formula which computes the conductance tensor. See pp. 17-18 of
https://arxiv.org/abs/2006.14151 for details. One of the steps is noting that the
Kubo formula involves a current-current correlator of the form

⟨Jjk(1 − P ) 1
H2 (1 − P )Jkl⟩,

where P is the projector to the ground state, H is the Hamiltonian, and Jjk =
[Hj , Qk] − [Hk, Qj ] is the current 2-chain. This can be re-written in terms of
IH,u∆(Jjk) as

⟨IH,u∆(Jjk)IH,u∆(Jkl)⟩ − ⟨IH,u∆(Jjk)⟩⟨IH,u∆(Jkl)⟩.

On the other hand, if we choose Hj which do not excite ψ (i.e. write H = ∂hψ
with hψ ∈ Cψ1 ), then ∂IH,u∆(J) = qψ − q, where qψ ∈ Cψ1 and q ∈ Cψ1 satisfy
∂qψ = ∂q = Q.

4 Systems living on subsets of the lattice
It is interesting to ask what happens if the lattice system occupies only some
part of Z2. Let’s call this part Γ. Nothing in the above arguments depended
on whether Γ fills the whole Z2 or not. So we still can define an invariant σ for
such state. However, this invariant may vanish identically for some choices of Γ.

Indeed, suppose there is a conical region X ⊂ R2 such that every x ∈ Γ is
within distance r from X. Let X∞ be the base of this cone. It is a closed subset
of the circle ”at infinity.” One can use X instead of R2 to define an invariant
σX . That is, one can pick some cover of X by cones and proceed as before. The
resulting number σX will depend on a simplicial 1-cocycle βX on X∞. (Each
conical cover of X gives a triangulation of X∞, and βX is a 1-cocycle with respect
to this triangulation.) The number σX actually depends on the cohomology
class of βX . In particular, if βX is exact, then σX = 0.

On the other hand, we can always complete the conical cover of X to a
conical cover of R2 and reinterpret the derivations Fab as associated to pairs of
regions of the enlarged cover. Of course, Fab = 0 when either a or b label the
elements of the cover that we added to get at cover of R2. We can define σ using
a 1-cocycle β on S1. It is easy to see that σ = σX provided βX ∈ H1(X∞) is
taken to be a restriction of β ∈ H1(S1). Thus if H1(X∞) = 0, we must have
σ = 0.

For example, if the 2d system actually lives on a strip of some finite width in
R2, one can take X to be a straight line contained in this strip, and then X∞
consists of two points. Since the latter has nonzero cohomology only in degree
0, σ = 0 for such systems. This is as it should be: a quasi-1d system with a
nonzero Hall conductance cannot be gapped because of gapless chiral modes on
the boundaries.
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Similarly, suppose we cut out a sector out of R2 and consider a system which
lives on the complement of the sector. X∞ has trivial degree-1 cohomology in
this case, so σ = 0.

Similarly, a system living on any bounded subset of R2 must have σ = 0
(because X∞ = ∅ in this case).

On the other hand, suppose our system lives on Rd with d > 2 and occupies
some region Γ which is contained in an r-thickening of a conical region X ⊂ Rd.
Then the number of invariants depends on the degree-1 cohomology of X∞ ⊂
Sd−1 (the base of the cone X). This cohomology group can be quite large. For
example, let d = 3, and take X∞ to be an arbitrary finite graph on S2 whose
edges are large circles. Let X be a cone with base X∞. Then the number of
”Hall conductances” is determined by the number of independent loops in X∞.
Say, a quasi-2d system living on a cone over the Mercedes-Benz logo has three
independent invariants.

5 Higher-dimensional systems
If we consider systems on Rd, then σ cannot be constructed (or rather, it vanishes
because H1(Sd−1) = 0. However, one can look for more complicated invariants
”iterating” the construction of σ. Turns out one gets non-trivial invariants only
for d even. I will call them higher Hall conductances, but I do not know their
interpretation in terms of transport theory.

Let me explain the construction of ”higher Hall conductance” for d = 4. As
before, we choose q ∈ Cψ1 such that ∂q = Q. The 2-cochain [q, q] is still a cocycle,
so by the acyclicity of our DGLA we must have 1

2 [q, q] = ∂q(3), where q(3) ∈ Cψ3 .
We can also choose q(3) so that [q(3),Q] = 0 Then p(4) = [q(3), q] is a 4-cocycle.
Indeed:

∂[q(3), q] = 1
2 [[q, q], q] − [q(3),Q] = 1

2 [[q, q], q].

This vanishes by the Jacobi identity.
Now we pick a conical cover {Ua}a∈A of R4 which induces a triangulation

of S3 ”at infinity”, and pick a simplicial 3-cocycle β(3) with respect to this
triangulation. Consider a derivation

Fabcd =
∑

i∈Ua,j∈Ub,...

p(4)
ijkl ∈ Dψ

al.

I claim that ∑
a,b,c,d

βabcdFabcd

is an inner derivation (thanks to the cocycle condition on β. Thus we can define
a numerical invariant by averaging the corresponding local observable over ψ.
One can show that the invariant depends only on the cohomology class of β in
H3(S3).
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6 Non-abelian symmetry groups
Let G be a compact Lie group. I will only do the case d = 2. Now we have
a homomorphism Q : g → Dψ

al where g is the Lie algebra of G. That is, upon
choosing a basis ea in g, we have charges Qa = Q(ea) ∈ Dψ

al such that

[Qa,Qb] = f cabQc,

where f cab are structure constants of g with respect to the basis ea.
Note that Qa is no longer G-invariant. But we can deal with this as follows.

Let’s introduce a formal variable t = {ta} which lives in g and form Q(t) = Qata.
Then Q(t) isG-invariant providedG also acts on ta (via its adjoint representation).
So we introduce a DGLA Cψ• ⊗ Sym•(g∗) and its G-invariant part Cψ,G• . Its
convenient to assign the element t degree −2, so that Q(t) is a degree −2 element
in Cψ,G• .

Lemma 10. Q(t) is a central element of Cψ,G• .

Proof. An element of Cψ• ⊗ Sym•(g∗) can be regarded as a polynomial function
f : g → Cψ• , f : t 7→ f(t). The G-invariance condition implies

∂f

∂ta
[s, t]a + [Q(s), f(t)] = 0, ∀s, t ∈ g.

Setting s = t we get the desired result.

Theorem 3. The DGLA Cψ,G• is acyclic (i.e; its homology is trivial).

Proof. Use the averaging over G trick as before.

Then there exists q(t) ∈ Cψ,G1 = taqa such that ∂q(t) = Q(t). We form a
2-cochain of Cψ,G•

1:
p(t) = pabtatb = 1

2[q(t), q(t)].

This is a 2-cocycle because Q(t) is a central element in the DGLA Cψ,G• . We
contract it with a simplicial 1-cocycle β of S1 at infinity and average over ψ.
The average is a quadratic polynomial in t. Since p is G-invariant and so is ψ,
this quadratic polynomial is also G-invariant.

We conclude that for a general compact G the invariant σ takes values in
G-invariant polynomials on g of degree 2. This is precisely the same datum
which allows one to write down a Chern-Simons action for a G-connection (on
the classical level).

Similarly, in any even spatial dimension d = 2k we get an invariant which
takes values in G-invariant polynomials on g of degree k+1. This datum classifies
Chern-Simons actions in space-time dimension d+ 1.

1When I call it a 2-cochain, I only count the degrees of the coefficients of its Taylor expansion.
If I also counted the t-degree, I would say that p has degree −2.
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