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Lecture No 1 March 8, 2022 (Tue)

Plan of the course“Stochastic Analysis and its Applications” (28 lectures)

Abstract: The first half of the course is devoted to explaining
fundamental concepts, terms, facts and tools in probability theory and
stochastic analysis. Then, in the second half, we pick up some topics in
stochastic partial differential equations as applications of stochastic
analysis.

Contents:
Part I. Foundations of Probability Theory (5∼6 lectures)
Probability space, Dynkin’s π-λ theorem, Convergence of random
variables, Independence, Conditional probability, Strong law of large
numbers, Kolmogorov’s inequality, Convergence in law, Central limit
theorem
Part II. Foundations of Stochastic Analysis (9∼10 lectures)
Discrete and continuous time martingales, Brownian motion, Stochastic
integrals, Ito’s formula, Stochastic differential equations,Relation toPDEs

Part III. Applications of Stochastic Analysis (14∼12 lectures)
Stochastic partial differential equations, Random interfaces,
(Stochastic) Motion by mean curvature, Stochastic Allen-Cahn equation,

Time-dependent Ginzburg-Landau equation, Other topics.
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Textbooks:

[1] D. Williams: Probability with Martingales, Cambridge, 1991.
(→Part I, II)

[2] J-F. Le Gall, Brownian Motion, Martingales, and Stochastic Calculus,
Springer, 2013. (→Part II)

[3] I. Karatzas and S.E. Shreve: Brownian Motion and Stochastic
Calculus, Springer, 1991. (→Part II)

[4] T. Funaki, Lectures on Random Interfaces, SpringerBriefs, 2016.
(→Part III)

[5] 舟木直久 (T. Funaki): 確率論, 朝倉書店, 2004. (→Part I, II)
[6] 舟木直久: 確率微分方程式, 岩波書店, 2005 (1997). (→Part II)
[7] 舟木直久, 乙部厳己 (Y. Otobe), 謝賓 (B. Xie): 確率偏微分方程式,

岩波書店, 2019. (→Part III)
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[5] [6] [7]
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Introduction

▶ Probability theory has applications to Natural Science
（physics, biology, chemistry, · · · ), Engineering, Social
Science (finance, economy, · · · ) and others.

▶ So, on the one hand, it is considered as an applied
mathematics, but on the other hand, it has an axiomatic
system and a field of pure mathematics.

▶ Probability theory recently attracts a lot of attention.
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Gauss Prize Fields Medalists in/related to probability

Itô Hairer Werner Smirnov Okounkov
2006 2014 2006 2010 2006

from web of Oberwolfach Math Institute
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Modern probability theory:

▶ 1902: Establishment of Lebesgue integrals theory

▶ 1935: Formulation by Kolmogorov, for example, strong
law of large numbers, in a framework of measure theory

▶ σ-additivity of probability plays a fundamental role to
study several types of limits adjusting to the probability.

Lebesgue Kolmogorov
from Wikipedia
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▶ We denote a thing which may happen by ω, and Ω is the
set of all ω.

▶ Example (dice): Ω = {1, 2, . . . , 6}
Probability: P({ω}) = 1

6
, ∀ω ∈ Ω.

▶ In general Ω is an infinite set, for example, for dice
thrown many times, we take Ω = {1, 2, . . . , 6}N and a
probability P(A) is defined for A ⊂ Ω. The set A for
which the probability P(A) is defined is called an event.

▶ The probability of the whole set is normalized as 1 so that
P(Ω) = 1.
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▶ Modern probability theory assumes not only the finite
additivity of P :

A,B : disjoint events =⇒ P(A ∪ B) = P(A) + P(B)

but also the σ-additivity:

A1,A2, . . . : disjoint events =⇒ P(∪∞
n=1An) =

∞∑
n=1

P(An)

▶ Thus, the probability theory is built on the Lebesgue’s
measure theory. For instance for Brown motion discussed
later, we take Ω = C ([0,∞),Rd) that is the set of all
possible continuous paths x(t) ∈ Rd , t ∈ [0,∞).

▶ In particular, we need to consider measures on
infinite-dimensional spaces.
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Part I. Foundations of Probability Theory

§1 Probability space, Random variables, Probability
distributions, Expectation and variance

1.1 Probability space

▶ Ω: a certain set

▶ F : σ-field (σ-algebra) of Ω i.e., F ⊂ P(Ω) (i.e., F is a
family of subsets of Ω) and satisfies

(1) Ω ∈ F
(2) A ∈ F =⇒ Ac := Ω \ A ∈ F
(3) An ∈ F , n = 1, 2, . . . =⇒

∞∪
n=1

An ∈ F

▶ The pair of Ω and its σ-field (Ω,F) is called a
measurable space. In probability theory, Ω is called a
sample space, ω ∈ Ω a sample and A ∈ F an event.
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▶ A measure P on a measurable space (Ω,F) satisfying
P(Ω) = 1 is called a probability measure i.e.
(1) P : F → [0, 1] and P(Ω) = 1
(2) (σ-additivity) If An ∈ F , n = 1, 2, . . . are disjoint (i.e.,

Ai ∩ Aj = ∅ for i ̸= j), then

P
( ∞∪

n=1

An

)
=

∞∑
n=1

P(An)

[Definition 1.1] A triplet (Ω,F ,P) is called a probability
space.

▶ For a σ-field F , we have
(1)’ ∅ ∈ F
(3)’ An ∈ F , n = 1, 2, . . . =⇒

∞∩
n=1

An ∈ F

▶ For a probability space (Ω,F ,P),
- P(∅) = 0
- (Monotonicity) A,B ∈ F : A ⊂ B =⇒ P(A) ≤ P(B)
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▶ For any family A of subsets of Ω, that is A ⊂ P(Ω),
there exists uniquely a smallest σ-field F which contains
A, i.e. a σ-field F satisfying

G : σ-field and A ⊂ G =⇒ F ⊂ G

We denote such F by σ(A), and call it the σ-field
generated by A. Indeed, we may take

F =
∩

G:σ-field,A⊂G

G

P: Check that this F is a σ-field.

▶ A special character of probability theory, different from
other areas, is to consider several σ-fields on a common
space Ω at the same time (→ Independence, Conditional
probability, Martingale).
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[Example] (Generalization of dice throwing)

▶ Let a measurable space (S ,S) be given
（S = {1, 2, . . . , 6}, S = P(S) for dice).

▶ Ω = SN: product space i.e., Ω = {S-valued trials
repeated infinitely many times}

▶ Kolmogorov’s σ-field FK is a natural σ-field of this Ω:

FK := σ{C ; cylinder sets},

where a cylinder set means a subset of Ω of the following
form

C ≡ C (t1, . . . , tn;A1, . . . ,An), ti ∈ N,Ai ∈ S (1 ≤ i ≤ n)

= {ω = (ω(t))t∈N ∈ Ω;ω(t1) ∈ A1, . . . , ω(tn) ∈ An}

▶ We need to define probability at least for C of this
form.
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▶ Equivalent definitions of σ-additivity
Assume P is finitely additive. Then the following (1)–(3)
are mutually equivalent:
(1) P is σ–additive
(2) If An ∈ F , n = 1, 2, . . . is monotone increasing （that is,

A1 ⊂ A2 ⊂ · · · , we denote An ↗）, then

P

( ∞∪
n=1

An

)
= lim

n→∞
P(An)

(3) If An ∈ F , n = 1, 2, . . . is monotone decreasing （that is,
A1 ⊃ A2 ⊃ · · · , we denote An ↘), then

P

( ∞∩
n=1

An

)
= lim

n→∞
P(An)

(2), (3) are called continuity of a measure.
▶ Subadditivity: For An ∈ F , n = 1, 2, . . .,

P

(
∞∪
n=1

An

)
≤

∞∑
n=1

P(An)
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▶ If A ∈ F satisfies P(A) = 1, we say A happens almost
surely, and write “A holds for P-a.s. ω” or “A a.s.”.

1.2 Random variables (denoted by r.v.’s)

(Ω,F ,P): Probability space

[Definition 1.2] (1) Let (S ,S) be a measurable space and let
an S-valued function X = X (ω) on Ω be given. If X is
measurable as a map

X : (Ω,F) → (S ,S)

(i.e., For any ∀A ∈ S, X−1(A) ≡ {ω ∈ Ω;X (ω) ∈ A} ∈ F),
then X is called an S-valued random variable (r.v.).
(2) In particular, when (S ,S) = (R,B(R)), X is called a
real-valued random variable, where B(R) := σ{open sets of
R} is a Borel field of R.
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▶ The following five conditions are mutually equivalent:

1. X is a real-valued r.v.
2. For ∀a ∈ R, {X ≤ a} ∈ F
3. For ∀a ∈ R, {X < a} ∈ F
4. For ∀a ∈ R, {X ≥ a} ∈ F
5. For ∀a ∈ R, {X > a} ∈ F

[Remark] {X ≤ a} := {ω ∈ Ω;X (ω) ≤ a}
≡ X−1((−∞, a]) (i.e., We often omit ω)

▶ composite function: X1,X2, . . . ,Xn: real-valued r.v.’s
g : (Rn,B(Rn)) → (R,B(R)): measurable
=⇒ Y := g(X1,X2, . . . ,Xn) is also a r.v.

[Remark] Also here, we omit ω. Precisely,
Y (ω) = g

(
X1(ω),X2(ω), . . . ,Xn(ω)

)
.

P: Show the above property for composite functions.
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▶ Limits of r.v.’s: Xn, n = 1, 2, . . .: real-valued r.v.’s, then

inf
n≥1

Xn, sup
n≥1

Xn, lim inf
n→∞

Xn, lim sup
n→∞

Xn

are all r.v.’s (if they take finite values). In particular, if
X = lim

n→∞
Xn exists, X is a r.v.

[Note] To show this, it is essential that F is a σ-field.

▶ σ-field generated by a r.v.: For S-valued r.v. X , set

FX := {X−1(A) ; A ∈ S}.

Then, FX is a σ-field of Ω. We call FX a σ-field
generated by X and denote also by σ(X ).

P: Show that FX is a σ-field.
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[Example] (Generalization of dice throwing) When (S ,S) is
given, we defined Ω = SN and F as its Kolmogorov’s σ-field
FK . For ω ∈ Ω written as ω = (ω(1), ω(2), · · · ),

Xn(ω) := ω(n)

is an S-valued r.v. (that is, FK/S-measurable function).
Xn represents the number of the dice on its nth throw.

1.3 Probability distribution

▶ Distribution For S-valued r.v. X ,

PX (A) := P(X−1(A)), A ∈ S
determines a probability measure (image measure) on
(S ,S). It is called a distribution of X .

▶ Distribution function For a real-valued r.v. X ,

FX (x) = P(X ≤ x), x ∈ R
is called a distribution function of X .
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▶ Properties of distribution function F = FX

(1) Monotone increasing (non-decreasing):
x1 < x2 ⇒ F (x1) ≤ F (x2)

(2) limx→∞ F (x) = 1, limx→−∞ F (x) = 0
(3) F (x) is right-continuous

The converse is known and true: If a function
F : R → [0, 1] satisfies three conditions (1)–(3), then
there exists uniquely a probability measure µ on
(R,B(R)) such that

F (x) = µ((−∞, x ]), ∀x ∈ R.

µ is called the Lebesgue–Stieltjes measure of F .

[Remark] Lebesgue–Stieltjes measure corresponding to
F (x) = 0 (x ≤ 0), x (0 ≤ x ≤ 1), 1 (x ≥ 1) is the
Lebesgue measure on [0, 1].

19 / 22



1.4 Expectation and variance

Since a real-valued r.v. X defined on a probability space
(Ω,F ,P) is measurable as a map X : (Ω,F) → (R,B(R)),
one can define its integral with respect to the measure P in
Lebesgue’s sense: ∫

Ω

X (ω)P(dω)

We call this Expectation (or Mean) of X and denote E [X ]. We
first briefly recall the definition of integrals in Lebesgue’s sense.
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Definition of expectation

(1) If a r.v. X takes only finitely many values, i.e.,

X (ω) =
k∑

i=1

ai1Ci
(ω), ai ∈ R, Ci ∈ F ,

X is called simple and its expectation E [X ] is defined by

E [X ] :=
k∑

i=1

aiP(Ci).

(2) For a non-negative r.v. X ≥ 0, one can take an increasing
sequence of non-negative simple r.v.’s (Xn)n=1,2,... such that
X (ω) = lim

n→∞
Xn(ω),

∀ω holds. Then the expectation E [X ] is

defined by

E [X ] := lim
n→∞

E [Xn] ∈ R̄+(≡ [0,∞])

Note that this value is determined independently of the choice
of an approximating sequence Xn.
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(3) General r.v. X is decomposed as X = X+ − X−. If
E [X+] < ∞ or E [X−] < ∞ hold, the expectation of X is
defined by

E [X ] = E [X+]− E [X−] ∈ [−∞,∞],

where X±(= X±(ω)) denote positive and negative parts of X :

X+(ω) = max{X (ω), 0}, X−(ω) = max{−X (ω), 0}.

When both E [X±] are finite (i.e., |E [X ]| < ∞), X is called
integrable.

22 / 22


