Conformal Invariance in 2D Lattice Models

Part 4: Ising Model

Hao Wu (THU)

Part 1: Bernoulli Percolation

Part 2: Random Cluster Model
Part 3: FK-Ising Model
Part 4: Ising model

Ising Model

Curie temperature [Pierre Curie, 1895]
Ferromagnet exhibits a phase transition by losing its magnetization when heated above a critical temperature.

Ising Model [Lenz, 1920]
A model for ferromagnet, to understand the critical temperature

- $G=(V, E)$ is a finite graph
- $\sigma \in\{\oplus, \ominus\}^{V}$
- The Hamiltonian

$$
H(\sigma)=-\sum_{x \sim y} \sigma_{x} \sigma_{y}
$$

Ising Model

Ising model is the probability measure of inverse temperature $\beta>0$:

$$
\mu_{\beta, G}[\sigma] \propto \exp (-\beta H(\sigma))
$$

Ising Model

Ising model is the probability measure of inverse temperature $\beta>0$:

$$
\mu_{\beta, G}[\sigma] \propto \exp (-\beta H(\sigma))
$$

$T \gg T_{C}$

$\mathrm{T} \sim \mathrm{T}_{\mathrm{C}}$

$T \ll T_{C}$

Ising Model

- FKG Inequality
- Phase Transition
- Critical Value
- Fermionic Observable
- Convergence of the Fermionic Observable

Ising Model-boundary conditions

Fix some boundary conditions (b.c.) $b \in\{\ominus, \oplus\}^{\partial G}$. The Ising model on G with b.c. b is the proba. measure :

$$
\mu_{\beta, G}^{b}[\sigma] \propto \exp (-\beta H(\sigma)),
$$

for every $\sigma \in\{\ominus, \oplus\}^{G}$ such that $\sigma=b$ on ∂G.

Ising Model-boundary conditions

Fix some boundary conditions (b.c.) $b \in\{\ominus, \oplus\}^{\partial G}$. The Ising model on G with b.c. b is the proba. measure :

$$
\mu_{\beta, G}^{b}[\sigma] \propto \exp (-\beta H(\sigma)),
$$

for every $\sigma \in\{\ominus, \oplus\}^{G}$ such that $\sigma=b$ on ∂G.

- free-b.c. $\mu_{\beta, G}^{f}$
- $\mu_{\beta, G}^{\oplus}$ and $\mu_{\beta, G}^{\ominus}$
- Dobrushin b.c. $\mu_{\beta, G}^{d o b r}$
- b.c. induced by the config. outside G.

Ising Model-boundary conditions

Fix some boundary conditions (b.c.) $b \in\{\ominus, \oplus\}^{\partial G}$. The Ising model on G with b.c. b is the proba. measure :

$$
\mu_{\beta, G}^{b}[\sigma] \propto \exp (-\beta H(\sigma)),
$$

for every $\sigma \in\{\ominus, \oplus\}^{G}$ such that $\sigma=b$ on ∂G.

- free-b.c. $\mu_{\beta, G}^{f}$
- $\mu_{\beta, G}^{\oplus}$ and $\mu_{\beta, G}^{\ominus}$
- Dobrushin b.c. $\mu_{\beta, G}^{d o b r}$
- b.c. induced by the config. outside G.

Domain Markov Property
Suppose $G^{\prime} \subset G$, and for b.c. $b \in\{\ominus, \oplus\}^{\partial G}$ and $\psi \in\{\ominus, \oplus\}^{G \backslash G^{\prime}}$ such that $\psi=b$ on ∂G,

$$
\mu_{\beta, G}^{b}\left[X \mid \sigma_{x}=\psi_{x}, x \in G \backslash G^{\prime}\right]=\mu_{\beta, G^{\prime}}^{\psi}[X] .
$$

FKG Inequality

Theorem (FKG Inequality)
Fix $\beta>0$, a finite graph G and some boundary conditions b. For any two increasing events A and B, we have

$$
\mu_{\beta, G}^{b}[A \cap B] \geq \mu_{\beta, G}^{b}[A] \mu_{\beta, G}^{b}[B] .
$$

FKG Inequality

Theorem (FKG Inequality)
Fix $\beta>0$, a finite graph G and some boundary conditions b. For any two increasing events A and B, we have

$$
\mu_{\beta, G}^{b}[A \cap B] \geq \mu_{\beta, G}^{b}[A] \mu_{\beta, G}^{b}[B] .
$$

Corollary (Comparison between boundary conditions)
Fix $\beta>0$, a finite graph G. For boundary conditions $b_{1} \leq b_{2}$ and any increasing event A, we have

$$
\mu_{\beta, G}^{b_{1}}[A] \leq \mu_{\beta, G}^{b_{2}}[A]
$$

Ising Model

- FKG Inequality
- Phase Transition
- Critical Value
- Fermionic Observable
- Convergence of the Fermionic Observable

Phase Transition-Infinite-volume measure

Proposition

Fix $\beta>0$. There exist two (possibly equal) infinite-volume measures μ_{β}^{\oplus} and μ_{β}^{\ominus} such that for any event A depending on a finite number of edges,

$$
\lim _{n \rightarrow \infty} \mu_{\beta, \Lambda_{n}}^{\oplus}[A]=\mu_{\beta}^{\oplus}[A], \quad \lim _{n \rightarrow \infty} \mu_{\beta, \wedge_{n}}^{\ominus}[A]=\mu_{\beta}^{\ominus}[A]
$$

Phase Transition-Infinite-volume measure

Proposition

Fix $\beta>0$. There exist two (possibly equal) infinite-volume measures
μ_{β}^{\oplus} and μ_{β}^{\ominus} such that for any event A depending on a finite number of edges,

$$
\lim _{n \rightarrow \infty} \mu_{\beta, \Lambda_{n}}^{\oplus}[A]=\mu_{\beta}^{\oplus}[A], \quad \lim _{n \rightarrow \infty} \mu_{\beta, \Lambda_{n}}^{\ominus}[A]=\mu_{\beta}^{\ominus}[A]
$$

Proposition

- μ_{β}^{\oplus} and μ_{β}^{\ominus} are translation invariant
- μ_{β}^{\oplus} and μ_{β}^{\ominus} are ergodic

For μ_{β}^{\oplus} or μ_{β}^{\ominus}, there is no infinite cluster almost surely, or there exists a unique infinite cluster almost surely.

Phase Transition-the critical value

Theorem
There exists $\beta_{c} \in(0, \infty)$ such that

$$
\mu_{\beta}^{\oplus}\left[\sigma_{0}\right]=0, \quad \text { if } \beta<\beta_{c} ; \quad \mu_{\beta}^{\oplus}\left[\sigma_{0}\right]>0, \quad \text { if } \beta>\beta_{c} .
$$

Moreover,

$$
\beta_{c}=\frac{1}{2} \log (1+\sqrt{2}) .
$$

Critical Value : Edwards-Sokal coupling

Edwards-Sokal coupling
Fix a finite graph G and $p \in(0,1)$.

- Sample $\omega \sim$ random-cluster model with $(p, 2)$ and free-b.c.
- Assign indep. to each cluster of ω a spin \oplus or \ominus with proba. 1/2.

The obtained spin config. has the law of Ising model with free-b.c. and

$$
\beta=\frac{1}{2} \log \frac{1}{1-p}
$$

Critical Value : Edwards-Sokal coupling

Edwards-Sokal coupling
Fix a finite graph G and $p \in(0,1)$.

- Sample $\omega \sim$ random-cluster model with $(p, 2)$ and free-b.c.
- Assign indep. to each cluster of ω a spin \oplus or \ominus with proba. 1/2.

The obtained spin config. has the law of Ising model with free-b.c. and

$$
\beta=\frac{1}{2} \log \frac{1}{1-p}
$$

wired-b.c. $\longrightarrow \oplus$-b.c. (\ominus-b.c.)

Critical Value : Edwards-Sokal coupling

Edwards-Sokal coupling
Fix a finite graph G and $p \in(0,1)$.

- Sample $\omega \sim$ random-cluster model with ($p, 2$) and free-b.c.
- Assign indep. to each cluster of ω a spin \oplus or \ominus with proba. 1/2.

The obtained spin config. has the law of Ising model with free-b.c. and

$$
\beta=\frac{1}{2} \log \frac{1}{1-p} .
$$

wired-b.c. $\longrightarrow \oplus$-b.c. (\ominus-b.c.)
Consequence

$$
\mu_{\beta, G}^{f}\left[\sigma_{x} \sigma_{y}\right]=\phi_{p, 2, G}^{0}[x \leftrightarrow y], \quad \mu_{\beta, G}^{\oplus}\left[\sigma_{x}\right]=\phi_{p, 2, G}^{1}[x \leftrightarrow \partial G] .
$$

Phase Transition-the critical value

Theorem
There exists $\beta_{c} \in(0, \infty)$ such that

$$
\mu_{\beta}^{\oplus}\left[\sigma_{0}\right]=0, \quad \text { if } \beta<\beta_{c} ; \quad \mu_{\beta}^{\oplus}\left[\sigma_{0}\right]>0, \quad \text { if } \beta>\beta_{c} .
$$

Moreover,

$$
\beta_{c}=\frac{1}{2} \log (1+\sqrt{2}) .
$$

Phase Transition-the critical value

Theorem

There exists $\beta_{c} \in(0, \infty)$ such that

$$
\mu_{\beta}^{\oplus}\left[\sigma_{0}\right]=0, \quad \text { if } \beta<\beta_{c} ; \quad \mu_{\beta}^{\oplus}\left[\sigma_{0}\right]>0, \quad \text { if } \beta>\beta_{c} .
$$

Moreover,

$$
\beta_{c}=\frac{1}{2} \log (1+\sqrt{2})
$$

In fact, we have $\mu_{\beta_{c}}^{\oplus}\left[\sigma_{0}\right]=0$.

- For $\beta \leq \beta_{c}$, we have $\mu_{\beta}^{\oplus}=\mu_{\beta}^{\ominus}$ and this is the unique infinite-volume measure.
- For $\beta>\beta_{c}$, the set of infinite-volume measures is given by

$$
\left\{\lambda \mu_{\beta}^{\oplus}+(1-\lambda) \mu_{\beta}^{\ominus}: \lambda \in[0,1]\right\}
$$

Ising Model

- FKG Inequality
- Phase Transition
- Critical Value
- Fermionic Observable
- Convergence of the Fermionic Observable

High temperature expansion

Fix a finite graph $G=(V, E)$
\mathcal{E}_{G} : the collection of even subgraph of G, i.e. the set of subgraphs ω of G such that every vertex in V is the end-point of an even number of edges of ω.
Generally, for $A \subset V$, let $\mathcal{E}_{G}(A)$ be the set of subgraphs ω of G s.t.

- every vertex of $V \backslash A$ is the end-point of an even number of edges of ω,
- every vertex of A is the end-point of an odd number of edges of ω. Note that if $\# A$ is odd, then $\mathcal{E}_{G}(A)$ is empty.

High temperature expansion
Let G be a finite graph and $\beta>0$. We have

$$
\mathcal{Z}_{\beta, G}^{f}=2^{\# V(G)} \cosh (\beta)^{\# E(G)} \sum_{\omega \in \mathcal{E}_{G}} \tanh (\beta)^{o(\omega)}
$$

Low temperature expansion

- For each $\sigma \in\{\oplus, \ominus\}^{V(G)}$,
- define $\omega[\sigma] \in\{0,1\}^{E\left(G^{*}\right)}$: $\forall e=(x, y) \in E(G)$,
$\omega[\sigma]\left(e^{*}\right)= \begin{cases}1, & \text { if } \sigma_{x} \neq \sigma_{y}, \\ 0, & \text { otherwise } .\end{cases}$

Low temperature expansion

- For each $\sigma \in\{\oplus, \ominus\}^{V(G)}$,
- define $\omega[\sigma] \in\{0,1\}^{E\left(G^{*}\right)}$:

$$
\forall e=(x, y) \in E(G)
$$

$$
\omega[\sigma]\left(e^{*}\right)= \begin{cases}1, & \text { if } \sigma_{x} \neq \sigma_{y} \\ 0, & \text { otherwise }\end{cases}
$$

- One-to-one for any b.c. b

- Two-to-one for free b.c.

Low temperature expansion

- For each $\sigma \in\{\oplus, \ominus\}^{V(G)}$,
- define $\omega[\sigma] \in\{0,1\}^{E\left(G^{*}\right)}$:

$$
\forall e=(x, y) \in E(G),
$$

$$
\omega[\sigma]\left(e^{*}\right)= \begin{cases}1, & \text { if } \sigma_{x} \neq \sigma_{y}, \\ 0, & \text { otherwise }\end{cases}
$$

- One-to-one for any b.c. b

- Two-to-one for free b.c.

$$
\text { If } \mathbb{P}[\sigma] \propto e^{-\beta H(\sigma)}, \quad \text { then } \mathbb{P}[\omega] \propto e^{-2 \beta o(\omega)}
$$

Low temperature expansion

- For each $\sigma \in\{\oplus, \ominus\}^{V(G)}$,
- define $\omega[\sigma] \in\{0,1\}^{E\left(G^{*}\right)}$:

$$
\forall e=(x, y) \in E(G),
$$

$$
\omega[\sigma]\left(e^{*}\right)= \begin{cases}1, & \text { if } \sigma_{x} \neq \sigma_{y}, \\ 0, & \text { otherwise }\end{cases}
$$

- One-to-one for any b.c. b

- Two-to-one for free b.c.

$$
\text { If } \mathbb{P}[\sigma] \propto e^{-\beta H(\sigma)}, \quad \text { then } \mathbb{P}[\omega] \propto e^{-2 \beta o(\omega)}
$$

Proposition

$$
\mathcal{Z}_{\beta, G}^{\oplus}=e^{\beta \# E\left(G^{*}\right)} \sum_{\omega \in \mathcal{E}_{G^{*}}} e^{-2 \beta o(\omega)}, \quad \mathcal{Z}_{\beta, G}^{d o b r}=e^{\beta \# E\left(G^{*}\right)} \sum_{\omega \in \mathcal{E}_{G^{*}}(\{a, b\})} e^{-2 \beta o(\omega)} .
$$

Krammers-Wannier duality
Let $\beta>0$ and define $\beta^{*} \in(0, \infty)$ such that

$$
\tanh \left(\beta^{*}\right)=e^{-2 \beta}
$$

Then for every graph G, we have

$$
2^{\# V\left(G^{*}\right)} \cosh \left(\beta^{*}\right)^{\# E\left(G^{*}\right)} \mathcal{Z}_{\beta, G}^{\oplus}=e^{\beta \# E\left(G^{*}\right)} \mathcal{Z}_{\beta^{*}, G^{*}}^{f}
$$

Ising Model

- FKG Inequality
- Phase Transition
- Critical Value
- Fermionic Observable
- Convergence of the Fermionic Observable

Fermionic observable

- \mathbb{L} : the square lattice
- \mathbb{L}^{*} : the dual lattice
- \mathbb{L}^{\diamond} : the medial lattice.
$V\left(\mathbb{L}^{\diamond}\right)=\{$ centers of edges in $E(\mathbb{L})\}$ and $E\left(\mathbb{L}^{\diamond}\right) \sim$ nearest neighbours.

Fermionic observable

- \mathbb{L} : the square lattice
- \mathbb{L}^{*} : the dual lattice
- \mathbb{L}^{\diamond} : the medial lattice.
$V\left(\mathbb{L}^{\diamond}\right)=\{$ centers of edges in $E(\mathbb{L})\}$ and $E\left(\mathbb{L}^{\diamond}\right) \sim$ nearest neighbours.
- $\left(\Omega_{\delta}^{\diamond} ; a_{\delta}, b_{\delta}\right)$: a spin-Dobrushin domain
- For $z_{\delta} \in \Omega_{\delta}^{\diamond}$, let $\mathcal{E}\left(a_{\delta}, z_{\delta}\right)=$ collections of contours on Ω_{δ} composed of loops and an interface from a_{δ} to z_{δ}.

Fermionic observable

The spin-Ising fermionic observable :

$$
F_{\delta}\left(z_{\delta}\right)=\frac{\sum_{\omega \in \mathcal{E}\left(a_{\delta}, z_{\delta}\right)} e^{-\frac{1}{2} i W_{\gamma(\omega)}\left(a_{\delta}, z_{\delta}\right)}(\sqrt{2}-1)^{o(\omega)}}{\sum_{\omega \in \mathcal{E}\left(a_{\delta}, b_{\delta}\right)} e^{-\frac{1}{2} i W_{\gamma(\omega)}\left(a_{\delta}, b_{\delta}\right)}(\sqrt{2}-1)^{o(\omega)}}
$$

- for $\omega \in \mathcal{E}\left(\boldsymbol{a}_{\delta}, \boldsymbol{Z}_{\delta}\right)$, denote by $\gamma(\omega)$ the interface from a_{δ} to z_{δ}
- $W_{\gamma}\left(a_{\delta}, z_{\delta}\right)$ is the total winding of the curve γ between \boldsymbol{a}_{δ} and z_{δ}

Fermionic Observable

The spin-Ising fermionic observable :

$$
F_{\delta}\left(z_{\delta}\right)=\frac{\sum_{\omega \in \mathcal{E}\left(a_{\delta}, z_{\delta}\right)} e^{-\frac{1}{2} i W_{\gamma(\omega)}\left(a_{\delta}, z_{\delta}\right)}(\sqrt{2}-1)^{o(\omega)}}{\sum_{\omega \in \mathcal{E}\left(a_{\delta}, b_{\delta}\right)} e^{-\frac{1}{2} i W_{\gamma(\omega)}\left(a_{\delta}, b_{\delta}\right)}(\sqrt{2}-1)^{o(\omega)}}
$$

Theorem

$$
F_{\delta}(\cdot) \rightarrow \sqrt{\varphi^{\prime}(\cdot) / \varphi^{\prime}(b)}, \quad \text { as } \delta \rightarrow 0,
$$

where φ is any conformal map from Ω onto \mathbb{H} that sends $a \rightarrow \infty$ and $b \rightarrow 0$. The convergence is local uniform.

Fermionic Observable

Theorem

$$
F_{\delta}(\cdot) \rightarrow \sqrt{\varphi^{\prime}(\cdot) / \varphi^{\prime}(b)}, \quad \text { as } \delta \rightarrow 0
$$

where φ is any conformal map from Ω onto \mathbb{H} that sends $a \rightarrow \infty$ and $b \rightarrow 0$. The convergence is local uniform.

Strategy

- F_{δ} is s-holomorphic
- the associated function H_{δ} converges to $\Im \varphi$
- F_{δ} converges to $\sqrt{\varphi^{\prime}(\cdot) / \varphi^{\prime}(b)}$

Fermionic Observable

For $\omega \in \mathcal{E}\left(a_{\delta}, x_{\delta}\right)$, define

$$
x_{\omega}=\frac{1}{\mathcal{Z}}(\sqrt{2}-1)^{o(\omega)} \exp \left(-\frac{i}{2}\left(W_{\gamma(\omega)}\left(a_{\delta}, x_{\delta}\right)-W_{\gamma_{0}}\left(a_{\delta}, b_{\delta}\right)\right)\right) .
$$

For $\omega^{\prime} \in \mathcal{E}\left(a_{\delta}, y_{\delta}\right)$, define

$$
y_{\omega^{\prime}}=\frac{1}{\mathcal{Z}}(\sqrt{2}-1)^{o\left(\omega^{\prime}\right)} \exp \left(-\frac{i}{2}\left(W_{\gamma\left(\omega^{\prime}\right)}\left(a_{\delta}, y_{\delta}\right)-W_{\gamma_{0}}\left(a_{\delta}, b_{\delta}\right)\right)\right) .
$$

Suppose $e=\left(x_{\delta}, y_{\delta}\right)$ is horizontal, we wish to show

$$
\sum_{\omega \in \mathcal{E}\left(a_{\delta}, x_{\delta}\right)} \Re\left(x_{\omega}\right)=\sum_{\omega^{\prime} \in \mathcal{E}\left(a_{\delta}, y_{\delta}\right)} \Re\left(y_{\omega^{\prime}}\right) .
$$

Fermionic Observable

configuration	Case 1(a)	Case 1(b)	Case 2	Case 3(a)	Case 3(b)	Case 4
x_{ω}						
$y_{\omega^{\prime}}$	$(\sqrt{2}-1) \mathrm{e}^{i \pi / 4} x_{\omega}$	$\frac{\mathrm{e}^{i \pi / 4}}{\sqrt{2}-1} x_{\omega}$	$\mathrm{e}^{-i \pi / 4} x_{\omega}$	$\mathrm{e}^{3 i \pi / 4} x_{\omega}$	$\mathrm{e}^{3 i \pi / 4} x_{\omega}$	$\mathrm{e}^{-5 i \pi / 4} x_{\omega}$
arg. $x_{\omega} \bmod \pi$	$5 \pi / 8$	$\pi / 8$	$\pi / 8$	$5 \pi / 8$	$5 \pi / 8$	$5 \pi / 8$

Summary : Ising Model

- Phase transition
- Critical Value : $\beta_{c}=\frac{1}{2} \log (1+\sqrt{2})$
- Conformal Invariance of the critical phase

Thm [Chelkak-Smirnov Invent.Math.'10]
The interface of critical Ising model on \mathbb{Z}^{2} with Dobrushin b.c. converges to SLE(3). (Nov. 2nd)

Summary : Ising Model

- Phase transition
- Critical Value : $\beta_{c}=\frac{1}{2} \log (1+\sqrt{2})$
- Conformal Invariance of the critical phase

Thm [Chelkak-Smirnov Invent.Math.'10]
The interface of critical Ising model on \mathbb{Z}^{2} with Dobrushin b.c. converges to SLE(3). (Nov. 2nd)

Consequence : the critical arm exponent

- subcritical $\beta<\beta_{c}$
- $\mu_{\beta, \wedge_{n}}^{\oplus}\left[\sigma_{0}\right] \leq e^{-c n}$

Summary : Ising Model

- Phase transition
- Critical Value : $\beta_{c}=\frac{1}{2} \log (1+\sqrt{2})$
- Conformal Invariance of the critical phase

Thm [Chelkak-Smirnov Invent.Math.'10]
The interface of critical Ising model on \mathbb{Z}^{2} with Dobrushin b.c. converges to SLE(3). (Nov. 2nd)

Consequence : the critical arm exponent

- subcritical $\beta<\beta_{c}$
- critical $\beta=\beta_{C}$
- $\mu_{\beta, \wedge_{n}}^{\oplus}\left[\sigma_{0}\right] \leq e^{-c n}$
- $\mu_{\beta, \Lambda_{n}}^{\oplus}\left[\sigma_{0}\right]=n^{-1 / 8+o(1)}$

Summary : Ising Model

- Phase transition
- Critical Value : $\beta_{c}=\frac{1}{2} \log (1+\sqrt{2})$
- Conformal Invariance of the critical phase

Thm [Chelkak-Smirnov Invent.Math.'10]
The interface of critical Ising model on \mathbb{Z}^{2} with Dobrushin b.c. converges to SLE(3). (Nov. 2nd)

Consequence : the critical arm exponent

- subcritical $\beta<\beta_{\boldsymbol{c}}$
- $\mu_{\beta, \wedge_{n}}^{\oplus}\left[\sigma_{0}\right] \leq e^{-c n}$
- critical $\beta=\beta_{C}$
- $\mu_{\beta, \Lambda_{n}}^{\oplus}\left[\sigma_{0}\right]=n^{-1 / 8+o(1)}$
- supercritical $\beta>\beta_{C}$
- $\mu_{\beta, \Lambda_{n}}^{\oplus}\left[\sigma_{0}\right] \rightarrow \mu_{\beta}^{\oplus}\left[\sigma_{0}\right]>0$.

FK-Ising model, RCM with $q=2$

[Chelkak-Smirnov, Invent.Math.'10]
Critical FK-Ising on \mathbb{Z}^{2} with Dobrushin b.c. The interface converges to $\operatorname{SLE}_{16 / 3}$.

FK-Ising model, RCM with $q=2$

[Chelkak-Smirnov, Invent.Math.'10] Critical FK-Ising on \mathbb{Z}^{2} with Dobrushin b.c. The interface converges to $\operatorname{SLE}_{16 / 3}$.
[W. JSP'18]
Arm exponents for $\operatorname{SLE}_{16 / 3}$.

FK-Ising model, RCM with $q=2$

[W. JSP'18]
Arm exponents for $\mathrm{SLE}_{16 / 3}$.
[Chelkak-Smirnov, Invent.Math.'10]
Critical FK-Ising on \mathbb{Z}^{2} with Dobrushin b.c. The interface converges to $\mathrm{SLE}_{16 / 3}$.
[Chelkak-Duminil-Copin-Hongler'16] Russo-Seymour-Welsh (RSW).

FK-Ising model, RCM with $q=2$

[W. JSP'18]
Arm exponents for $\mathrm{SLE}_{16 / 3}$.
[Chelkak-Smirnov, Invent.Math.'10]
Critical FK-Ising on \mathbb{Z}^{2} with Dobrushin b.c. The interface converges to $\mathrm{SLE}_{16 / 3}$.
[Chelkak-Duminil-Copin-Hongler'16] Russo-Seymour-Welsh (RSW).

Conclusion
Arm exponents for Critical FK-Ising.

FK-Ising model

Boundary arm exponents : 6 patterns

boundary conditions (11). (010), (0101), (10101)
boundary conditions (01). (10), (101), (0101).

FK-Ising model

Boundary arm exponents : 6 patterns

boundary conditions (11). (010), (0101), (10101) boundary conditions (01). (10), (101), (0101).

Interior arm exponents : 3 patterns blue : (10), (1010), (101010) red : (101), (10101), (1010101)
yellow: (1100), (110100), (11010100)

FK-Ising model

Boundary arm exponents : 6 patterns

boundary conditions (11). (010), (0101), (10101) boundary conditions (01). (10), (101), (0101).

Interior arm exponents : 3 patterns blue : (10), (1010), (101010) red : (101), (10101), (1010101)
yellow : (1100), (110100), (11010100)
Universal arm exponents for RCM

$$
\alpha_{5}=2, \quad \kappa \in(4,8) .
$$

Critical Ising model, Dobrushin boundary condition

[Chelkak-Smirnov, Invent.Math.'10]
Critical Ising model on \mathbb{Z}^{2} with Dobrushin b.c. The interface converges to SLE_{3}.
courtesy to Smirnov.

Critical Ising model, Dobrushin boundary condition

[Chelkak-Smirnov, Invent.Math.'10]
Critical Ising model on \mathbb{Z}^{2} with Dobrushin b.c. The interface converges to SLE_{3}.
courtesy to Smirnov.
[W. AOP'18]
Arm exponents for SLE_{3}.

Critical Ising model, Dobrushin boundary condition

[Chelkak-Smirnov, Invent.Math.'10]
Critical Ising model on \mathbb{Z}^{2} with Dobrushin b.c. The interface converges to SLE_{3}.

courtesy to Smirnov.

[W. AOP'18]
Arm exponents for SLE_{3}.
[Chelkak-Duminil-Copin-Hongler'16]
Russo-Seymour-Welsh (RSW).

Critical Ising model, Dobrushin boundary condition

[Chelkak-Smirnov, Invent.Math.'10]
Critical Ising model on \mathbb{Z}^{2} with Dobrushin b.c. The interface converges to SLE_{3}.
courtesy to Smirnov.
[W. AOP'18]
Arm exponents for SLE_{3}.
[Chelkak-Duminil-Copin-Hongler'16]
Russo-Seymour-Welsh (RSW).

Conclusion
Arm exponents for critical Ising with Dobrushin boundary condition.

Critical Ising model, free boundary condition

[Hongler-Kytölä, JAMS'13]
Critical Ising model on \mathbb{Z}^{2} with free b.c.
The interface converges to $\operatorname{SLE}_{3}(-3 / 2)$.
courtesy to Smirnov.
[W. AOP'18]
Arm exponents for $\operatorname{SLE}_{3}(-3 / 2)$.
[Chelkak-Duminil-Copin-Hongler'16]
Russo-Seymour-Welsh (RSW).

Conclusion
Arm exponents for critical Ising with free boundary condition

Critical Ising model, Arm exponents

Interior arm exponents : alternating $\alpha_{2 j}=\left(16 j^{2}-1\right) / 24$. Boundary arm exponents : 6 patterns

$\left\{\begin{array}{l}\alpha_{2 j-1}^{+}=j(4 j+1) / 3, \\ \alpha_{2 j}^{+}=j(4 j+5) / 3 .\end{array}\right.$
b.c. ($\ominus f r e e)$

$\beta_{j}^{+}=j(j+1) / 3$.
b.c.(freefree)

$\gamma_{j}^{+}=j(2 j-1) / 6$.

Critical Ising model, Arm exponents

Interior arm exponents : alternating $\alpha_{2 j}=\left(16 j^{2}-1\right) / 24$. Boundary arm exponents : 6 patterns

$\left\{\begin{array}{l}\alpha_{2 j-1}^{+}=j(4 j+1) / 3, \\ \alpha_{2 j}^{+}=j(4 j+5) / 3 .\end{array}\right.$
b.c. (\ominus free)

$$
\beta_{j}^{+}=j(j+1) / 3
$$

$$
\gamma_{j}^{+}=j(2 j-1) / 6
$$

The asymptotic of the arm exponents is uniform over b.c. :

$$
\alpha_{j}^{+}, \beta_{j}^{+}, \gamma_{j}^{+} \approx j^{2} / \kappa, \quad \forall \kappa
$$

Critical Ising model, Cardy's formula

[Benoist-Duminil-Copin-Hongler'16]

- It converges to $f(\Omega ; a, b, c, d)$.
- It is conformally invariant.
- It only depends on the length L.
- But $f(L)=$?

Critical Ising model, Cardy's formula

[Benoist-Duminil-Copin-Hongler'16]

- It converges to $f(\Omega ; a, b, c, d)$.
- It is conformally invariant.
- It only depends on the length L.
- But $f(L)=$?

Thanks!

Conformal Invariance of 2D Lattice Model

- Percolation
- RCM
- GFF

- SLE(6)
- SLE(16/3)
- SLE(4)

