Conformal Invariance in 2D Lattice Models Part 4: Ising Model

Hao Wu (THU)

Part 1: Bernoulli Percolation Part 2: Random Cluster Model Part 3: FK-Ising Model Part 4: Ising model

(4) (3) (4) (4) (4)

Curie temperature [Pierre Curie, 1895]

Ferromagnet exhibits a phase transition by losing its magnetization when heated above a critical temperature.

Ising Model [Lenz, 1920]

A model for ferromagnet, to understand the critical temperature

- G = (V, E) is a finite graph
- $\sigma \in \{\oplus, \ominus\}^V$
- The Hamiltonian

$$H(\sigma) = -\sum_{x \sim y} \sigma_x \sigma_y$$

→ □ →

Ising model is the probability measure of inverse temperature $\beta > 0$:

$$\mu_{\beta,G}[\sigma] \propto \exp(-\beta H(\sigma))$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Ising model is the probability measure of inverse temperature $\beta > 0$:

$$\mu_{eta,G}[\sigma] \propto \exp(-eta H(\sigma))$$

< ロ > < 同 > < 回 > < 回 >

- FKG Inequality
- Phase Transition
- Critical Value
- Fermionic Observable
- Convergence of the Fermionic Observable

э

Ising Model—boundary conditions

Fix some boundary conditions (b.c.) $b \in \{\ominus, \oplus\}^{\partial G}$. The Ising model on *G* with b.c. *b* is the proba. measure :

 $\mu_{\beta,G}^{b}[\sigma] \propto \exp(-\beta H(\sigma)),$

for every $\sigma \in \{\ominus, \oplus\}^G$ such that $\sigma = b$ on ∂G .

< 日 > < 同 > < 回 > < 回 > < □ > <

Ising Model—boundary conditions

Fix some boundary conditions (b.c.) $b \in \{\ominus, \oplus\}^{\partial G}$. The Ising model on *G* with b.c. *b* is the proba. measure :

 $\mu_{\beta,G}^{b}[\sigma] \propto \exp(-\beta H(\sigma)),$

for every $\sigma \in \{\ominus, \oplus\}^G$ such that $\sigma = b$ on ∂G .

- free-b.c. $\mu_{\beta,G}^{f}$
- $\bullet \ \mu^\oplus_{\beta, {\cal G}} \ {\rm and} \ \mu^\ominus_{\beta, {\cal G}}$
- Dobrushin b.c. $\mu_{\beta,G}^{dobr}$
- b.c. induced by the config. outside G.

A (10) F (10)

Ising Model—boundary conditions

Fix some boundary conditions (b.c.) $b \in \{\ominus, \oplus\}^{\partial G}$. The Ising model on *G* with b.c. *b* is the proba. measure :

 $\mu_{\beta,G}^{b}[\sigma] \propto \exp(-\beta H(\sigma)),$

for every $\sigma \in \{\ominus, \oplus\}^G$ such that $\sigma = b$ on ∂G .

- free-b.c. $\mu^{f}_{\beta,G}$
- $\bullet \ \mu^\oplus_{\beta, G} \ \text{and} \ \mu^\ominus_{\beta, G}$
- Dobrushin b.c. $\mu_{\beta,G}^{dobr}$
- b.c. induced by the config. outside G.

Domain Markov Property

Suppose $G' \subset G$, and for b.c. $b \in \{\ominus, \oplus\}^{\partial G}$ and $\psi \in \{\ominus, \oplus\}^{G \setminus G'}$ such that $\psi = b$ on ∂G ,

$$\mu^{\boldsymbol{b}}_{\boldsymbol{eta},\boldsymbol{G}}[\boldsymbol{X}\,|\,\sigma_{\boldsymbol{X}}=\psi_{\boldsymbol{X}}, \boldsymbol{X}\in\boldsymbol{G}\setminus\boldsymbol{G}']=\mu^{\psi}_{\boldsymbol{eta},\boldsymbol{G}'}[\boldsymbol{X}].$$

FKG Inequality

Theorem (FKG Inequality)

Fix $\beta > 0$, a finite graph G and some boundary conditions b. For any two increasing events A and B, we have

$$\mu^{\boldsymbol{b}}_{\boldsymbol{\beta},\boldsymbol{G}}[\boldsymbol{A}\cap \boldsymbol{B}] \geq \mu^{\boldsymbol{b}}_{\boldsymbol{\beta},\boldsymbol{G}}[\boldsymbol{A}]\mu^{\boldsymbol{b}}_{\boldsymbol{\beta},\boldsymbol{G}}[\boldsymbol{B}].$$

< ロ > < 同 > < 回 > < 回 >

Theorem (FKG Inequality)

Fix $\beta > 0$, a finite graph G and some boundary conditions b. For any two increasing events A and B, we have

$$\mu^{\mathbf{b}}_{\beta,\mathbf{G}}[\mathbf{A}\cap\mathbf{B}] \geq \mu^{\mathbf{b}}_{\beta,\mathbf{G}}[\mathbf{A}]\mu^{\mathbf{b}}_{\beta,\mathbf{G}}[\mathbf{B}].$$

Corollary (Comparison between boundary conditions)

Fix $\beta > 0$, a finite graph G. For boundary conditions $b_1 \le b_2$ and any increasing event A, we have

$$\mu_{\beta,\boldsymbol{G}}^{\boldsymbol{b}_1}[\boldsymbol{A}] \leq \mu_{\beta,\boldsymbol{G}}^{\boldsymbol{b}_2}[\boldsymbol{A}].$$

- FKG Inequality ✓
- Phase Transition
- Critical Value
- Fermionic Observable
- Convergence of the Fermionic Observable

э

Phase Transition—Infinite-volume measure

Proposition

Fix $\beta > 0$. There exist two (possibly equal) infinite-volume measures μ_{β}^{\oplus} and μ_{β}^{\ominus} such that for any event *A* depending on a finite number of edges,

$$\lim_{n\to\infty}\mu_{\beta,\Lambda_n}^{\oplus}[A] = \mu_{\beta}^{\oplus}[A], \quad \lim_{n\to\infty}\mu_{\beta,\Lambda_n}^{\ominus}[A] = \mu_{\beta}^{\ominus}[A].$$

Phase Transition—Infinite-volume measure

Proposition

Fix $\beta > 0$. There exist two (possibly equal) infinite-volume measures μ_{β}^{\oplus} and μ_{β}^{\ominus} such that for any event *A* depending on a finite number of edges,

$$\lim_{n\to\infty}\mu_{\beta,\Lambda_n}^{\oplus}[A] = \mu_{\beta}^{\oplus}[A], \quad \lim_{n\to\infty}\mu_{\beta,\Lambda_n}^{\ominus}[A] = \mu_{\beta}^{\ominus}[A].$$

Proposition

- μ^\oplus_β and μ^\ominus_β are translation invariant
- μ^\oplus_β and μ^\oplus_β are ergodic

For μ_{β}^{\oplus} or μ_{β}^{\ominus} , there is no infinite cluster almost surely, or there exists a unique infinite cluster almost surely.

< ロ > < 同 > < 回 > < 回 >

Phase Transition—the critical value

Theorem

There exists $\beta_c \in (0,\infty)$ such that

$$\mu_{\beta}^{\oplus}[\sigma_{0}] = \mathbf{0}, \quad \text{if } \beta < \beta_{c}; \quad \mu_{\beta}^{\oplus}[\sigma_{0}] > \mathbf{0}, \quad \text{if } \beta > \beta_{c}.$$

Moreover,

$$\beta_c = \frac{1}{2}\log(1+\sqrt{2}).$$

э

Critical Value : Edwards-Sokal coupling

Edwards-Sokal coupling

Fix a finite graph G and $p \in (0, 1)$.

- Sample $\omega \sim$ random-cluster model with (p, 2) and free-b.c.
- Assign indep. to each cluster of ω a spin \oplus or \ominus with proba. 1/2.

The obtained spin config. has the law of Ising model with free-b.c. and

$$\beta = \frac{1}{2} \log \frac{1}{1-p}.$$

- A B M A B M

Critical Value : Edwards-Sokal coupling

Edwards-Sokal coupling

Fix a finite graph G and $p \in (0, 1)$.

- Sample $\omega \sim$ random-cluster model with (p, 2) and free-b.c.
- Assign indep. to each cluster of ω a spin \oplus or \ominus with proba. 1/2.

The obtained spin config. has the law of Ising model with free-b.c. and

$$\beta = \frac{1}{2} \log \frac{1}{1-p}.$$

wired-b.c. $\rightarrow \oplus$ -b.c. (\ominus -b.c.)

イロト イヨト イヨト イヨト

Critical Value : Edwards-Sokal coupling

Edwards-Sokal coupling

Fix a finite graph G and $p \in (0, 1)$.

- Sample $\omega \sim$ random-cluster model with (p,2) and free-b.c.
- Assign indep. to each cluster of ω a spin \oplus or \ominus with proba. 1/2.

The obtained spin config. has the law of Ising model with free-b.c. and

$$\beta = \frac{1}{2} \log \frac{1}{1-p}.$$

wired-b.c. $\rightarrow \oplus$ -b.c. (\ominus -b.c.)

Consequence

$$\mu_{\beta,G}^{f}[\sigma_{x}\sigma_{y}] = \phi_{\rho,2,G}^{0}[x \leftrightarrow y], \quad \mu_{\beta,G}^{\oplus}[\sigma_{x}] = \phi_{\rho,2,G}^{1}[x \leftrightarrow \partial G].$$

Phase Transition—the critical value

Theorem

There exists $\beta_c \in (0, \infty)$ such that

$$\mu_{\beta}^{\oplus}[\sigma_0] = \mathbf{0}, \quad \textit{if } \beta < \beta_{\textit{c}}; \quad \mu_{\beta}^{\oplus}[\sigma_0] > \mathbf{0}, \quad \textit{if } \beta > \beta_{\textit{c}}.$$

Moreover,

$$\beta_c = \frac{1}{2}\log(1+\sqrt{2}).$$

э

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Phase Transition—the critical value

Theorem

There exists $\beta_c \in (0,\infty)$ such that

$$\mu^\oplus_\beta[\sigma_0] = \mathbf{0}, \quad \textit{if} \ \beta < \beta_{\mathbf{c}}; \quad \mu^\oplus_\beta[\sigma_0] > \mathbf{0}, \quad \textit{if} \ \beta > \beta_{\mathbf{c}}.$$

Moreover,

$$\beta_c = \frac{1}{2}\log(1+\sqrt{2}).$$

In fact, we have $\mu_{\beta_c}^{\oplus}[\sigma_0] = 0$.

- For $\beta \leq \beta_c$, we have $\mu_{\beta}^{\oplus} = \mu_{\beta}^{\ominus}$ and this is the unique infinite-volume measure.
- For $\beta > \beta_c$, the set of infinite-volume measures is given by

$$\{\lambda \mu_{\beta}^{\oplus} + (1-\lambda)\mu_{\beta}^{\ominus} : \lambda \in [0,1]\}.$$

- FKG Inequality ✓
- Phase Transition
- Critical Value ✓
- Fermionic Observable
- Convergence of the Fermionic Observable

3

High temperature expansion

Fix a finite graph G = (V, E)

 \mathcal{E}_G : the collection of even subgraph of *G*, i.e. the set of subgraphs ω of *G* such that every vertex in *V* is the end-point of an even number of edges of ω .

Generally, for $A \subset V$, let $\mathcal{E}_G(A)$ be the set of subgraphs ω of G s.t.

 every vertex of V \ A is the end-point of an even number of edges of ω,

• every vertex of *A* is the end-point of an odd number of edges of ω . Note that if #A is odd, then $\mathcal{E}_G(A)$ is empty.

High temperature expansion

Let *G* be a finite graph and $\beta > 0$. We have

$$\mathcal{Z}^{f}_{\beta,G} = 2^{\#V(G)} \cosh(\beta)^{\#E(G)} \sum_{\omega \in \mathcal{E}_{G}} \tanh(\beta)^{o(\omega)}.$$

 For each σ ∈ {⊕, ⊖}^{V(G)},
 define ω[σ] ∈ {0, 1}^{E(G*)}: ∀e = (x, y) ∈ E(G),

$$\omega[\sigma](\boldsymbol{e}^*) = egin{cases} 1, & ext{if } \sigma_{\boldsymbol{\chi}}
eq \sigma_{\boldsymbol{y}}, \ 0, & ext{otherwise}. \end{cases}$$

 For each σ ∈ {⊕, ⊖}^{V(G)},
 define ω[σ] ∈ {0,1}^{E(G*)}: ∀e = (x, y) ∈ E(G),

$$\omega[\sigma]({\pmb{e}}^*) = egin{cases} 1, & ext{if } \sigma_{\pmb{\chi}}
eq \sigma_{\pmb{y}}, \ 0, & ext{otherwise}. \end{cases}$$

• One-to-one for any b.c. b

• Two-to-one for free b.c.

 For each σ ∈ {⊕, ⊖}^{V(G)},
 define ω[σ] ∈ {0,1}^{E(G*)}: ∀e = (x, y) ∈ E(G),

$$\omega[\sigma](\boldsymbol{e}^*) = egin{cases} 1, & ext{if } \sigma_{\boldsymbol{\chi}}
eq \sigma_{\boldsymbol{y}}, \ 0, & ext{otherwise}. \end{cases}$$

• One-to-one for any b.c. *b*
If
$$\mathbb{P}[\sigma] \propto e^{-\beta H(\sigma)}$$
, then $\mathbb{P}[\omega] \propto e^{-2\beta o(\omega)}$.

 For each σ ∈ {⊕, ⊖}^{V(G)},
 define ω[σ] ∈ {0,1}^{E(G*)}: ∀e = (x, y) ∈ E(G),

$$\omega[\sigma](\boldsymbol{e}^*) = egin{cases} 1, & ext{if } \sigma_{\boldsymbol{\chi}}
eq \sigma_{\boldsymbol{y}}, \ 0, & ext{otherwise}. \end{cases}$$

• One-to-one for any b.c. *b* If $\mathbb{P}[\sigma] \propto e^{-\beta H(\sigma)}$, then $\mathbb{P}[\omega] \propto e^{-2\beta o(\omega)}$.

Proposition

$$\mathcal{Z}_{\beta,G}^{\oplus} = e^{\beta \# E(G^*)} \sum_{\omega \in \mathcal{E}_{G^*}} e^{-2\beta o(\omega)}, \quad \mathcal{Z}_{\beta,G}^{dobr} = e^{\beta \# E(G^*)} \sum_{\omega \in \mathcal{E}_{G^*}(\{a,b\})} e^{-2\beta o(\omega)}.$$
Here We (THU)

Krammers-Wannier duality

Let $\beta > 0$ and define $\beta^* \in (0, \infty)$ such that

$$\mathsf{tanh}(eta^*) = e^{-2eta}$$

Then for every graph G, we have

$$2^{\#V(G^*)}\cosh(\beta^*)^{\#E(G^*)}\mathcal{Z}_{\beta,G}^{\oplus} = e^{\beta \#E(G^*)}\mathcal{Z}_{\beta^*,G^*}^f.$$

Hao Wu (THU)

< ロ > < 同 > < 回 > < 回 >

- FKG Inequality ✓
- Phase Transition
- Critical Value ✓
- Fermionic Observable
- Convergence of the Fermionic Observable

3

.

A D M A A A M M

- \mathbb{L}^* : the dual lattice
- \mathbb{L}^{\diamond} : the medial lattice.

 $V(\mathbb{L}^{\diamond}) = \{ \text{centers of edges in } E(\mathbb{L}) \} \text{ and } E(\mathbb{L}^{\diamond}) \sim \text{nearest neighbours.}$

- $(\Omega^{\diamond}_{\delta}; a_{\delta}, b_{\delta})$: a spin-Dobrushin domain
- For z_δ ∈ Ω[◊]_δ, let *E*(a_δ, z_δ) = collections of contours on Ω_δ composed of loops and an interface from a_δ to z_δ.

The spin-Ising fermionic observable :

$$F_{\delta}(z_{\delta}) = \frac{\sum_{\omega \in \mathcal{E}(a_{\delta}, z_{\delta})} e^{-\frac{1}{2}iW_{\gamma(\omega)}(a_{\delta}, z_{\delta})}(\sqrt{2} - 1)^{o(\omega)}}{\sum_{\omega \in \mathcal{E}(a_{\delta}, b_{\delta})} e^{-\frac{1}{2}iW_{\gamma(\omega)}(a_{\delta}, b_{\delta})}(\sqrt{2} - 1)^{o(\omega)}}$$

- for ω ∈ 𝔅(𝔹_δ, ż_δ), denote by γ(ω) the interface from 𝔹_δ to ż_δ
- *W*_γ(*a*_δ, *z*_δ) is the total winding of the curve γ between *a*_δ and *z*_δ

The spin-Ising fermionic observable :

$$F_{\delta}(z_{\delta}) = \frac{\sum_{\omega \in \mathcal{E}(a_{\delta}, z_{\delta})} e^{-\frac{1}{2}iW_{\gamma(\omega)}(a_{\delta}, z_{\delta})}(\sqrt{2} - 1)^{o(\omega)}}{\sum_{\omega \in \mathcal{E}(a_{\delta}, b_{\delta})} e^{-\frac{1}{2}iW_{\gamma(\omega)}(a_{\delta}, b_{\delta})}(\sqrt{2} - 1)^{o(\omega)}}$$

Theorem

$$F_{\delta}(\cdot) \rightarrow \sqrt{\varphi'(\cdot)/\varphi'(b)}, \quad as \ \delta \rightarrow 0,$$

where φ is any conformal map from Ω onto \mathbb{H} that sends $a \to \infty$ and $b \to 0$. The convergence is local uniform.

Theorem

$$\mathcal{F}_{\delta}(\cdot) o \sqrt{arphi'(\cdot)/arphi'(b)}, \quad as \ \delta o \mathbf{0},$$

where φ is any conformal map from Ω onto \mathbb{H} that sends $a \to \infty$ and $b \to 0$. The convergence is local uniform.

イロト イヨト イヨト イヨト

Strategy

- F_{δ} is s-holomorphic
- the associated function H_{δ} converges to $\Im \varphi$
- F_{δ} converges to $\sqrt{\varphi'(\cdot)/\varphi'(b)}$

For $\omega \in \mathcal{E}(a_{\delta}, x_{\delta})$, define

$$x_{\omega} = \frac{1}{\mathcal{Z}}(\sqrt{2}-1)^{o(\omega)}\exp\left(-\frac{i}{2}(W_{\gamma(\omega)}(a_{\delta},x_{\delta})-W_{\gamma_0}(a_{\delta},b_{\delta}))\right).$$

For $\omega' \in \mathcal{E}(a_{\delta}, y_{\delta})$, define

$$y_{\omega'} = rac{1}{\mathcal{Z}} (\sqrt{2} - 1)^{o(\omega')} \exp\left(-rac{i}{2} (W_{\gamma(\omega')}(a_{\delta}, y_{\delta}) - W_{\gamma_0}(a_{\delta}, b_{\delta}))
ight).$$

Suppose $e = (x_{\delta}, y_{\delta})$ is horizontal, we wish to show

$$\sum_{\omega\in\mathcal{E}(\pmb{a}_{\delta},\pmb{x}_{\delta})} \Re(\pmb{x}_{\omega}) = \sum_{\omega'\in\mathcal{E}(\pmb{a}_{\delta},\pmb{y}_{\delta})} \Re(\pmb{y}_{\omega'}).$$

Hao Wu (THU)

3

(a)

configuration	Case 1(a)	Case 1(b)	Case 2	Case 3(a)	Case 3(b)	Case 4
x_{ω}	x_ω	x_{ω}	x_ω	x_ω	x_ω	x_{ω}
$y_{\omega'}$	$(\sqrt{2}-1){ m e}^{i\pi/4}x_\omega$	$\frac{e^{i\pi/4}}{\sqrt{2}-1}x_{\omega}$	${ m e}^{-i\pi/4} x_\omega$	${ m e}^{3i\pi/4}x_\omega$	${ m e}^{3i\pi/4}x_\omega$	${ m e}^{-5i\pi/4}x_\omega$
arg. $x_\omega \mod \pi$	$5\pi/8$	$\pi/8$	$\pi/8$	$5\pi/8$	$5\pi/8$	$5\pi/8$

Hao Wu (THU)

2D Lattice Models

- Phase transition
- Critical Value : $\beta_c = \frac{1}{2} \log(1 + \sqrt{2})$
- Conformal Invariance of the critical phase

Thm [Chelkak-Smirnov Invent.Math.'10]

The interface of critical Ising model on \mathbb{Z}^2 with Dobrushin b.c. converges to SLE(3). (Nov. 2nd)

A (1) > A (2) > A

- Phase transition
- Critical Value : $\beta_c = \frac{1}{2} \log(1 + \sqrt{2})$
- Conformal Invariance of the critical phase

Thm [Chelkak-Smirnov Invent.Math.'10]

The interface of critical Ising model on \mathbb{Z}^2 with Dobrushin b.c. converges to SLE(3). (Nov. 2nd)

Consequence : the critical arm exponent

• subcritical $\beta < \beta_c$

•
$$\mu_{\beta,\Lambda_n}^{\oplus}[\sigma_0] \leq e^{-cn}$$

- Phase transition
- Critical Value : $\beta_c = \frac{1}{2} \log(1 + \sqrt{2})$
- Conformal Invariance of the critical phase

Thm [Chelkak-Smirnov Invent.Math.'10]

The interface of critical Ising model on \mathbb{Z}^2 with Dobrushin b.c. converges to SLE(3). (Nov. 2nd)

Consequence : the critical arm exponent

- subcritical $\beta < \beta_c$
- critical $\beta = \beta_c$

•
$$\mu_{\beta,\Lambda_n}^{\oplus}[\sigma_0] \le e^{-cn}$$

• $\mu_{\beta,\Lambda_n}^{\oplus}[\sigma_0] = n^{-1/8+o(1)}$

- Phase transition
- Critical Value : $\beta_c = \frac{1}{2} \log(1 + \sqrt{2})$
- Conformal Invariance of the critical phase

Thm [Chelkak-Smirnov Invent.Math.'10]

The interface of critical Ising model on \mathbb{Z}^2 with Dobrushin b.c. converges to SLE(3). (Nov. 2nd)

Consequence : the critical arm exponent

- subcritical $\beta < \beta_c$
- critical $\beta = \beta_c$
- supercritical $\beta > \beta_c$

•
$$\mu_{\beta,\Lambda_n}^{\oplus}[\sigma_0] \leq e^{-cn}$$

•
$$\mu_{\beta,\Lambda_n}^{\oplus}[\sigma_0] = n^{-1/6+o(1)}$$

•
$$\mu_{\beta,\Lambda_n}^{\oplus}[\sigma_0] \to \mu_{\beta}^{\oplus}[\sigma_0] > 0.$$

[Chelkak-Smirnov, Invent.Math.'10]

Critical FK-Ising on \mathbb{Z}^2 with Dobrushin b.c. The interface converges to SLE_{16/3}.

< ロ > < 同 > < 回 > < 回 >

[Chelkak-Smirnov, Invent.Math.'10]

Critical FK-Ising on \mathbb{Z}^2 with Dobrushin b.c. The interface converges to SLE_{16/3}.

[W. JSP'18]

Arm exponents for $SLE_{16/3}$.

[Chelkak-Smirnov, Invent.Math.'10]

Critical FK-Ising on \mathbb{Z}^2 with Dobrushin b.c. The interface converges to SLE_{16/3}.

[W. JSP'18]

Arm exponents for $SLE_{16/3}$.

[Chelkak-Duminil-Copin-Hongler'16]

Russo-Seymour-Welsh (RSW).

[Chelkak-Smirnov, Invent.Math.'10]

Critical FK-Ising on \mathbb{Z}^2 with Dobrushin b.c. The interface converges to SLE_{16/3}.

< ロ > < 同 > < 回 > < 回 >

[W. JSP'18]

Arm exponents for $SLE_{16/3}$.

[Chelkak-Duminil-Copin-Hongler'16]

Russo-Seymour-Welsh (RSW).

Conclusion

Arm exponents for Critical FK-Ising.

FK-Ising model

Boundary arm exponents : 6 patterns

boundary conditions (11). (010), (0101), (10101)

boundary conditions (01). (10), (101), (0101).

< ロ > < 同 > < 回 > < 回 >

FK-Ising model

Boundary arm exponents : 6 patterns

boundary conditions (11). (010), (0101), (10101)

boundary conditions (01). (10), (101), (0101).

Interior arm exponents : 3 patterns blue : (10), (1010), (101010) red : (101), (10101), (1010101) yellow : (1100), (110100), (11010100)

FK-Ising model

Boundary arm exponents : 6 patterns

boundary conditions (11). (010), (0101), (10101)

boundary conditions (01). (10), (101), (0101).

Interior arm exponents : 3 patterns blue : (10), (1010), (101010) red : (101), (10101), (1010101) yellow : (1100), (110100), (11010100)

Universal arm exponents for RCM

$$\alpha_5 = 2, \quad \kappa \in (4, 8).$$

< ロ > < 同 > < 回 > < 回 >

[Chelkak-Smirnov, Invent.Math.'10]

Critical Ising model on \mathbb{Z}^2 with Dobrushin b.c. The interface converges to SLE₃.

courtesy to Smirnov.

[Chelkak-Smirnov, Invent.Math.'10]

Critical Ising model on \mathbb{Z}^2 with Dobrushin b.c. The interface converges to SLE₃.

courtesy to Smirnov.

[W. AOP'18] Arm exponents for SLE₃.

A (1) > A (2) > A

[Chelkak-Smirnov, Invent.Math.'10]

Critical Ising model on \mathbb{Z}^2 with Dobrushin b.c. The interface converges to SLE₃.

courtesy to Smirnov.

[W. AOP'18] Arm exponents for SLE₃. [Chelkak-Duminil-Copin-Hongler'16] Russo-Seymour-Welsh (RSW).

• • • • • • • • • • • •

[Chelkak-Smirnov, Invent.Math.'10]

Critical Ising model on \mathbb{Z}^2 with Dobrushin b.c. The interface converges to SLE₃.

courtesy to Smirnov.

[W. AOP'18] Arm exponents for SLE₃. [Chelkak-Duminil-Copin-Hongler'16] Russo-Seymour-Welsh (RSW).

Conclusion

Arm exponents for critical Ising with Dobrushin boundary condition.

Hao Wu (THU)

2D Lattice Models

Critical Ising model, free boundary condition

[Hongler-Kytölä, JAMS'13]

Critical Ising model on \mathbb{Z}^2 with free b.c. The interface converges to $SLE_3(-3/2)$.

courtesy to Smirnov.

[W. AOP'18][Chelkak-Duminil-Copin-Hongler'16]Arm exponents for SLE3(-3/2).Russo-Seymour-Welsh (RSW).

Conclusion

Arm exponents for critical Ising with free boundary condition

Hao Wu (THU)

2D Lattice Models

イロト イヨト イヨト イヨト

Critical Ising model, Arm exponents

Interior arm exponents : alternating $\alpha_{2j} = (16j^2 - 1)/24$. Boundary arm exponents : 6 patterns

 $\begin{cases} \alpha^+_{2j-1} = j(4j+1)/3, \\ \alpha^+_{2j} = j(4j+5)/3. \end{cases}$

 $\beta_j^+ = j(j+1)/3.$

Critical Ising model, Arm exponents

Interior arm exponents : alternating $\alpha_{2j} = (16j^2 - 1)/24$. Boundary arm exponents : 6 patterns

The asymptotic of the arm exponents is uniform over b.c. :

$$\alpha_j^+, \beta_j^+, \gamma_j^+ \approx j^2/\kappa, \quad \forall \kappa.$$

Critical Ising model, Cardy's formula

[Benoist-Duminil-Copin-Hongler'16]

- It converges to $f(\Omega; a, b, c, d)$.
- It is conformally invariant.
- It only depends on the length L.

4 A N

• But *f*(*L*) =?

Critical Ising model, Cardy's formula

[Benoist-Duminil-Copin-Hongler'16]

- It converges to $f(\Omega; a, b, c, d)$.
- It is conformally invariant.
- It only depends on the length L.

< A >

• But *f*(*L*) =?

$$\approx \exp(-L/6)$$

Thanks!

Conformal Invariance of 2D Lattice Model

- Percolation
- RCM
- GFF

- SLE(6)
- SLE(16/3)
- SLE(4)

- Ising model
- Potts *q* = 3
- Potts q = 4
- SLE(3)
- SLE(10/3)?
- SLE(4)?

イロト イポト イヨト イヨト