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Ising Model

Curie temperature [Pierre Curie, 1895]
Ferromagnet exhibits a phase transition by losing its magnetization
when heated above a critical temperature.

Ising Model [Lenz, 1920]

A model for ferromagnet, to understand the critical temperature

G = (V ,E) is a finite graph
σ ∈ {⊕,	}V
The Hamiltonian

H(σ) = −
∑
x∼y

σxσy
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Ising Model

Ising model is the probability
measure of inverse temperature
β > 0 :

µβ,G[σ] ∝ exp(−βH(σ))
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Ising Model

FKG Inequality
Phase Transition
Critical Value
Fermionic Observable
Convergence of the Fermionic Observable
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Ising Model—boundary conditions

Fix some boundary conditions (b.c.) b ∈ {	,⊕}∂G. The Ising model on
G with b.c. b is the proba. measure :

µb
β,G[σ] ∝ exp(−βH(σ)),

for every σ ∈ {	,⊕}G such that σ = b on ∂G.

free-b.c. µf
β,G

µ⊕β,G and µ	β,G
Dobrushin b.c. µdobr

β,G

b.c. induced by the config. outside G.
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Domain Markov Property

Suppose G′ ⊂ G, and for b.c. b ∈ {	,⊕}∂G and ψ ∈ {	,⊕}G\G′ such
that ψ = b on ∂G,

µb
β,G[X |σx = ψx , x ∈ G \G′] = µψβ,G′ [X ].
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FKG Inequality

Theorem (FKG Inequality)
Fix β > 0, a finite graph G and some boundary conditions b. For any
two increasing events A and B, we have

µb
β,G[A ∩ B] ≥ µb

β,G[A]µb
β,G[B].

Corollary (Comparison between boundary conditions)
Fix β > 0, a finite graph G. For boundary conditions b1 ≤ b2 and any
increasing event A, we have

µb1
β,G[A] ≤ µb2

β,G[A].
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Ising Model

FKG Inequality X

Phase Transition
Critical Value
Fermionic Observable
Convergence of the Fermionic Observable
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Phase Transition—Infinite-volume measure

Proposition
Fix β > 0. There exist two (possibly equal) infinite-volume measures
µ⊕β and µ	β such that for any event A depending on a finite number of
edges,

lim
n→∞

µ⊕β,Λn
[A] = µ⊕β [A], lim

n→∞
µ	β,Λn

[A] = µ	β [A].

Proposition

µ⊕β and µ	β are translation invariant

µ⊕β and µ	β are ergodic

For µ⊕β or µ	β , there is no infinite cluster almost surely, or there exists a
unique infinite cluster almost surely.
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Phase Transition—the critical value

Theorem
There exists βc ∈ (0,∞) such that

µ⊕β [σ0] = 0, if β < βc ; µ⊕β [σ0] > 0, if β > βc .

Moreover,

βc =
1
2

log(1 +
√

2).
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Critical Value : Edwards-Sokal coupling

Edwards-Sokal coupling

Fix a finite graph G and p ∈ (0,1).
Sample ω ∼ random-cluster model with (p,2) and free-b.c.
Assign indep. to each cluster of ω a spin ⊕ or 	 with proba. 1/2.

The obtained spin config. has the law of Ising model with free-b.c. and

β =
1
2

log
1

1− p
.

wired-b.c. −→ ⊕-b.c. (	-b.c.)

Consequence

µf
β,G[σxσy ] = φ0

p,2,G[x ↔ y ], µ⊕β,G[σx ] = φ1
p,2,G[x ↔ ∂G].
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Phase Transition—the critical value

Theorem
There exists βc ∈ (0,∞) such that

µ⊕β [σ0] = 0, if β < βc ; µ⊕β [σ0] > 0, if β > βc .

Moreover,

βc =
1
2

log(1 +
√

2).

In fact, we have µ⊕βc
[σ0] = 0.

For β ≤ βc , we have µ⊕β = µ	β and this is the unique
infinite-volume measure.
For β > βc , the set of infinite-volume measures is given by

{λµ⊕β + (1− λ)µ	β : λ ∈ [0,1]}.
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Ising Model

FKG Inequality X

Phase Transition X

Critical Value X

Fermionic Observable
Convergence of the Fermionic Observable
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High temperature expansion

Fix a finite graph G = (V ,E)
EG : the collection of even subgraph of G, i.e. the set of subgraphs ω of
G such that every vertex in V is the end-point of an even number of
edges of ω.
Generally, for A ⊂ V , let EG(A) be the set of subgraphs ω of G s.t.

every vertex of V \ A is the end-point of an even number of edges
of ω,
every vertex of A is the end-point of an odd number of edges of ω.

Note that if #A is odd, then EG(A) is empty.

High temperature expansion

Let G be a finite graph and β > 0. We have

Z f
β,G = 2#V (G) cosh(β)#E(G)

∑
ω∈EG

tanh(β)o(ω).
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Low temperature expansion

For each σ ∈ {⊕,	}V (G),
define ω[σ] ∈ {0,1}E(G∗) :
∀e = (x , y) ∈ E(G),

ω[σ](e∗) =

{
1, if σx 6= σy ,

0, otherwise.
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One-to-one for any b.c. b Two-to-one for free b.c.

If P[σ] ∝ e−βH(σ), then P[ω] ∝ e−2βo(ω).

Proposition

Z⊕β,G = eβ#E(G∗)
∑
ω∈EG∗

e−2βo(ω), Zdobr
β,G = eβ#E(G∗)

∑
ω∈EG∗ ({a,b})

e−2βo(ω).
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Krammers-Wannier duality

Let β > 0 and define β∗ ∈ (0,∞) such that

tanh(β∗) = e−2β.

Then for every graph G, we have

2#V (G∗) cosh(β∗)#E(G∗)Z⊕β,G = eβ#E(G∗)Z f
β∗,G∗ .
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Ising Model

FKG Inequality X

Phase Transition X

Critical Value X

Fermionic Observable
Convergence of the Fermionic Observable
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Fermionic observable

L : the square lattice
L∗ : the dual lattice
L� : the medial lattice.

V (L�) = {centers of edges in E(L)} and E(L�) ∼ nearest neighbours.

(Ω�δ ; aδ,bδ) : a spin-Dobrushin domain
For zδ ∈ Ω�δ , let E(aδ, zδ) =
collections of contours on Ωδ

composed of loops and an interface
from aδ to zδ.
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Fermionic observable

The spin-Ising fermionic observable :

Fδ(zδ) =

∑
ω∈E(aδ,zδ) e−

1
2 iWγ(ω)(aδ,zδ)(

√
2− 1)o(ω)∑

ω∈E(aδ,bδ) e−
1
2 iWγ(ω)(aδ,bδ)(

√
2− 1)o(ω)

for ω ∈ E(aδ, zδ), denote by γ(ω) the
interface from aδ to zδ
Wγ(aδ, zδ) is the total winding of the
curve γ between aδ and zδ
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Fermionic Observable

The spin-Ising fermionic observable :

Fδ(zδ) =

∑
ω∈E(aδ,zδ) e−

1
2 iWγ(ω)(aδ,zδ)(

√
2− 1)o(ω)∑

ω∈E(aδ,bδ) e−
1
2 iWγ(ω)(aδ,bδ)(

√
2− 1)o(ω)

Theorem

Fδ(·)→
√
ϕ′(·)/ϕ′(b), as δ → 0,

where ϕ is any conformal map from Ω
onto H that sends a→∞ and b → 0.
The convergence is local uniform.
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Fermionic Observable

Theorem

Fδ(·)→
√
ϕ′(·)/ϕ′(b), as δ → 0,

where ϕ is any conformal map from Ω
onto H that sends a→∞ and b → 0.
The convergence is local uniform.

Strategy
Fδ is s-holomorphic
the associated function Hδ converges to =ϕ
Fδ converges to

√
ϕ′(·)/ϕ′(b)
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Fermionic Observable

For ω ∈ E(aδ, xδ), define

xω =
1
Z (
√

2− 1)o(ω) exp

(
− i

2
(Wγ(ω)(aδ, xδ)−Wγ0(aδ,bδ))

)
.

For ω′ ∈ E(aδ, yδ), define

yω′ =
1
Z (
√

2− 1)o(ω′) exp

(
− i

2
(Wγ(ω′)(aδ, yδ)−Wγ0(aδ,bδ))

)
.

Suppose e = (xδ, yδ) is horizontal, we wish to show∑
ω∈E(aδ,xδ)

<(xω) =
∑

ω′∈E(aδ,yδ)

<(yω′).
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Fermionic Observable
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Summary : Ising Model

Phase transition
Critical Value : βc = 1

2 log(1 +
√

2)

Conformal Invariance of the critical phase

Thm [Chelkak-Smirnov Invent.Math.’10]

The interface of critical Ising model on Z2 with
Dobrushin b.c. converges to SLE(3). (Nov. 2nd)

Consequence : the critical arm exponent

subcritical β < βc µ⊕β,Λn
[σ0] ≤ e−cn

critical β = βc µ⊕β,Λn
[σ0] = n−1/8+o(1)

supercritical β > βc µ⊕β,Λn
[σ0]→ µ⊕β [σ0] > 0.
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critical β = βc µ⊕β,Λn
[σ0] = n−1/8+o(1)

supercritical β > βc µ⊕β,Λn
[σ0]→ µ⊕β [σ0] > 0.
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FK-Ising model, RCM with q = 2

[Chelkak-Smirnov, Invent.Math.’10]

Critical FK-Ising on Z2 with Dobrushin b.c.
The interface converges to SLE16/3.

[W. JSP’18]
Arm exponents for SLE16/3.

[Chelkak-Duminil-Copin-Hongler’16]

Russo-Seymour-Welsh (RSW).

Conclusion
Arm exponents for Critical FK-Ising.
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FK-Ising model

Boundary arm exponents : 6 patterns
η

1 1

0 01

η

1 1

0 01
1

η

1 1

0 01
1

1

boundary conditions (11).
(010), (0101), (10101)

η

0 1

01

η

0 1

01
1

η

0 1

0
0

1
1

boundary conditions (01).
(10), (101), (0101).

Interior arm exponents : 3 patterns
blue : (10), (1010), (101010)
red : (101), (10101), (1010101)
yellow : (1100), (110100), (11010100)

Universal arm exponents for RCM

α5 = 2, κ ∈ (4,8).
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Critical Ising model, Dobrushin boundary condition

courtesy to Smirnov.

[Chelkak-Smirnov, Invent.Math.’10]

Critical Ising model on Z2 with Dobrushin b.c.
The interface converges to SLE3.

[W. AOP’18]
Arm exponents for SLE3.

[Chelkak-Duminil-Copin-Hongler’16]

Russo-Seymour-Welsh (RSW).

Conclusion
Arm exponents for critical Ising with Dobrushin boundary condition.
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Critical Ising model, free boundary condition

courtesy to Smirnov.

[Hongler-Kytölä, JAMS’13]

Critical Ising model on Z2 with free b.c.
The interface converges to SLE3(−3/2).

[W. AOP’18]
Arm exponents for SLE3(−3/2).

[Chelkak-Duminil-Copin-Hongler’16]

Russo-Seymour-Welsh (RSW).

Conclusion
Arm exponents for critical Ising with free boundary condition
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Critical Ising model, Arm exponents

Interior arm exponents : alternating α2j = (16j2 − 1)/24.
Boundary arm exponents : 6 patterns

b.c. (	⊕)
η

⊕ ⊕

	 		
⊕

η

	 ⊕

⊕
	

	
⊕

b.c. (	free)
η

	 free

	
⊕ ⊕

	

η

	 free

	
⊕ ⊕

	
⊕

b.c.(freefree)
η

free free

	 		
⊕

η

free free

	 		
⊕

⊕

{
α+

2j−1 = j(4j + 1)/3,

α+
2j = j(4j + 5)/3.

β+
j = j(j + 1)/3. γ+

j = j(2j − 1)/6.

The asymptotic of the arm exponents is uniform over b.c. :

α+
j , β

+
j , γ

+
j ≈ j2/κ, ∀κ.
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Critical Ising model, Cardy’s formula

P

a

b c

dfree

free

⊕

[Benoist-Duminil-Copin-Hongler’16]

It converges to f (Ω; a,b, c,d).
It is conformally invariant.
It only depends on the length L.
But f (L) =?

P
1

πL

⊕ ≈ exp(−L/6)
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Thanks !

Conformal Invariance of 2D Lattice Model

Percolation
RCM
GFF

SLE(6)
SLE(16/3)
SLE(4)

Ising model
Potts q = 3
Potts q = 4

SLE(3)
SLE(10/3)?
SLE(4)?
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