Lecture No 21 May 20, 2022 (Fri)
Part Ill. Applications of Stochastic Analysis

In this part, we discuss stochastic partial differential equations
(SPDEs) as an application of stochastic analysis.

Textbooks:

[4] T. Funaki, Lectures on Random Interfaces, SpringerBriefs, 2016.

[7] T. Funaki, Y. Otobe, B. Xie (FARER, ZEEHE, #HE):
REMoARN, SREE, 2019.
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§23 Space-time Gaussian white noise as a natural noise

23.1 White noise B, in time (formal understanding)

» SDE was formally introduced as an ODE with Gaussian
noise B; (innovation) which is produced independently at
each t: _ _

X = b(X:) + a(X:)B; (1)

» Mathematically, (1) was defined in an integrated form.

» Gaussian variables are characterized by their mean and
covariance.

» At least formally, the covariance of B, is given by

E[BsB] = 6(t — s), (2)
where §(t) = do(t) is the d-function at t = 0.
(— See the next page) _
» J-correlation (covariance) of Gaussian variables B; implies

their independence for different t, since the covariance is
O0ift#s.



[Formal proof of (2)] e First recall that Brownian motion
B = (B:)t>0 is a Gaussian process with mean 0 and covariance

E[BsB;] = min{s,t}(=sAt), s,t>0. (3)

e Then, differentiate both sides of (3) in t and then in s (in

generalized functions’ sense).
e For the RHS, first for a fixed s,

)
57 (£ 5) = 1p0.() = Tie)()

and then differentiating in s, we have

0 0

e Assuming we can interchange the differentiation and the
expectation E[-], we obtain (2). (Of course, this is not true,
since B; does not exist.) O



23.2 Space-time Gaussian white noise

>

v

In PDE setting (instead of ODE setting), similarly to B,
it is natural to consider a space-time noise

W(t,x) = W(t,x,w)
which is independent for different (t, x), that is,

Extending the relation (2) for B, to space-time setting, it
is natural to consider a Gaussian noise W(t, x) with mean
0 and covariance

E[W(t,x)W(s,y)] = 8(t = s)d(x — y), (4)

for t,s >0, x,y € R or € D (C RY).
Such noise is called the space-time Gaussian white noise.

RHS of (4) =0if t # s or x # y, and this implies the
independence.



23.3 Formal construction of space-time Gaussian white
noise on a domain D

» Let D be R? or a bounded domain of R? with smooth
boundary 9D or d-dimensional torus T9 = [0, 1)¢
(identifying 0 and 1).

» We consider real L2-space L?(D) = L?(D, dx) with the
Lebesgue measure dx on D.

> Let {1 }72; be a complete orthonormal system (CONS)
of L2(D), i.e. (¢i,1)12(py = 0;; and the set of linear
combinations of {1} is dense in L?(D).

» Let {BF = Bf(w)}5°, be independent 1-dimensional
Brownian motions defined on a probability space (Q, F, P).

» For example, for D = R, one can take Hermite functions
he(x) = (2KIVT) Pe T Hi(x), k=0,1,2,...,
where Hy(x) are Hermite polynomials defined by
Hi(x) = (~1)ke¥’ £ e,
For D = R?, we may consider products []7_, h (x;).



» Consider a formal Fourier series with Bf as its Fourier
coefficients:

W(t,x) = Bfw(x). (5)

» Since > 7%, (BK(w))? = 0o a.s. w ¥, the condition
S e 1(BF)? < 00 a.s. for the a.s.-convergence of (5) in
L2(D) is not satisfied.

» Thus, the series (5) does not converge in L?(D) in
a.s.-sense. (it determines only so-called cylindrical
Brownian motion).

» \We leave rigorous discussion later.

*) By strong law of large numbers, & Y (Bf(w))? = tas.
k=1



» The covariance of W(t,x) for t,s > 0,x,y € D is
formally computed as

oo

E[W(t,x)W(s.y)] = D E[BFBlvr(x)¢s(y)

k,j=1

=(tAs) Z Ui(x)¢i(y)
k=1

— (tA8)5(x —y) (6)

*

—
~

» The last identity (x) is seen from
/(Zw )@(y dy = Zwk )(0, %) 20

= ¢(x) Z/Déx—yso(y)dy

for Yo € C(D) N L?(D).



%%(t A's) = 0(t —s) as we saw above,

W(t,x) = 2 W(t,x)
would have the desired covariance (4):

Since

E[W(t,x)W(s,y)] = 6(t —s)d(x —y), x,y € D.

Formally, W(t, x) has a representation

o0

W(t,x) = Bfvw(x) (7)
k=1
W(t, x) is called the white noise process (“white” means
Ak = 1 for all k in colored noise stated below).

It is constructed by means of infinitely many Brownian
motions so that it is considered as an infinite-dimensional
Brownian motion.



[Remark] We can also formally construct W(t, x) as a product
W(t,x) = B(t)W(x1) - -- W9(xq),

where B, W', ... W€ are independent (two-sided) Brownian
motions.

Here, “two-sided” means that, for example for W*(x;),
preparing two independent Brownian motions

W (x1), x; > 0 and WY (x1),x; > 0 starting at 0:

Wh£(0) = 0, it is defined by W'(x) = WhT(x;) for x; > 0
and Wl(x) = Wbh(—x;) for x; < 0. O



23.4 Stochastic integrals and colored noises
> W(t, x) has no rigorous meaning.
> As we saw in the relation between Bt and B;, the
integrated form W(t,x) in t is better, but still has no
rigorous meaning.

» So we integrate also in space by multiplying a test
function ¢ = ¢(x) and consider

Wi(e) = (W(0).9) (= (WO, Loy = | WIE0)e(x)ck)
= Z BE (¢, i) 12(p)-
k=1
» Then, W;(p) has a rigorous meaning, since

E[Wi(p)?] = tz @, YK) (D tllellzz(p)-

drseval

» More generally, we can introduce stochastic integrals with
respect to W(t).



» Stochastic integrals w.r.t. W(t,x): For f = f(t,x,w):
(F:)-adapted, € L2([0, T] x D x Q) (for every T > 0),

+(f) :/f/ f(s,x)W(dsdx)
_Z/ )1 166) 20y 9B

where F, = o{W(s,-);s < t}. (or we may assume {BF}
are, in general, independent (F;)-Brownian motions.)
» Then, M(f) € M2, i.e. square integrable continuous

c!

(Ft)-martingale and cross variation is given by

(M(). M(&): = [ (F(s).8(5))or .
@) Since {B*} are independent, by taking the limit,

< t —Z/ '(/)k L2(D ( (5)7’(/}k)L2(D)dS

- / (F(5). &(5)) (o) ds.

0



» In particular, we have It6 isometry:

IMZ(F)ll 2y = I Fll 2o, mixoxe

_ /0 ' /D E[f(t, x)?]|dtdx

» Burkholder-Davis-Gundy's inequality:
"p>0,3C=C,>0st.

e o, ngere] < ce[( [ f sterras) 2}'

© (LHS) < GE[(M(f))5?].



» Though the series (5) does not converge in L?(D),
if we introduce a damping factor {\, > 0}22; s.t.
TrQ@ = ,2; A < 0o and consider

W(tx) = VABAx(), (8)

then it converges in L2(D) a.s. (since E[>32,(vVAxBE)?
< 00) and defines @Q-Brownian motion, where Q is a
linear operator s.t. QU = Axtk.

» Especially, Q is a self-adjoint nonnegative linear operator
of nuclear type (trace class).

» Its time derivative W(t,x) is called a colored noise or
smooth noise.

» If \y =1,91 =1and A\, =0 for k > 2, W(t,x) is
nothing but a 1-dimensional Brownian motion depending
only on time.



[Remark] General framework is known.

» Let H be a separable real Hilbert space
(instead of L2(D)).

» Then, one can introduce H-valued Brownian motion
(@-Brownian motion) for self-adjoint nonnegative linear
operator @ of nuclear type.

» If Q@ =/ or more generally for self-adjoint nonnegative
bounded linear operator @, one can define Q-cylindrical
Brownian motion, which is not H-valued process in
general, but W;(y) = (W(t), ») has meaning for ¢ € H.

» Stochastic integrals with respect to cylindrical Brownian
motions can be defined for H-valued (F;)-adapted
integrands or operator-valued processes.



23.5 Another way to introduce white noise process

» (Discrete approximations) We can construct white noise

process also as follows: Let D C R9 be a domain with
smooth boundary, and discretize it as:

1
Dy :=Dn de.

Prepare independent Brownian motions {B:(y)},ep, and
define

W) = s S 80BY),

or

VT/N(t,X) = Nd/2 Z 1/\(y,ﬁ)(x)8t(.y)u
y€Dy
1

where A(y, ;) is a box with center y and side-length ﬁ



» Then, both W/ and W converge as N — oo to
W(t, x) in law. Indeed, for o € C,(D),

E[(W"(t,).¢)’] = E {( Y B y)) ]

=tN~7 Y () = tleli ),
y€Dy

E[W7 (5, ). = N0 S {1y 1.0

y€Dn

—_d\2
= tN? > (p()N™)" + 0(1) = tlll2(p)
y€Dy



§24 Simple example of SPDE

24.1 Heat equation with random external field

» As a simple example of SPDE, consider a heat equation
on R? with an external force F = F(t,x, u,w):
ou

5; = Au+F, x € R? (9)

where A = Z, 1 022 is the Laplacian.

» For example, if F = a(w)u is linear in u with random
coefficient a = a(w), (9) is written as
ou
5 = Au+ a(w)u. (10)
> (10) is easily solved as u(t, x,w) = v(t, x)e@)*, where

v(t,x) is the solution of the heat equation %* = Av.

» (10) is solved for each fixed w as a usual PDE so that it
is called random partial differential equation.



> Recalling the SDE X, = b(X;) + a(X;)B, it is natural to
consider the heat equation (PDE) with F = W(t, x),
which is independent for different (¢, x)

Jdu : d d
a:Au—i- W(t,x), xeR(orxeDCR?) (11)
» This is a stochastic heat equation sometimes called

Edwards-Wilkinson equation.

> Let H (R, x RY) = WS*(R, x RY) be the Sobolev

loc loc

space with (mostly negative) exponent s and set

Hie Ry x RY) = () Hi (R x RY),

loc loc
6>0

where R, = [0, 00).



v

: _an
It is known that W(t,x) € H > (R, x R?) as.w.

In particular, W(t,x) is not a usual function but a
generalized function of (¢, x).

1
Since B; € H2_ (R4) a.s.w is known for Brownian

; 1
motion, we see B, € H,,2 (R.) and this coincides with
the above result when d = 0.

Compared to the usual PDE theory, in a sense, we need
to consider PDEs with external forces having very bad
regularity.

The equation such as (11), which is not defined in w-wise
sense (defined only integrated in t and also in x), is called
stochastic partial differential equation (SPDE).



