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6 Duality

We define the dual function q : Rr → R associated with the primal problem min{ f (x) : g(x)≤
0, x ∈ X } as q(µ) = inf{L(x ,µ) : x ∈ X }, where L(x ,λ) = f (x) +µ′g(x). The function q(µ) can
be interpreted as the highest point of interception with the vertical axis over all hyperplanes
with normal vector (µ, 1), which contains the set S = {(g(x), f (x)) : x ∈ X } in their positive
halfspace. The dual problem is given by q∗ =max{q(µ) : µ≥ 0} and corresponds to finding the
maximum point of interception over all hyperplanes with normal vector (µ, 1) where µ≥ 0. In
fact, as we have seen before, the domain D = {µ : q(µ)> −∞} of the dual function q is convex
and q is concave over D.

Theorem 26 (Weak Duality). For any primal feasible solution x and any dual feasible solution
µ≥ 0, we have q(µ)≤ f (x). In particular, we have q∗ ≤ f ∗.

Proof: ∀x ∈ X with g(x) ≤ 0 and ∀µ ≥ 0, we have q(µ) = infz∈X L(z,µ) ≤ f (x) + µ′g(x) ≤
f (x). □

Remark 8. If there is no duality gap (i.e., f ∗ = q∗), the set of geometric multipliers is equal to the
set of optimal dual solutions. Moreover, if there is a duality gap, the set of geometric multipliers
is empty. The reason is that a vector µ∗ ≥ 0 is a geometric multiplier ⇐⇒ f ∗ = q(µ∗)≤ q∗ ≤ f ∗,
which by weak duality holds if and only if f ∗ = q∗ and µ∗ is a dual optimal solution.

6.1 Strong Duality

Theorem 27. Consider min{ f (x) : g(x) ≤ 0, x ∈ X } with f ∗ <∞. Assume X is a convex set
and f , g are convex over X . If there exists a vector x̄ ∈ X that satisfies the Slater condition
g( x̄)< 0, then there is no duality gap and there exist at least one geometric multiplier.

Proof: Consider the epigraph of the joint constraint-objective set S = {(g(x), f (x)) : x ∈ X }
defined by A = {(z, w) : x ∈ X , such that g(x) ≤ z, f (x) ≤ w}. Using the convexity of f and
g, one can easily show that A is a convex set. Moreover, (0, f ∗) is not an interior point of A,
otherwise there exists ε > 0 such that (0, f ∗ − ε) ∈ A, contradicting the definition of f ∗ as the
optimal primal value. Therefore there exists a separating hyperplane with normal (µ,β) ̸= 0
passing through (0, f ∗) and containing A on one side of it, i.e., β f ∗ ≤ βw+ µ′z ∀(z, w) ∈ A.
This relation implies β ≥ 0,µ ≥ 0, because for each (z, w) ∈ A and any ε > 0, we also have
(z,ε+ w) ∈ A and (z + ε1, w) ∈ A. Furthermore, β > 0, otherwise, if β = 0, we would have
0 ≤ µ′z ∀(z, w) ∈ A. Since (g( x̄), f ( x̄)) ∈ A =⇒ 0 ≤ µ′g( x̄), which cannot hold unless µ = 0,
contradicting the fact that (µ,β) ̸= 0.

Now by normalizing β , we may assume β = 1. Thus, since (g(x), f (x)) ∈ A, we get
f ∗ ≤ f (x) + µ′g(x) ∀x ∈ X . Taking infimum over x ∈ X and because µ ≥ 0, we get f ∗ ≤
infx∈X { f (x) + µ′g(x)} = q(µ) ≤ q∗. This, in view of weak duality, implies f ∗ = q∗ and that
µ≥ 0 is a geometric multiplier. □
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6.2 Linear Constraints and Duality

Consider the problem

min f (x) (5)
s.t. e′ix≤ di , i = 1, . . . , m (6)

a′jx≤ b j , j =1, . . . , r, x ∈ X (7)

where ei , a j and di , b j are given vectors and scalars, respectively, f : Rn → R is a convex
continuously differentiable function, and X is a polyhedral set. We refer to 5, 6, 7 as the primal
problem. The dual function associated with this program is given by

q(λ,µ) = infx∈X L(x,λ,µ), where L(x,λ,µ) = f (x) +
∑m

i=1λi(e′ix− di) +
∑r

j=1µ j(a′jx− b j)
is the Lagrangian function. The dual problem is defined by

max q(λ,µ) (8)
s.t. λ ∈Rm,µ≥ 0 (9)

In fact, it is easy to see that if X is bounded, the dual function always takes finite values.
However, in general q(λ,µ) can be −∞.

Theorem 28. 1. If 5, 6, 7 has an optimal solution, then 8, 9, also has an optimal solution and
the corresponding optimal values are equal.

2. In order for x∗ to be an optimal primal solution and (λ∗,µ∗) to be an optimal dual solution,
it is necessary and sufficient that x∗ is primal feasible, µ∗j ≥ 0, µ∗j = 0 ∀ j /∈ A(x∗), and

x∗ ∈ arg min
x∈X

L(x,λ∗,µ∗).

Example (Dual of linear program): Consider the problem

min c′x

s.t. e′ix≤ di , i = 1, . . . , m

x≥ 0

(P)

q(λ) = infx≥0{
∑n

j=1(c j−
∑m

i=1λiei j)x j+
∑m

i=1λidi}. Now if c j−
∑m

i=1λiei j ≥ 0 ∀ j, the infinum
is attained for x = 0, and we have q(λ) =

∑m
i=1λidi. On the other hand, if c j −

∑m
i=1λiϵi j < 0

for some j, we can make the expression inside braces arbitrarily small, so in this case q(λ) = −∞.
Therefore, the dual problem is given by

max
m
∑

i=1

λidi :
m
∑

i=1

λiei j ≤ c j ∀ j

Now if x∗ and (λ∗,µ∗) are optimal primal and dual solutions, using part b of the previous
proposition,

x ∈ arg min
x≥0
{

n
∑

j=1

(c j −
m
∑

i=1

λ∗i ei j)x j +
m
∑

i=1

λ∗i di} =⇒ c ≥
m
∑

i=1

λ∗i ei , x∗ ≥ 0
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x∗j > 0 =⇒ cJ =
m
∑

i=1

λ∗i ei j ∀ j

m
∑

i=1

λ∗i ei j < c j =⇒ x∗J = 0 ∀ j

Example (Dual of a quadratic program)
Consider the quadratic program:

min
1
2

x′Qx+ c′x

st. Ax≤ b

Q >0, A∈ Rr xn

The dual function is given by

q(µ) = inf
x∈Rn

§

1
2

x′Qx+ c′x+µ′(b+ AQ−1c)
ª

The infinum is attained for x = −Q−1(c + A′µ) and hence,

q(µ) = −
1
2
µ′AQ−1A′µ−µ′(b+ AQ−1c)−

1
2

c′Q−1c

After dropping the constant term 1
2 c′Q−1c and changing the minus sign to convert max to

min, we get

min
1
2
µ′Pµ+ t ′µ

s.t. µ≥ 0

where P = AQ−1A′, t = b+ AQ−1c.

7 The Subgradient Method

Here we consider algorithms for solving the dual problem max{q(µ) : µ ∈ M}, where M = {µ≥
0 : q(µ)> −∞}, which are based on the use of subgradients.

Definition 29. Given a concave function q(µ), a vector g is called a subgradient of q at µ if
we have q(µ̄) ≤ q(µ) + (µ̄ − µ)′g, ∀µ̄ ∈ Rr . Note that if q(·) is differentiable, one can take
g =∇q(µ), which is the unique subgradient at µ.

Lemma 30. For a given µ, suppose that xµ ∈ argminx∈X L(x ,µ) = arg minx∈X { f (x) +µ′g(x)}.
Then, g(xµ) serves as a subgradient of the dual function q(·) at µ.

Proof: For all µ̄ ∈ Rn, we can write

q(µ̄) = inf
x∈X
{ f (x) + µ̄′g(x)} ≤ f (xµ) + µ̄

′g(xµ)

= f (xµ) +µ
′g(xµ) + (µ̄−µ)′g(xµ)

= q(µ) + (µ̄−µ)′g(xµ), (10)

which shows that g(xµ) is a subgradient of q(·) at the point µ. □

16



Let us assume for every µ ∈ M , we can calculate some vector xµ ∈ arg minx∈X L(x ,µ),
yielding a subgradient g(xµ) of q(·) at µ. The subgradient method generates a sequence of dual
feasible points according to the iteration

µk+1 = [µk + sk gk]+,

where gk := g(xµk) is the subgradient, [·]+ denotes projection on the set M , and sk > 0 is a
stepsize. While the iterate looks like a projected gradient method, however, unlike that method,
the subgradient method is not always guaranteed to improve the dual objective value, i.e., for
some k we might have q([µk + sqk]+) < q(µk). However, if µk is not optimal, then for every
optimal dual solution µ∗, we have ∥µk+1 −µ∗∥< ∥µk −µ∗∥, for sufficiently small stepsizes sk.

7.1 Convergence Proof for the Subgradient Method

In the remainder of this section, we describe the subgradient method for optimizing a general
convex function f (·) over a convex set X , i.e.,

min{ f (x) : x ∈ X },

which can be easily adapted for the special case of maximizing the dual function. Note that since
we consider minimizing a convex function, in the definition of the subgradient (Definition 29),
the direction of the inequality must be flipped. As we mentioned earlier, subgradient method is
not a descent method, it is common to keep track of the best point found so far, i.e., the one with
smallest function value. At each step, we set

f k
best =min
�

f k−1
best , f (xk)
	

.

Theorem 31. Consider min{ f (x) : x ∈ X }, where f (·) is a convex function and X is a closed
convex set. Let x∗ be any minimizer of f and f ∗ = f (x∗). Consider the subgradient method

xk+1 = [xk −αk gk]+X ,

where [·]+X is the projection on the convex set X , gk is a subgradient of f (·) at the point xk, and
{αk} is a nonnegative stepsize sequence. Assume that the norm of the subgradients is bounded,
i.e., there is a G such that ∥gk∥2 ≤ G for all k.2 Then, we have

0≤ f k
best − f ∗ ≤

∥x1 − x∗∥2 + G2
∑k

i=1α
2
i

∑k
i=1αi

.

Proof: Recall that for the standard gradient descent method, the convergence proof is based on
the function value decreasing at each step. In the subgradient method, the key quantity is not
the function value (which often increases); it is the Euclidean distance to the optimal set. Let x∗

be an arbitrary optimal point. Using the nonexpansive property of the projection, we can write

∥xk+1 − x∗∥22 =


[xk −αk gk]+X − [x
∗]+X




2 ≤ ∥xk −αk gk − x∗∥2

= ∥xk − x∗∥22 − 2αk(g
k)′(xk − x∗) +α2

k∥g
k∥22

≤ ∥xk − x∗∥22 − 2αk( f (x
k)− f ∗) +α2

k∥g
k∥22,

2This will be the case if, for example, f satisfies the Lipschitz condition, i.e., | f (x)− f (x)| ≤ G∥x − x∥2 for all x , y .
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where f ∗ = f (x∗). The last line follows from the definition of subgradient, which gives

f (x∗)≥ f (xk) + (gk)′(x∗ − xk).

Applying the inequality above recursively, we have

∥xk+1 − x∗∥22 ≤ ∥x
1 − x∗∥22 − 2

k
∑

i=1

αi( f (x
i)− f ∗) +

k
∑

i=1

α2
i ∥g

i∥22.

Using ∥xk+1 − x∗∥22 ≥ 0, we have

2
k
∑

i=1

αi( f (x
i)− f ∗)≤ ∥x1 − x∗∥22 +

k
∑

i=1

α2
i ∥g

i∥22.

Combining this with
k
∑

i=1

αi( f (x
i)− f ∗)≥

� k
∑

i=1

αi

�

min
i=1,...,k

( f (x i)− f ∗),

we have the inequality

f k
best − f ∗ = min

i=1,...,k
( f (x i)− f ∗)≤

1

2
∑k

i=1αi

�

∥x1 − x∗∥22 +
k
∑

i=1

α2
i ∥g

i∥22

�

.

Finally, using the assumption ∥g i∥2 ≤ G, we obtain

f k
best − f ∗ = min

i=1,...,k
( f (x i)− f ∗)≤

∥x1 − x∗∥22 + G2
∑k

i=1α
2
i

2
∑k

i=1αi

.

□

Remark 9. Since in the above theorem x∗ is any minimizer of f , we can state that

f k
best − f ∗ ≤

dist(x1, X ∗)2 + G2
∑k

i=1α
2
i

2
∑k

i=1αi

,

where X ∗ denotes the optimal set, and dist(x1, X ∗) is the (Euclidean) distance of x1 to X ∗.

From the result of the above theorem, we can read off various convergence results. For
instance, if the stepsize sequence satisfies

∑∞
k=1α

2
k <∞,
∑∞

k=1αk =∞, then we have f k
best→ f ∗

as k →∞. One can see that by choosing αk =
1
k , the convergence rate is sublinear of the

order O( 1
log k ). Similarly, by choosing αk =

1
k0.5+β for some small β > 0, the convergence rate is

sublinear of the order O( 1
k0.5−β ), which is assymptotically O( 1p

k
) as β → 0.

8 Dynamic Optimization: Optimal Control Problem

8.1 Optimal Control Problem

Given a dynamical system ẋ(t) = f (x(t), u(t), t), x(t0) = x0, where ẋ(t) = d
d t x(t), we want to

find a controller u[t0, t1] to minimize the objective cost V (u) =
∫ t1

t0
l(x(t), u(t), t)d t +m(x(t1)),

where t1 is the final time, l(·) is a scalar valued loss function, and m(·) is a function of state,
which is referred to as terminal cost. Here, we assume x0, t0, t1, l(·) and m(·) are known and
fixed, and x(t1) is free to choose.
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8.2 Hamilton-Jacobi-Bellman (HJB) Equation

Definition: The value function V o(x , t) is defined to be the optimal value of V (u) over all controls
u assuming that the initial time and state are t and x , respectively, i.e.,

V o(x , t) = min
u[t,t1]

�∫ t1

t
l(x(τ), u(τ),τ)dτ+m(x(t1))

�

.

Theorem 32. The value function satisfies the HJB equation:

−
∂ V o(x , t)
∂ t

=min
u

¦

l(x , u, t) +
�

∇x V o(x , t)
�′

f (x , u, t)
©

,

for every time t and state x , with the boundary condition V (x(t1), t1) = m(x(t1)).3

Proof: Let x and t be an arbitrary initial state and initial time, and let t < tm < t1 be an
intermediate time. Assuming that x(τ), τ ∈ [t, t1] is a solution to state equation with initial
condition x(t) = x and control u[t, t1], we must have:

V o(x , t) = min
u[t,t1]

¨

∫ tm

t
l(x(τ), u(τ),τ)dτ+

∫ t1

tm

l(x(τ), u(τ),τ)dτ+m(x(t1))

«

= min
u[t,tm]

¨

∫ tm

t
l(x(τ), u(τ),τ)dτ+ min

u[tm,t1]

�

∫ t1

tm

l(x(τ), u(τ),τ)dτ+m(x(t1))

�«

= min
u[t,tm]

�∫ tm

t
l(x(τ), u(τ),τ)dτ+ V o(x(tm), tm)

�

Note that the second equality holds by principle of optimality: If the trajectory generated by the
optimal control uo passes through state x(tm) at time tm, then the control uo[tm, t1] must be
optimal for the system starting at x(tm) at time tm. This is because if a better controller exists
on the interval [tm, t1], we would have chosen it. Now by letting ∆t := tm − t approach 0, we
can derive a partial differential equation for the value function V o.

Specifically, let x(tm) = x(t +∆t) = x(t) +∆x = x +∆x , and u(t) = u. Assuming that the
value function V o is sufficiently smooth, by using Taylor expansion on the last equality we obtain:

V o(x , t) = V o(x(t), t)

= min
u[t,tm]

§

l(x(t), u(t), t)∆t + V o(x(t), t) +
�

∇x V o(x(t), t)
�′
∆x +

∂ V o(x(t), t)
∂ t

∆t + o(∆t)
ª

= min
u[t,tm]

§

l(x , u, t)∆t + V o(x , t) +
�

∇x V o(x , t)
�′
∆x +

∂ V o(x , t)
∂ t

∆t + o(∆t)
ª

.

Dividing through by ∆t, letting ∆t → 0, and noting that the ratio ∆x
∆t can be replaced by the

derivative ẋ(t), we obtain:

0=min
u

¦

l(x , u, t) +
�

∇x V o(x , t)
�′

ẋ(t)
©

+
∂ V o(x , t)
∂ t

,

where we note that as ∆t → 0, u(t, t +∆t) becomes u := u(t), which is a single variable
(rather than a function), and ∂ V o

∂ t (x , t) comes out of minimum as it is independent of u. Since
ẋ(t) = f (x(t), u(t), t) = f (x , u, t) we obtain the desired HJB equation. □

3Note that HJB equation is a pointwise equation meaning that u in the minimization refers to a variable (rather
than a function).
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Definition 33. The term inside the minimum of HJB equation is known as Hamiltonian, and is
denoted by

H(x , p, u, t) := l(x , u, t) + p′ f (x , u, t)

where p =∇x V o(x , t) =
�

∂ V o

∂ x1
(x , t), . . . , ∂ V o

∂ xn
(x , t)
�′.

Theorem 34. Suppose V o is a function with continuous partial derivatives. Then V o is the
optimal value function with the optimal control input uo and corresponding optimal state
trajectory x o, if and only if V o satisfies the HJB equation subject to V o(x(t1), t1) = m(x(t1))
and uo(t) = arg minu H(x o(t),∇x V o(x o(t), t), u, t) ∀t ∈ [t, t1].

Remark 10. Since the optimal controller is obtained by

uo(t) = argmin
u

H(x o(t),∇x V o(x o(t), t), u, t) := ū(x o(t), t),

this means that the optimal control can be written in a state feedback form uo(t) = ū(x o(t), t).
Of course, to find this feedback form, we first need to find value function V o, which can be hard.

Example: V (x , u) =
∫ t1

t0
(x4(t) + u2(t))d t, ẋ = f (x , u, t) = u, l(x , u, t) = (x4 + u2), m(·) = 0.

H(x , p, u, t) = u2 + x4 + pu. The HJB equation becomes:

−
∂ V o

∂ t
(x , t) =min

u

�

∇x V o(x , t) · u+ u2 + x4
	

.

Minimizing the right hand side with respect to u we obtain uo = −1
2
∂ V o

∂ x (x
o, t) which is of the

form of state feedback. Therefore, the optimal state has the form ẋ o(t) = −1
2
∂ V o

∂ x (x
o, t), i.e.,

the control forces the state to move in the direction in which the "cost to go" V o decreases. In
particular, the HJB equation becomes − ∂ V

∂ t = −
1
4

�

∂ V o

∂ x (x , t)
�2
+ x4, with boundary condition

V o(x , t1) = 0. This is as far as we can go analytically and one must solve this equation numerically.
One important special case is when the system is time invariant, i.e., ẋ = f (x , u) and the

time horizon is infinite, i.e., t1 =∞ (and m = 0) and cost function does not depend on time,
i.e., l = l(x , u). In that case, the optimal value function is independent of time and we have:
∂ V o(x)
∂ t = 0 and the above HJB equation simplifies to

min
u

¦

l(x , u) +
�

∇x V o(x)
�′

f (x , u)
©

= 0.

Thus, in this example we have x4 = 1
4 (∇x V o(x))2 =⇒ ∇x V o(x) = 2x2 =⇒ V o(x) = 2

3 x3 =⇒
uo(t) = −
�

x o(t)
�2.

Example (LQR Problem): A special case of the optimal control problem is the Linear
Quadratic Regulator (LQR) problem given by: ẋ = A(t)x + B(t)u, x(t0) = x0, V (u) =
∫ t1

t0

�

x TQ(t)x + uT R(t)u
�

d t + x T (t1)M x(t1), where M(t),Q(t), and R(t) are positive semi-
definite matrix-valued functions of time, and A(t), B(t),Q(t), R(t) are piecewise continuous
functions in t.

Theorem 35. For the LQR problem with R(t) > 0 ∀t, the optimal control is given by uo(t) =
−R(t)−1B(t)T P(t)x o(t), where P(t) is the solution to the Riccati Differential Equation (RDE):
−Ṗ = Q + PA+ AT P − PBR−1BT P. In particular, the optimal value function has the quadratic
form V o(x , t) = x T P(t)x .
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9 Dynamic Optimization: Online Convex Optimization

In online convex optimization (OCO), an online player iteratively makes decisions. At the time
of each decision the outcome associated with it is unknown to the player. After committing to
a decision, the decision maker suffers a loss. These losses are unknown to the decision maker
beforehand. The losses can be adversarially chosen, and even depend on the action taken by the
player.

9.1 Model and Assumptions

Assumptions: The losses determined by an adversary should be bounded, and the decision set
must be bounded and “structured” (e.g. a bounded convex set).

Model: Decision set X ⊂ Rn, where X is a bounded convex set.
At iteration t = 1,2, ..., the online player chooses x t ∈ X . After the player has committed to

this choice, a convex cost function ft ∈ F : X → R is revealed. Here, F is the bounded family of
cost functions available to the adversary. The cost incurred by the online player is ft(x t), the
value of the cost function for the choice x t . Let T denote the total number of game iterations.

Let {x t}Tt=1 be the decisions by an OCO algorithm where x t can depend on the game history
up to time t, i.e., x t : { f1, ..., ft−1, x1, ..., x t−1} → X . We define the regret of an algorithm after T
iterations as

R(T ) = sup
{ f1,..., fT }∈F

¨ T
∑

t=1

ft(x t)−min
x∈X

T
∑

t=1

ft(x)

«

Examples:

Prediction with Expert Advice:

The decision maker has to choose among the advice of n given experts. After making her choice,
a loss between 0 and 1 is incurred. This scenario is repeated iteratively, and at each iteration, the
costs of the various experts are arbitrary. The goal of the decision maker is to do as well as the
best expert in hindsight.

X =∆n = {x ∈ Rn :
n
∑

i=1

x i = 1, x i ≥ 0 ∀i}

Let c(i)t be the cost of the i-th expert at iteration t, and let ct =
�

c(1)t , . . . , c(n)t

�T
at time t. Then

the expected cost of choosing an expert according to distribution x is given by ft(x) = c′t x .

Online Shortest Paths:

The decision maker is given a directed graph G = (V, E) and a source-sink pair u, v ∈ V . At each
iteration t, the decision maker chooses a path pt ∈ Pu,v , where Pu,v is the set of all u− v paths in
the graph. The adversary independently chooses weights (lengths) on the edges of the graph
denoted by ωt : E → R, which can be represented as a vector ωt ∈ Rm, where |E| = m. The
decision maker suffers and observes a loss, which is the weighted length of the chosen path
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∑

e∈pt
ωt(e).

X =
�

set of all distributions over Pu,v (flows)
	

=
¦

x ∈ [0, 1]m :
∑

e:=i, j)∈E

x(e) =
∑

e=( j,i)∈E

x(e) ∀ j ∈ V\{u, v},
∑

e=(u, j), j∈E

x(e) =
∑

e:( j,v), j∈E

x(e) = 1
©

.
The expected cost of a given flow x ∈ X (distribution over paths) is then a linear function,

given by ft(x) =ω′t x .

9.2 Online Gradient Descent Algorithm:

Input: Convex set X , T , x1 ∈ X , stepsize {ηt}
For t = 1, 2, . . . , T

play x t and observe cost ft(·)
update x t+1 = [x t −ηt∇ ft(x t)]

+
X (Euclidean projection onto the set X )

Theorem 36. Online gradient descent with step sizes ηt = Θ
�

1p
t

�

guarantees the following

R(T ) =
T
∑

t=1

ft(x t)−min
x∈X

T
∑

t=1

ft(x)≤
3GD
p

T
2

where D =maxx ,y∈X ∥x − y∥ is the diameter of the convex set X and G is an upper bound for
the gradient of the convex functions ft ∈ F .

Proof: Let x∗ ∈ arg minx∈X
∑T

t=1 ft(x). Because each ft is a convex function, we have

ft(x t)− ft(x
∗)≤∇ ft(x t)

′(x t − x∗), ∀t (11)

Now we can write:
∥x t+1 − x∗∥2 = ∥ [x t −ηt∇ ft(x t)]

+
X − [x

∗]+X∥
2

≤ ∥x t −ηt∇ ft(x t)− x∗∥2

= ∥x t − x∗∥2 +η2
t ∥∇ ft(x t)∥2 − 2ηt∇ ft(x t)

′(x t − x∗)

⇒ 2∇ ft(x t)
′(x t − x∗)≤

∥x t − x∗∥2 − ∥x t+1 − x∗∥2

ηt
+ηt G

2 (12)

Summing 11 and 12 from t = 1 to T , and setting ηt =
D

G
p

T
(assuming 1

η0
= 0), we get:

2
T
∑

t=1

[ ft(x t)− ft(x
∗)]≤

T
∑

t=1

∥x t − x∗∥2 − ∥x t+1 − x∗∥2

ηt
+ G2

T
∑

t=1

ηt

≤
T
∑

t=1

�

1
ηt
−

1
ηt−1

�

∥x t − x∗∥2 + G2
T
∑

t=1

ηt

≤ D2
T
∑

t=1

�

1
ηT
−

1
η0

�

+ G2
T
∑

t=1

ηt

≤ D2 1
ηT
+ G2

T
∑

t=1

ηt

≤ 3DG
p

T
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⇒ R(T ) =
T
∑

t=1

[ ft(x t)− ft(x
∗)]≤

3DG
p

T
2

.

In fact, one can show that the above upper bound is tight up to a constant factor. □

Theorem 37. Any algorithm for online convex optimization incurs Ω(DG
p

T ) regret in the worst
case.

Theorem 38. For the class of α-strongly convex loss functions, online gradient descent with
stepsize ηt =

1
αt achieves a regret bound of

R(T )≤
G2

2α
(1+ log T ).

Proof: The proof is identical to the previous theorem once we replace 11 with the stronger
inequality

ft(x t)− ft(x
∗)≤∇ ft(x t)

′(x t − x∗)−
α

2
∥x t − x∗∥2

due to strong convexity assumption and the choice of stepsize ηt =
1
αt .

10 Follow the Regularized Leader (FTRL)

As we saw in the previous proof, the regret of convex cost functions can be bounded by a linear
function via inequality ft(x t) − ft(x∗) ≤ ∇ ft(x t)′(x t − x∗). Thus the overall regret can be
bounded by

∑

t

[ ft(x t)− ft(x
∗)]≤
∑

t

∇ f ′t (x t)(x t − x∗).

10.1 FTRL Algorithm

Input: η > 0, regularization function R , and a bounded closed convex set X .
Let x1 = arg minx∈X R(x)
for t = 1, . . . , T
play x t and observe cost ft(x t)
update x t+1 = argminx∈X

¦

η
�∑t

τ=1∇ fτ(xτ)
�′

x +R(x)
©

Theorem 39. FTRL algorithm attains for every y ∈ X the following bound on the regret.

R(T )≤ 2η
T
∑

t=1

∥∇ ft(x t)∥2 +
R(y)−R(x1)

η
.

In particular, if ∥∇ ft(x t)∥ ≤ G, ∀t, by optimizing over the parameter η = 1p
T
, we have

R(T ) = O(
p

T ).

Exercise: What happens if we take R(x) =
∑n

i=1 x i log x i? Can you find a closed form for
the iterates of FTRL?
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