
1 Convergence of FK-Ising model with Dubrushin boundary
conditions

1.1 Preliminaries and Setup

FK-Ising model

Let Ωδ be a discrete simply connected domain on Lδ :=
√

2δe
iπ
4 Z2, let Ω∗δ be the correspond-

ing dual domain and let Ω�δ be the graph such that V (Ω�δ) = {midpoints of edges of Ωδ∪Ω∗δ}
and E(Ω�δ) = {straight lines connecting nearest vertices}. We orient E(Ω�δ) such that edges
surrounding V (Ω∗δ) are clockwise. Define ∂Ω�δ := V (Ω�δ) ∩ (∂Ωδ ∪ ∂Ω∗δ). Fix two boundary
points a�δ and b�δ on ∂Ω�δ . Recall that the FK-Ising model on a graph Ωδ is defined as
follows: for every edge configuration ω, we have

P[ω] =
1

ZFK

(
p

1− p

)|o(ω)|
2C(ω),

where o(ω) is the number of open edges and C(ω) is the number of connected components
in ω. From now on, we always assume that p equals the critical value, that is

p = pc =

√
2√

2 + 1
.

Suppose that the boundary conditions are the Dubrushin boundary conditions: edges
intersecting (a�δb

�
δ) are free and edges intersecting (b�δa

�
δ) are wired. When p = pc, the dual

edge configuration on Ω∗δ is also the critical FK-Ising model with the Dubrushin boundary
conditions: edges intersecting (a�δb

�
δ) are wired and edges intersecting (b�δa

�
δ) are free. The

interface γδ is the unique path on Ω�δ from a�δ to b�δ which does not cross open edges or dual
open edges.

Convergence of discrete domains

We will always assume that (Ω�δ ; a
�
δ , b
�
δ) converges to a simply connected domian (Ω; a, b)

in the Carathéodory sense

• The boundary point a�δ(resp. b�δ) converges to a(resp. b).

• There exist conformal maps ψδ(resp. ψ) : (Ω�δ ; a
�
δ , b
�
δ)(resp. (Ω; a, b)) → (U;−1, 1)

such that ψ−1
δ converges to ψ−1 locally uniformly.

Space of curves

A path is defined by a continuous map from [0, 1] to C. Let C be the space of unparame-
terized paths in C. Define the metric on C as follows:

d(γ1, γ2) := inf sup
t∈[0,1]

|γ̂1(t)− γ̂2(t)| , (1.1)
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where the infimum is taken over all the choices of parameterizations γ̂1 and γ̂2 of γ1 and
γ2. The metric space (C, d) is complete and separable.

Let P be a family of probability measures on C. We say P is tight if for any ε > 0,
there exists a compact set Kε such that P[Kε] ≥ 1− ε for any P ∈ P. We say P is relatively
compact if every sequence of elements in P has a weakly convergent subsequence. As the
metric space is complete and separable, relative compactness is equivalent to tightness.

1.2 Convergence of FK-Ising interfaces

We will prove the following theorem in this subsection:

Theorem 1.1. Suppose (Ω�δ ; a
�
δ , b
�
δ) converges to (Ω; a, b) in the Carathéodory sense. Then,

the random curve ψδ(γδ) converges to SLE16/3 from −1 to 1 as curves in law.

Note that we will prove the convergence of ψδ(γδ) rather than γδ because we do not
give any assumption on regularity of ∂Ω or the convergence of ∂Ωδ. If ∂Ωδ has a long fjord
near bδ or ∂Ω is very irregular near b, we can not expect the convergence result.

The proof of Theorem 2.3 can be divided into three steps. First, we prove the tightness
of {φδ(γδ)}δ>0. Second, we construct a discrete observable and prove that the discrete
observable will converge to a conformal invariant function. Third, we derive the law of any
sublimit by using the observable. The uniqueness of the sublimit implies that the discrete
curves converge in law.

For the first step, we need to check that {φδ(γδ)}δ>0 satisfies C2 condition, which is
defined as follows.

Definition 1.2. We say {γδ}δ>0 satisfies C2 condition, if there exists M > 0, such that
for every δ > 0, for any stopping time 0 ≤ τδ ≤ 1 for γδ and for any avoidable quadrilateral
Q of Ωδ \ γδ[0, τδ], such that the modulus m(Q) is larger than M ,

P[γδ[τδ, 1] crosses Q|γδ[0, τδ]] <
1

2
.

The constant 1
2 is not important, we can replace 1

2 by any constant smaller than 1.
Note that if {γδ}δ>0 satisfies C2 condition, then {φδ(γδ)}δ>0 also satisfies C2 condition.
The fact that {γδ}δ>0 satisfies C2 condition can be proved by the following Theorem.

Theorem 1.3. [CDH16, Theorem 1.1] For each L > 0, there exists η = η(L) > 0 such
that the following holds: for any topological rectangle (Q;x, y, z, w) such that the extremal
distance between (xy) and (zw) is larger than L and for any boundary conditions ξ,

Pξ[(xy) connects to (zw) by open edges ] ≤ 1− η,

where Pξ denotes the critical FK-Ising model on(the discrete approximation of) (Q;x, y, z, w)
with boundary conditions given by ξ.
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Note that Theorem 1.3 and domain Markov property of FK-Ising model imply C2
condition immediately. Once we have proved that {γδ}δ>0 satisfies C2 condition, we can
use [KS17, Theorem 1.5] to get the tightness of {φδ(γδ)}δ>0.

For the second step, we have constructed the following two discrete observables: For
each edge e ∈ E(Ω�δ), the edge FK-fermionic observable is defined as

Fδ(e) := E
[
1{e∈γδ}e

i
2
Wγδ

(e,b�δ)
]
,

where Wγδ(e, b
�
δ) is the total rotation in radians of the interface γδ from e to b�δ and we

always assume the edge connecting to b�δ is horizontal(otherwise, we add an edge at b�δ).
For each v ∈ V (Ω�δ), the vertex FK-fermionic observable is defined as

Fδ(v) =
1

2

∑
v∼e

Fδ(e).

Theorem 1.4. Suppose (Ω�δ ; a
�
δ , b
�
δ) converges to (Ω; a, b) in the Carathéodory sense. Then,

for the vertex FK-fermionic observable Fδ, we have

1√
2δ
Fδ →

√
φ′ locally uniformly,

where φ is any conformal map from (Ω; a, b) onto (R× (0, 1);−∞,+∞).

Now, we come to the third step: deriving the law of driving function of any sublimit
from the observable. For any stopping time τδ for γδ, denote by F τδδ the vertex fermionic
observable on (Ω�δ \ γδ[0, τδ]; γδ(τδ), b�δ).

Lemma 1.5. For every v ∈ V (Ω�δ), the process {Fnδ } is a martingale before the hitting
time of v.

Proof. By domain Markov property of FK-Ising model, it suffices to check

E[F τδδ (v)] = Fδ(v)

for every stopping time τδ before the hitting time of v. By definition of vertex FK-fermionic
observable, it suffices to check

E[F τδδ (e)] = Fδ(e)

for every e ∈ E(Ω�δ) adjacent to v. This follows from domain Markov property of FK-
Ising model and the fact that Wγδ(e, b

�
δ) does not depend on γδ[0, τδ]. This completes the

proof.

Proof of Theorem 1.1. Suppose ψ(γ) is any sublimit. We may assume that ψδ(γδ)→ ψ(γ)
in law under the metric (1.1). By Theorem 1.4 and Lemma 1.5, we know that for every
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z ∈ Ω, we have {
√
φ′t(z)} is a martingale before the hitting time of z, where φt is the

conformal map from (Ω \ γ[0, t]; γ(t), b) onto (R× (0, 1);−∞,+∞). Define Mt :=
√
φ′t(z).

To derive the law of driving function of γ, we may assume (Ω; a, b) is (H; 0,∞). Denote
by {gt : t ≥ 0} the corresponding conformal maps of γ and by W the driving function.
Then, we have

φt(z) =
1

π
log(gt(z)−Wt).

This implies that

Wt = gt(z)−
1

π

g′t(z)

M2
t

.

Thus, Wt is a semimartingale. Suppose Wt = Nt + Lt, where {Nt}t≥0 is a matingale and
{Lt}t≥0 is a bounded variation process. Then, we have

dMt(z) =
3

8
√
π

√
g′t(z)

(gt(z)−Wt)5

(
d〈W 〉t −

16

3
dt

)
+

1

2
√
π

√
g′t(z)

(gt(z)−Wt)3
dLt.

As the drift term of Mt(z) vanishes, we have

dLt = 0, d〈W 〉t =
16

3
dt.

This implies that Wt has the same law as
√

16
3 Bt, where B has the law of a standard

Brownian motion. This completes the proof.

2 Convergence of spin-Ising model with positive-negative-
free boundary conditions

2.1 Preliminaries and Setup

Let Ωδ be a discrete simply connected domain on Lδ and let Ω�δ be the subgraph of δZ2

which contains all the faces intersecting with Ωδ. Fix three boundary points aδ, bδ, cδ(we
allow that bδ equals cδ) on ∂Ωδ. Denote by a�δ(resp. b�δ , c

�
δ) ∈ V (Ω�δ) the vertices nearst to

aδ(resp. bδ, cδ). Suppose the boundary conditions are positive-negative-free: σ equal +1
on faces which are along the outside of (aδbδ) and equal −1 on faces which are along the
outside of (cδaδ). Recall that the spin-Ising model on Ωδ is defined as follows: for every
spin configuration σ, we have

P[σ] =
1

Zsp
eβ

∑
x∼y σ(x)σ(y),

where the sum is taken over the set of pairs of adjacent faces separated by E(Ωδ), except
for those edges that belong to the free arc (bδcδ). The interface γδ is the unique path

4



on Ωδ from aδ to bδ such that spins on its left are positive and spins on its right are
negative(turning left when there is ambiguity). From now on, we always assume β equals
the critical value, that is

β = βc =
1

2
log(
√

2 + 1).

We denote by ψδ the conformal map from (Ω; a, b, c) onto (U;−1, 1, i). We will consider
two cases: the case that bδ = cδ and the case that bδ 6= cδ.

2.2 Convergence of interfaces when bδ = cδ

We will prove the following theorem in this subsection:

Theorem 2.1. Suppose (Ωδ; aδ, bδ) converges to (Ω; a, b) in the Carathéodory sense. Then,
the random curve ψδ(γδ) converges to SLE3 from −1 to 1 as curves.

Theorem 2.1 can be proved in the same way as Theorem 1.1: First, we prove the
tightness of {ψδ(γδ)}δ>0. Second, we construct a discrete fermionic observable and prove
the convergence. Third, we derive the law of any sublimit by using the observable.

For the first step, we still need to check C2 condition. In this case, we need the following
result.

Corollary 2.2. [CDH16, Corollary 1.7] For each L > 0, there exists η = η(L) > 0 such
that the following holds: for any topological rectangle (Q;x, y, z, w) such that the extremal
distance between (xy) and (zw) is smaller than L,

P[ there exists a crossing of − 1 spins connecting (xy) and (zw)] ≥ η,

where P denotes the critical spin-Ising model on(the discrete approximation of) (Q;x, y, z, w)
with free boundary conditions on (xy) ∪ (zw) and +1 boundary conditions on (yz) ∪ (wx).

Proof of C2 condition. By domain Markov property of spin-Ising model, we only need to
consider the case that τδ = 0. For any avoidable quadrilateral Q = (Q;x, y, z, w), we
assume that spins on (yz) ∪ (wx) all equal −1. The other case can be dealt similarly.
Denote by PQ the spin-Ising model on Q such that spins on the outside of (xy) ∪ (zw)
equal +1 and spins on the outside of (yz) ∪ (wx) equal −1. Then, we have

P[γδ crosses Q] ≤ PQ[ there exists a crossing of + 1 spins connecting (xy) and (zw)]
(by monotonicity)

= 1− PQ[ there exists a crossing of − 1 spins connecting (yz) and (wx)]
(by duality)

≤ 1− η. (by monotonicity and Corollary 2.2)

For the second inequality, note that the extremal distance between (yz) and (wx) equals
1

m(Q) . This completes the proof.
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Once we have proved that {γδ}δ>0 satisfies C2 condition, by [KS17, Theorem 1.5], we
can get the tightness of {ψδ(γδ)}.

For the second step, we can construct the discrete fermionic observable in a similar way
as before: For every z�δ ∈ V (Ω�δ), let E is the set of collections of contours drawn on Ωδ

composed of loops and one interface γδ from a�δ to z�δ . Define

F(Ωδ;a
�
δ ,b
�
δ)(z

�
δ ) :=

∑
ω∈E(a�δ ,z

�
δ ) e
− i

2
Wγδ(ω)

(a�δ ,z
�
δ ) (√2− 1

)|ω|
∑

ω∈E(a�δ ,b
�
δ) e
− i

2
Wγδ(ω)

(a�δ ,b
�
δ) (√2− 1

)|ω| ,
where Wγδ is the total rotation in radians. We still assume the edge connecting to b�δ is
horizontal. Let ϕ be any conformal map from Ω onto H such that ϕ(a) =∞ and ϕ(b) = 0.

Theorem 2.3. Suppose that (Ωδ; aδ, bδ) converges to (Ω; a, b) in the Carathéodory sense
and ∂Ω is smooth near b, then

F(Ωδ;a
�
δ ,b
�
δ) →

√
ϕ′

ϕ′(b)
locally uniformly.

We have given a sketch of the proof in lectures before. Now, we come to the third step:
deriving the law of driving function from the observables. For any stopping time τδ of γδ,
define

F(Ωδ\γδ[0,τδ];γδ(τδ),b�δ)(z
�
δ ) :=

∑
ω∈Ẽ(γδ(τδ),z

�
δ ) e
− i

2
Wγδ(ω)

(γδ(τδ),z
�
δ ) (√2− 1

)|ω|
∑

ω∈Ẽ(γδ(τδ),b
�
δ) e
− i

2
Wγδ(ω)

(γδ(τδ),b
�
δ) (√2− 1

)|ω| ,
where Ẽ is the corresponding set of contours on Ωδ \ γδ[0, τδ].

Lemma 2.4. For every z�δ ∈ V (Ω�δ), the fermionic observable {F(Ωδ\γδ[0,n];γδ(n),b�δ)(z
�
δ )} is

a martingale before the hitting time of z�δ .

Proof. By domain Markov property, it suffices to check

E
[
F(Ωδ\γδ[0,τδ];γδ(τδ),b�δ)(z

�
δ )
]

= F(Ωδ;γδ(n),b�δ)(z
�
δ ),
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for every stopping time τδ before the hitting time of z�δ . Note that

E
[
F(Ωδ\γδ[0,τδ];γδ(τδ),b�δ)(z

�
δ )
]

=
∑
η

P[γδ[0, τδ] = η]F(Ωδ\η;η̃,b�δ)(z
�
δ )

=
∑
η

(
√

2− 1)|η| ×
∑

ω∈Ẽ(η̃,b�δ)

(√
2− 1

)|ω|
∑

ω∈E(a�δ ,b
�
δ)

(√
2− 1

)|ω|
×

∑
ω∈Ẽ(η̃,z�δ ) e

− i
2
Wγδ(ω)

(η̃,z�δ ) (√2− 1
)|ω|

∑
ω∈Ẽ(η̃,b�δ) e

− i
2
Wγδ(ω)

(η̃,b�δ) (√2− 1
)|ω|

=F(Ωδ;a
�
δ ,b
�
δ)(z

�
δ ),

where η̃ is the endpoint of η on V (Ω�δ).

Proof of Theorem 2.3. Suppose ψ(γ) is any sublimit. We may assume that ψδ(γδ)→ ψ(γ)
in law under the metric (1.1). By Theorem 2.3 and Lemma 2.4, for every z ∈ Ω, we have

that
{√

ϕ′t(z)
ϕ′t(b)

}
is a martingale before the hitting time of z, where ϕt is any conformal map

from (Ω \ γ[0, t]; γ(t), b) onto (H;∞, 0). Define Mt(z) :=
√

ϕ′t(z)
ϕ′t(b)

.

To derive the law of the driving function of γ, we may assume (Ω; a, b) to be (H; 0,∞).
Denote by {gt : t ≥ 0} the corresponding conformal maps of γ and by W the driving
function. Then,

Mt(z) =

(
g′t(z)

(gt(z)−Wt)2

)1/2

.

Thus, Wt is a semimartingale. Suppose Wt = Nt + Lt, where {Nt}t≥0 is a matingale and
{Lt}t≥0 is a bounded variation process. Then, we have

dMt(z) =

√
g′t(z)

(gt(z)−Wt)3
(−3dt+ d〈W 〉t) +

√
g′t(z)

(gt(z)−Wt)2
(dNt + dLt).

As the drift term of Mt(z) vanishes, we have

dLt = 0, and d〈W 〉t = 3dt.

This implies that Wt has the same law as
√

3Bt, where B has the law of a standard
Brownian motion. This completes the proof.

2.3 Convergence of interfaces when bδ 6= cδ

We will prove the following theorem in this subsection:
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Theorem 2.5. Suppose that (Ωδ; aδ, bδ, cδ) converges to (Ω; a, b, c) in the Carathéodory
sense. Then, the random curve ψδ(γδ) converges to SLE3 (−3/2) from −1 to 1 with marked
point i as curves.

SLE3(−3/2) is a variant of SLE3 with a marked point. We will give a concrete descrip-
tion in the proof. Theorem 2.5 can be proved in the same way as Theorem 2.1. The proof
of tightness is same as the proof of the case that bδ = cδ. The construction of observable
is different. In this case, the fermionic observable is defined as

F(Ωδ;a
�
δ ,b
�
δ)(z

�
δ ) :=

∑
ω∈E(a�δ ,z

�
δ ) e
− i

2
Wγδ(ω)

(a�δ ,z
�
δ ) (√2− 1

)|ω\(bδcδ)|∑
ω∈E(a�δ ,b

�
δ) e
− i

2
Wγδ(ω)

(a�δ ,b
�
δ) (√2− 1

)|ω\(bδcδ)| .
For every z ∈ H, define fH,b(z) := z−2b√

πz
√
b−z and define fΩ,b(z) = φ′(z)1/2fH,φ(b)(φ(z)),

where φ is any conformal map from Ω onto H such that φ(a) = 0 and φ(c) =∞.

Theorem 2.6. Suppose (Ωδ; aδ, bδ, cδ) converges (Ω; a, b, c) and suppose (bc) is smooth.
Then,

F(Ωδ;a
�
δ ,b
�
δ) → fΩ,b locally uniformly.

We only give a sketch of proof here. The complete proof can be found in [Izy15].

Lemma 2.7. F(Ωδ;a
�
δ ,b
�
δ) is s-holomorphic.

Thus, we can define H•δ and H◦δ as before. That is, for a pair of neighboring vertices
v ∈ V (Ωδ) and v∗ ∈ V (Ω∗δ), we put

H•δ (v)−H◦δ (v∗) = Pl(e)[F(Ωδ;a
�
δ ,b
�
δ)(x)]2,

where e = (x, y) is the edge crosses the edge (vv∗). Set H◦δ (a∗δ) = 0. Note that H◦ is also
defined at faces of Lδ \ Ωδ adjacent to Ωδ.

Lemma 2.8. • H◦ = 0 at faces of  Lδ \ Ωδ adjacent to (aδbδ) ∪ (cδaδ) and H• = 1 at
the vertices of (bδcδ).

• Set H◦ = 1 at faces of  Lδ \ Ωδ adjacent to (bδcδ) and set H• = 0 on vertices of
 Lδ \ Ωδ adjacent to (aδbδ) ∪ (cδaδ). Then, we have ∆H• ≥ 0 for every v 6= aδ and
∆H◦ ≤ 0 for any face in Ωδ. In this case, the Laplacian is modified on the boundary:
∆H(z) =

∑
w∼z(H(w)−H(z)), where c(z, w) = 1 unless w is either a face of  Lδ \Ωδ

adjacent to (bδcδ), or a vertex of  Lδ \ Ωδ adjacent to (aδbδ) ∪ (cδaδ), in which case
c(z, w) = 2(

√
2− 1).

Proof of Theorem 2.6(sketch). Though H•δ is not subharmonic at aδ, we may assume H•δ
is uniformly bounded on Ωδ \B(aδ, r) for every fixed r. Then, the limit of H•,◦δ , denote by
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h has the following boundary conditions: it equals 0 on (ab)∪ (ca) and it equals 1 on (bc).
Thus, we have

h(z) = 1− 1

π
Im

[
log(φ(z)− φ(b)) +

α

φ(z)

]
for some α ≥ 0.

We still need to derive α and then we can derive the explict form of the limit of F(Ωδ;a
�
δ ,b
�
δ).

Note that

∂ω

(
log(ω − φ(b)) +

α

ω

)
=

1

ω − φ(b)
− α

w2
(2.1)

has two simple zeros on (φ(b),∞) if α > 4φ(b) and a simple zero in H if 0 < α < 4φ(b). The
former is impossible from the Harnack-type estimate that ∂nh is always positive on (bc),
which implies that the derivative in (2.1) increases strictly. The later case is also impossible
since this implies that the limit of F(Ωδ;a

�
δ ,b
�
δ) is not a single valued function. Thus, we only

need to consider two cases: α = 0 or α = 4φ(b). The convergence result in positive-free
boundary conditions case implies that the limit function should have singularity near a.
This implies α = 4φ(b). This completes the proof.

We can still define the process
{
F(Ωδ\γδ[0,n];γδ(n),b�δ)(z

�
δ )
}

as before.

Lemma 2.9. For every z�δ ∈ V (Ω�δ), the fermionic observable
{
F(Ωδ\γδ[0,n];γδ(n),b�δ)(z

�
δ )
}

is

a martingale before the hitting time of z�δ .

Proof of Theorem 2.5. Suppose ψ(γ) is any sublimit. We may assume that ψδ(γδ)→ ψ(γ)
in law under the metric (1.1). By Theorem 2.6 and Lemma 2.9, we know that for every
z ∈ Ω, we have

{
φ′t(z)

1/2fH,φt(b)(φt(z))
}

is a martingale before the hitting time of z,
where φt is any conformal map from (Ω \ γ[0, t]; γ(t), c) onto (H; 0,∞). Define Mt(z) :=
φ′t(z)

1/2fH,φt(b)(φt(z)).
To derive the law of the driving function of γ, we may assume (Ω; a, b) to be (H; 0,∞).

Denote by {gt : t ≥ 0} the corresponding conformal maps of γ and by W the driving

function. Then, φt(z) = gt(z)−Wt

gt(z)−gt(c) . Thus, we have

Mt =
1√
π

(√
g′t(z)

gt(z)− gt(c)
− 2

√
(gt(z)− gt(c))g′t(z)

gt(z)−Wt

)
.

Thus, Wt is a semimartingale. Suppose Wt = Nt + Lt, where {Nt}t≥0 is a matingale and
{Lt}t≥0 is a bounded variation process. By direct computation, we have

dMt =
2√
π

√
g′t(z)(gt(z)− gt(c))

(gt(z)−Wt)3
(3dt−d〈W 〉t)−

2√
π

√
g′t(z)(gt(z)− gt(c))

(gt(z)−Wt)2

(
dNt + dLt −

3

2

1

gt(c)−Wt

)
.
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As the drift term of Mt(z) vanishes, we have

dLt =
3

2

1

gt(c)−Wt
, and d〈W 〉t = 3dt.

This implies that Wt satisfies the following SDEs{
dWt =

√
3dBt − 3

2
1

Wt−Vtdt, W0 = 0;

dVt = 2
Vt−Wt

dt, V0 = c.

This implies that γ has the same law as a SLE3(−3/2) curve from 0 to ∞ with marked
point c. This completes the proof.
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