Minimal surfaces, WZW and multiple zeta values

Current Developments in Mathematics and Physics Beijing, April 6th 2024

Sebastian Heller
BIMSA

Motivating questions

What is the 'best' realization of a given surface in space?

Motivating questions

What is the 'best' realization of a given surface in space?

Minimal surfaces: critical points for the area functional

Motivating questions

What is the 'best' realization of a given surface in space?

Minimal surfaces: critical points for the area functional

$$
\stackrel{\rightharpoonup}{ })=0
$$

- CMC surfaces ($H=$ const .): with fixed enclosed volume
- compact embedded examples only in \mathbb{S}^{3}

Motivating questions

What is the 'best' realization of a given surface in space?

Properties of minimal surfaces?

Motivating questions

What is the 'best' realization of a given surface in space?

Properties of minimal surfaces?

- areas and index

Motivating questions

What is the 'best' realization of a given surface in space?

Properties of minimal surfaces?

- areas and index
- first eigenvalue (Yau conjecture)

Motivating questions

What is the 'best' realization of a given surface in space?

Properties of minimal surfaces?

- areas and index
- first eigenvalue (Yau conjecture)
-enclosed volume and isoperimetric problems

Motivating questions

What is the 'best' realization of a given surface in space?

Properties of minimal surfaces?

- areas and index
- first eigenvalue (Yau conjecture)
-enclosed volume and isoperimetric problems
- space of embedded minimal (CMC) surfaces in \mathbb{S}^{3}

Motivating questions

What is the 'best' realization of a given surface in space?

Willmore surfaces:

Motivating questions

What is the 'best' realization of a given surface in space?

Willmore surfaces:

- critical points for Willmore functional for \mathbb{S}^{3}

$$
\mathscr{W}(f)=\int_{\Sigma} H^{2}+1 \mathrm{dA}
$$

Motivating questions

What is the 'best' realization of a given surface in space?

Willmore surfaces:

- critical points for Willmore functional for \mathbb{S}^{3}

$$
\mathscr{W}(f)=\int_{\Sigma} H^{2}+1 \mathrm{dA}
$$

- absolute minimizers exist for every topological class

Motivating questions

What is the 'best' realization of a given surface in space?

Willmore surfaces:

- critical points for Willmore functional for \mathbb{S}^{3}

$$
\mathscr{W}(f)=\int_{\Sigma} H^{2}+1 \mathrm{dA}
$$

- absolute minimizers exist for every topological class
- Li-Yau: compact surfaces with $\mathscr{W}<8 \pi$ are embedded

Candidates

Lawson surfaces $\xi_{k, l}$ in \mathbb{S}^{3}

$\xi_{2,1}$

$\xi_{3,1}$

$\xi_{2,2}$

Images by N. Schmitt.

Candidates

Lawson surfaces $\xi_{k, l}$ in \mathbb{S}^{3}

- first eigenvalue 2 (Choe-Soret)

Candidates

Lawson surfaces $\xi_{k, l}$ in \mathbb{S}^{3}

- first eigenvalue 2 (Choe-Soret)
-index: $2 g+3$ (Kapouleas-Wiygul)

Candidates

Lawson surfaces $\xi_{k, l}$ in \mathbb{S}^{3}

- first eigenvalue 2 (Choe-Soret)
-index: $2 g+3$ (Kapouleas-Wiygul)
- conjectured Willmore minimizers $\xi_{g, 1}$

Candidates

Lawson surfaces $\xi_{k, l}$ in \mathbb{S}^{3}

- first eigenvalue 2 (Choe-Soret)
-index: $2 g+3$ (Kapouleas-Wiygul)
- conjectured Willmore minimizers $\xi_{g, 1}$
-algebraic equation: $\left(x^{k+1}+i\right)\left(y^{l+1}+i\right)=-2$

Candidates

Lawson surfaces $\xi_{k, l}$ in \mathbb{S}^{3}

- first eigenvalue 2 (Choe-Soret)
-index: $2 g+3$ (Kapouleas-Wiygul)
- conjectured Willmore minimizers $\xi_{g, 1}$
- algebraic equation: $\left(x^{k+1}+i\right)\left(y^{l+1}+i\right)=-2$
- gonality: $\min (k+1, l+1)$?

$$
\text { true for } l=1, k=l \text { and } k \rightarrow \infty, l \text { fixed }
$$

Further examples

Karcher-Pinkall-Sterling

Images by N. Schmitt.

Results

Theorem [Charlton- ${ }^{2}$-Traizet]

The areas of the Lawson surfaces $\xi_{g, 1}$ can be computed in terms of alternating multi zeta values and are strictly monotonic in the genus g.

Results

Theorem [Charlton- ${ }^{2}$-Traizet]

The areas of the Lawson surfaces $\xi_{g, 1}$ can be computed in terms of alternating multi zeta values.

$$
\zeta(n)=\sum_{0<k} \frac{1}{k^{n}}
$$

Results

Theorem [Charlton-H²-Traizet]

The areas of the Lawson surfaces $\xi_{g, 1}$ can be computed in terms of alternating multi zeta values.

$$
\begin{aligned}
& \zeta(n)=\sum_{0<k} \frac{1}{k^{n}} \\
& \zeta\left(n_{1}, \ldots, n_{d} ; \epsilon_{1}, \ldots, \epsilon_{d}\right)=\sum_{0<k_{1}<\cdots<k_{d}} \frac{\epsilon_{1}^{k_{1}} \ldots \epsilon_{d}^{k_{d}} k_{1}^{n_{1}} \ldots k_{d}^{n_{d}}}{\text { and }}
\end{aligned}
$$

Results

Theorem [Charlton-H²-Traizet]

The areas of the Lawson surfaces $\xi_{g, 1}$ can be computed in terms of alternating multi zeta values.

$$
\begin{aligned}
& \zeta(n)=\sum_{0<k} \frac{1}{k^{n}} \\
& \zeta\left(n_{1}, \ldots, n_{d} ; \epsilon_{1}, \ldots, \epsilon_{d}\right)=\sum_{0<k_{1}<\cdots<k_{d}} \frac{\epsilon_{1}^{k_{1}} \ldots \epsilon_{d}^{k_{d}}}{k_{1}^{n_{1}} \ldots k_{d}^{n_{d}}} \\
& \zeta(\bar{n}):=\zeta(n ;-1)=\sum_{0<k} \frac{(-1)^{k}}{k^{n}} \text {, etc. }
\end{aligned}
$$

Results

Theorem [Charlton- ${ }^{2}$-Traizet]

The areas of the Lawson surfaces $\xi_{g, 1}$ can be computed in terms of alternating multi zeta values.

$$
\mathscr{A}\left(\xi_{\infty, 1}\right)=8 \pi
$$

Results

Theorem [Charlton- ${ }^{2}$-Traizet]

The areas of the Lawson surfaces $\xi_{g, 1}$ can be computed in terms of alternating multi zeta values.

$$
\mathscr{A}\left(\xi_{g, 1}\right)=8 \pi\left(1-\sum_{k} \frac{\alpha_{2 k+1}}{(2 g+2)^{2 k+1}}\right)
$$

Results

Theorem [Charlton- ${ }^{2}$-Traizet]

The areas of the Lawson surfaces $\xi_{g, 1}$ can be computed in terms of alternating multi zeta values.

$$
\mathscr{A}\left(\xi_{g, 1}\right)=8 \pi\left(1-\sum_{k} \alpha_{2 k+1} t^{2 k+1}\right)
$$

deformation via angle $\frac{\pi}{g+1}=2 \pi t$ of the geodesic polygon

Results

Theorem [Charlton-H²-Traizet]

The areas of the Lawson surfaces $\xi_{g, 1}$ can be computed in terms of alternating multi zeta values.

$$
\mathscr{A}\left(\xi_{g, 1}\right)=8 \pi\left(1-\sum_{k} \alpha_{2 k+1} t^{2 k+1}\right)
$$

Results

Theorem [Charlton-H²-Traizet]

The areas of the Lawson surfaces $\xi_{g, 1}$ can be computed in terms of alternating multi zeta values.

$$
\mathscr{A}\left(\xi_{g, 1}\right)=8 \pi\left(1-\sum_{k} \alpha_{2 k+1} t^{2 k+1}\right)
$$

Results

Theorem [Charlton- ${ }^{2}$-Traizet]

The areas of the Lawson surfaces $\xi_{g, 1}$ can be computed in terms of alternating multi zeta values.

$$
\begin{aligned}
& \mathscr{A}\left(\xi_{g, 1}\right)=8 \pi\left(1-\sum_{k} \alpha_{2 k+1} t^{2 k+1}\right) \\
& \alpha_{1}=\log (2)=-\zeta(\overline{1})
\end{aligned}
$$

Results

Theorem [Charlton- ${ }^{2}$-Traizet]

The areas of the Lawson surfaces $\xi_{g, 1}$ can be computed in terms of alternating multi zeta values.

$$
\begin{aligned}
& \mathscr{A}\left(\xi_{g, 1}\right)=8 \pi\left(1-\sum_{k} \alpha_{2 k+1} t^{2 k+1}\right) \\
& \alpha_{1}=\log (2)=-\xi(\overline{1})
\end{aligned}
$$

$$
\alpha_{3}=\frac{9}{4} \zeta(3)
$$

Results

Theorem [Charlton- ${ }^{2}$-Traizet]

The areas of the Lawson surfaces $\xi_{g, 1}$ can be computed in terms of alternating multi zeta values.

$$
\begin{aligned}
& \mathscr{A}\left(\xi_{g, 1}\right)=8 \pi\left(1-\sum_{k} \alpha_{2 k+1} t^{2 k+1}\right) \\
& \cdot \alpha_{1}=\log (2)=-\zeta(\overline{1}) \\
& \cdot \alpha_{3}=\frac{9}{4} \zeta(3)
\end{aligned}
$$

$$
\text { - } \alpha_{5}=-8 \zeta(1,1, \overline{3})+\frac{121}{16} \zeta(5)+\frac{2 \pi^{2}}{3} \zeta(3)-21 \zeta(3) \zeta(\overline{1})^{2} \quad \text { with } \alpha_{l} \text { of weight } l
$$

Results

Theorem [Charlton-H²-Traizet]

The areas of the Lawson surfaces $\xi_{g, 1}$ can be computed in terms of alternating multi zeta values.

$$
\begin{aligned}
& \mathscr{A}\left(\xi_{g, 1}\right)=8 \pi\left(1-\sum_{k} \alpha_{2 k+1} t^{2 k+1}\right) \\
& \therefore \alpha_{1}= \log (2)=-\zeta(\overline{1}) \quad \\
& \therefore \alpha_{3}= \frac{9}{4} \zeta(3) \\
&=\alpha_{5}=-8 \zeta(1,1, \overline{3})+\frac{121}{16} \zeta(5)+\frac{2 \pi^{2}}{3} \zeta(3)-21 \zeta(3) \zeta(\overline{1})^{2} \quad \text { with } \alpha_{l} \text { of weight } l \\
&=\alpha_{7}=-256 \zeta(1,1,1,1, \overline{3})+\frac{1392}{17} \zeta(1,1, \overline{5})+\frac{720}{17} \zeta(1,3, \overline{3})+128 \log ^{2}(2) \zeta(1,1, \overline{3}) \\
&+28 \zeta(3) \zeta(1, \overline{3})+\frac{296921}{1088} \zeta(7)-\frac{418 \pi^{2}}{51} \zeta(5)-\frac{473 \pi^{4}}{765} \zeta(3)-\frac{109}{2} \zeta(5) \log ^{2}(2) \\
&+\frac{280}{3} \zeta(3) \log ^{4}(2)-\frac{32 \pi^{2}}{3} \zeta(3) \log ^{2}(2)-112 \zeta(3)^{2} \log (2)
\end{aligned}
$$

Results

Theorem [Charlton- ${ }^{2}$-Traizet]

The areas of the Lawson surfaces $\xi_{g, 1}$ can be computed in terms of alternating multi zeta values.

$$
\mathscr{A}\left(\xi_{g, 1}\right)=8 \pi\left(1-\sum_{k} \alpha_{2 k+1} t^{2 k+1}\right)
$$

convergence radius $t \geq 0.137$

Results

Theorem [Charlton- ${ }^{2}$-Traizet]

The areas of the Lawson surfaces $\xi_{g, 1}$ can be computed in terms of alternating multi zeta values and are strictly monotonic in the genus g for all $g \geq 0$.
convergence radius $t \geq 0.137$
full control for genus $g \geq 2.65$

Results

Theorem [Charlton- ${ }^{2}$-Traizet]

The areas of the Lawson surfaces $\xi_{g, 1}$ can be computed in terms of alternating multi zeta values and are strictly monotonic in the genus g for all $g \geq 0$.

Using the resolution of the Willmore conjecture, only the area $g=2$ needs to be estimated from above.

iPDEs and linear ODEs

Integrable PDEs are special PDEs which occur as compatibility conditions for families of (linear) ODEs (flat connections)

iPDEs and linear ODEs

Integrable PDEs are special PDEs which occur as compatibility conditions for families of (linear) ODEs (flat connections)
examples include the Euler-Lagrange equations for minimal surfaces in space forms and affine Toda equations

iPDEs and linear ODEs

Integrable PDEs are special PDEs which occur as compatibility conditions for families of (linear) ODEs (flat connections)
examples include the Euler-Lagrange equations for minimal surfaces in space forms and affine Toda equations
periodic solutions of the PDE yield a family of quasi-periodic solutions of the ODEs depending on a spectral
parameter $\lambda \in \mathbb{C}^{*}$

iPDEs and linear ODEs

Integrable PDEs are special PDEs which occur as compatibility conditions for families of (linear) ODEs (flat connections)
examples include the Euler-Lagrange equations for minimal surfaces in space forms and affine Toda equations
periodic solutions of the PDE yield a family of quasi-periodic solutions of the ODEs depending on a spectral parameter $\lambda \in \mathbb{C}^{*}$

iPDEs and linear ODEs

Integrable PDEs are special PDEs which occur as compatibility conditions for families of (linear) ODEs (flat connections)
examples include the Euler-Lagrange equations for minimal surfaces in space forms and affine Toda equations
periodic solutions of the PDE yield a family of quasi-periodic solutions of the ODEs depending on a spectral parameter $\lambda \in \mathbb{C}^{*}$
\Rightarrow (non-abelian) monodromy depending on λ

Topology and Monodromy of iPDEs

The topology predicts the behaviour of solutions

Topology and Monodromy of iPDEs

The topology predicts the behaviour of solutions

genus	Fundamental Group	Monodromies	Solutions of iPDEs
$\mathbf{0}$	trivial	trivial	'trivial'

Topology and Monodromy of iPDEs

The topology predicts the behaviour of solutions

genus	Fundamental Group	Monodromies	Solutions of iPDEs
$\mathbf{0}$	trivial	trivial	'trivial'
$\mathbf{1}$	abelian	reducible	linear flow

Topology and Monodromy of iPDEs

The topology predicts the behaviour of solutions

genus	Fundamental Group	Monodromies	Solutions of iPDEs
$\mathbf{0}$	trivial	trivial	'trivial'
$\mathbf{1}$	abelian	reducible	linear flow
$>\mathbf{1}$	non-abelian	generically irreducible	$?$

Framework

Consider 'compactified' moduli spaces of monodromies \mathscr{M} for the associated families of ODEs (flat connections)

Framework

Consider 'compactified' moduli spaces of monodromies \mathscr{M} for the associated families of ODEs (flat connections)

- Deligne-Hitchin moduli space \mathscr{M}
- obtained by gluing Higgs bundle moduli space ($\lambda=0, \infty$) with moduli of flat connections $\lambda \neq 0$

Framework

Consider 'compactified' moduli spaces of monodromies \mathscr{M} for the associated families of ODEs (flat connections)

- Deligne-Hitchin moduli space \mathscr{M}
- obtained by gluing Higgs bundle moduli space ($\lambda=0, \infty$) with moduli of flat connections $\lambda \neq 0$
monodromies satisfy reality conditions depending on the type of the iPDE, e.g., unitary for unimodular λ in the case of minimal surfaces

Framework

Theorem [H, '14.]
The associated monodromy curve
$\lambda \in \mathbb{C} P^{1} \longmapsto M(\lambda) \in \mathscr{M}$
determines the solution.

Framework

Theorem [H, '14.]
The associated monodromy curve
$\lambda \in \mathbb{C} P^{1} \longmapsto M(\lambda) \in \mathscr{M}$
determines the solution.
construction of monodromy curves with appropriate reality conditions and extrinsic closing conditions is a difficult task (Riemann-Hilbert problem)

Framework

construction of monodromy curves with appropriate reality conditions and extrinsic closing conditions is a difficult task (Riemann-Hilbert problem)

Why $\zeta(3) ?$

The geometry determines the monodromy curve:

Why $\zeta(3)$?

The geometry determines the monodromy curve:
$\nabla_{t}^{\lambda} \cong d+\sum_{i=1}^{4} A_{i}(t, \lambda) \frac{d z}{z-p_{i}}$ and apply IFT with $t=\frac{1}{2 g+2}$ for the genus g

Why $\zeta(3)$?

The geometry determines the monodromy curve:

$$
\nabla_{t}^{\lambda} \cong d+\sum_{i=1}^{4} A_{i}(t, \lambda) \frac{d z}{z-p_{i}} \text { and apply IFT with } t=\frac{1}{2 g+2} \text { for the genus } g
$$

IFT can be solved recursively by solving finite dimensional linear systems whose coefficients are given by iterated integrals

Why $5(3)$?

The geometry determines the monodromy curve:

$$
\nabla_{t}^{\lambda} \cong d+\sum_{i=1}^{4} A_{i}(t, \lambda) \frac{d z}{z-p_{i}} \text { and apply IFT with } t=\frac{1}{2 g+2} \text { for the genus } g
$$

IFT can be solved recursively by solving finite dimensional linear systems whose coefficients are given by iterated integrals

$$
A_{i}(t, \lambda)=\lambda^{-1} \sum A_{i}^{k}(\lambda) t^{k} \text { with polynomial } A_{i}^{k}(\lambda)
$$

Why $5(3)$?

The geometry determines the monodromy curve:

$$
\nabla_{t}^{\lambda} \cong d+\sum_{i=1}^{4} A_{i}(t, \lambda) \frac{d z}{z-p_{i}} \text { and apply IFT with } t=\frac{1}{2 g+2} \text { for the genus } g
$$

IFT can be solved recursively by solving finite dimensional linear systems whose coefficients are given by iterated integrals

$$
\begin{aligned}
& A_{i}(t, \lambda)=\lambda^{-1} \sum A_{i}^{k}(\lambda) t^{k} \text { with polynomial } A_{i}^{k}(\lambda) \\
& \text { expand monodromy via iterated integrals }
\end{aligned}
$$

Why $5(3)$?

The geometry determines the monodromy curve:

$$
\nabla_{t}^{\lambda} \cong d+\sum_{i=1}^{4} A_{i}(t, \lambda) \frac{d z}{z-p_{i}} \text { and apply IFT with } t=\frac{1}{2 g+2} \text { for the genus } g
$$

IFT can be solved recursively by solving finite dimensional linear systems whose coefficients are given by iterated integrals

$$
\begin{aligned}
& A_{i}(t, \lambda)=\lambda^{-1} \sum A_{i}^{k}(\lambda) t^{k} \text { with polynomial } A_{i}^{k}(\lambda) \\
& \text { expand monodromy via iterated integrals } \\
& \text { - express MZVs and MPLs via iterated integrals } \\
& L i_{n_{1}, \ldots, n_{d}}\left(z_{1}, \ldots, z_{d}\right)=(-1)^{d} \int_{L} \frac{d w}{w-a_{1}}\left\{\frac{d w}{w}\right\}^{n_{1}-1} \ldots \frac{d w}{w-a_{d}}\left\{\frac{d w}{w}\right\}^{n_{d}-1}
\end{aligned}
$$

Conserved Quantities

Area in terms of the monodromy curve

- encoded in terms of the 1-jet of the monodromy curve at
$\lambda=0 \in \mathbb{C} P^{1}$

Conserved Quantities

Area in terms of the monodromy curve

- encoded in terms of the 1-jet of the monodromy curve at
$\lambda=0 \in \mathbb{C} P^{1}$

Conserved Quantities

Area in terms of the monodromy curve

- encoded in terms of the 1-jet of the monodromy curve at
$\lambda=0 \in \mathbb{C} P^{1}$
- given as the residue of a meromorphic connection on the hyperholomorphic line bundle over \mathscr{M}

Conserved Quantities

Area in terms of the monodromy curve

- encoded in terms of the 1-jet of the monodromy curve at
$\lambda=0 \in \mathbb{C} P^{1}$
- given as the residue of a meromorphic connection on the hyperholomorphic line bundle over \mathscr{M}
- computable in terms of the residues A_{i} in the Fuchsian system representation

Conserved Quantities

Enclosed volume

- Chern-Simons line bundle $\mathscr{L} \rightarrow \mathscr{M}^{u}$ with unitary connection \mathscr{D}

$$
\begin{aligned}
& (\nabla, \mu) \sim(\nabla . g, \Theta(\nabla, g) \mu) \text { with } \\
& \Theta(\nabla, g)=\exp (i \operatorname{CS}(\nabla . g)-i \mathrm{CS}(\nabla))
\end{aligned}
$$

Conserved Quantities

Enclosed volume

- Chern-Simons line bundle $\mathscr{L} \rightarrow \mathscr{M}^{u}$ with unitary connection \mathscr{D}
- Hitchin: holonomy of \mathscr{D} in terms of energy and WZW-term for harmonic tori in \mathbb{S}^{3}

Conserved Quantities

Enclosed volume

- Chern-Simons line bundle $\mathscr{L} \rightarrow \mathscr{M}^{u}$ with unitary connection \mathscr{D}
- Hitchin: holonomy of \mathscr{D} in terms of energy and WZW-term for harmonic tori in \mathbb{S}^{3}
- extension to CMC surface in \mathbb{S}^{3} of genus $g \geq 2$
$\operatorname{Hol}(\mathscr{D}, \gamma)=\exp \left(\frac{i}{\pi} \frac{c-\sin (c)}{4} \mathscr{W}(f)-\frac{i}{\pi} \mathscr{V}(f)\right) \quad$ for $c=2 \cot ^{-1}(H)$

Conserved Quantities

Enclosed volume

- Chern-Simons line bundle $\mathscr{L} \rightarrow \mathscr{M}^{u}$ with unitary connection \mathscr{D}
- Hitchin: holonomy of \mathscr{D} in terms of energy and WZW-term for harmonic tori in \mathbb{S}^{3}
- extension to CMC surface in \mathbb{S}^{3} of genus $g \geq 2$

$$
\operatorname{Hol}(\mathscr{D}, \gamma)=\exp \left(\frac{i}{\pi} \frac{c-\sin (c)}{4} \mathscr{W}(f)-\frac{i}{\pi} \mathscr{V}(f)\right) \quad \text { for } c=2 \cot ^{-1}(H)
$$

- computable in terms of Fuchsian system representation for $g \geq 2$

Isoperimetric Inequalities in \mathbb{R}^{3} / Γ

least area surface enclosing fixed volume V exist and is CMC (Almgren, Morgan,..)

Isoperimetric Inequalities in \mathbb{R}^{3} / Γ

least area surface enclosing fixed volume V exist and is CMC (Almgren, Morgan,..)

- minimizers only known in certain cases, e.g., Γ 1-dimensional or V small

Isoperimetric Inequalities in \mathbb{R}^{3} / Γ

least area surface enclosing fixed volume V exist and is CMC (Almgren, Morgan,..)

- minimizers only known in certain cases, e.g., Γ 1-dimensional or V small
- Conjecture: for $\Gamma=\mathbb{Z}^{3}, V=\frac{1}{2}$ the solution is the Schwarz P-surface

Isoperimetric Inequalities in \mathbb{R}^{3} / Γ

least area surface enclosing fixed volume V exist and is CMC (Almgren, Morgan,..)

- minimizers only known in certain cases, e.g., Γ 1-dimensional or V small
- Conjecture: for $\Gamma=\mathbb{Z}^{3}, V=\frac{1}{2}$ the solution is the Schwarz P-surface
-Conjecture (Ros et all): for $\Gamma=\mathbb{Z}+(a+b i) \mathbb{Z} \subset \mathbb{R}^{3}$, solutions are round spheres, flat cylinders or parallel planes depending on V

Isoperimetric Inequalities in \mathbb{R}^{3} / Γ

least area surface enclosing fixed volume V exist and is CMC (Almgren, Morgan,..)

- minimizers only known in certain cases, e.g., Γ 1-dimensional or V small
- Conjecture: for $\Gamma=\mathbb{Z}^{3}, V=\frac{1}{2}$ the solution is the Schwarz P-surface
- Conjecture (Ros et all): for $\Gamma=\mathbb{Z}+(a+b i) \mathbb{Z} \subset \mathbb{R}^{3}$, solutions are round
spheres, flat cylinders or parallel planes depending on V
- Example: hexagonal lattice

$$
(a, b)=\frac{1}{2}(1, \sqrt{3}), \quad V=\frac{3}{4 \pi}, \quad A_{\text {conjecture }}=A_{\text {planes }}=A_{c y l i n d e r}=\sqrt{3}
$$

Isoperimetric Inequalities in \mathbb{R}^{3} / Γ

least area surface enclosing fixed volume V exist and is CMC (Almgren, Morgan,..)

-Ros et. al.: a surface close to CMC cousin of Lawson $\xi_{2,2}$ with area less than $1.0003 \times \sqrt{3}$ is
a possible competitor

Enclosed volume for CMC in \mathbb{R}^{3} / Γ

Theorem [Charlton-H2-Traizet]

The enclosed volume can be computed in terms of the monodromy curve:

$$
K=-\frac{i}{2 \pi} \mathscr{A}(f)+\frac{3 i}{2 \pi} \mathscr{V}(f)-\frac{3 i}{2 \pi} \mathscr{V}\left(\Gamma_{\Sigma}\right)
$$

Enclosed volume for CMC in \mathbb{R}^{3} / Γ

Theorem [Charlton- ${ }^{2}$-Traizet]
The enclosed volume can be computed in terms of the monodromy curve:

$$
K=-\frac{i}{2 \pi} \mathscr{A}(f)+\frac{3 i}{2 \pi} \mathscr{V}(f)-\frac{3 i}{2 \pi} \mathscr{V}\left(\Gamma_{\Sigma}\right)
$$

- next step: check on competitors!

