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Motivating questions
What is the ‘best’ realization of a given surface in space?            

Willmore surfaces:            
‣critical points for Willmore functional for  

                   

‣ absolute minimizers exist for every topological class 

‣  Li-Yau: compact surfaces with  are embedded

𝕊3

𝒲( f ) = ∫Σ
H2 + 1 dA

𝒲 < 8π
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Candidates
Lawson surfaces  in       ξk,l 𝕊3

‣first eigenvalue 2 (Choe-Soret) 

‣index:  (Kapouleas-Wiygul) 

‣conjectured Willmore minimizers  

‣algebraic equation:  

‣gonality: ?  

         true for ,  and 

2g + 3

ξg,1

(xk+1 + i)(yl+1 + i) = − 2

min(k + 1,l + 1)

l = 1 k = l k → ∞, l fixed



Further examples
Karcher-Pinkall-Sterling      

Images by N. Schmitt. 
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with  of weight    αl l

‣ α1 = log(2) = − ζ(1̄)

‣                                                                                         α3 = 9
4 ζ(3)

‣  

           
          

α5 = − 8ζ(1,1,3)+ 121
16 ζ(5)+ 2π2

3 ζ(3) − 21ζ(3)ζ(1̄)2

‣  

            

           

α7 = − 256ζ(1,1,1,1,3)+ 1392
17 ζ(1,1,5)+ 720

17 ζ(1,3,3) + 128 log2(2)ζ(1,1,3)

+28ζ(3)ζ(1,3)+ 296921
1088 ζ(7)− 418π2

51 ζ(5)− 473π4

765 ζ(3)− 109
2 ζ(5)log2(2)

+ 280
3 ζ(3)log4(2)− 32π2

3 ζ(3)log2(2) − 112ζ(3)2log(2)
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Results
Theorem [Charlton-H2-Traizet]

The areas of the Lawson surfaces  can be computed in 
terms of alternating multi zeta values and are strictly 
monotonic in the genus  for all .

ξg,1

g g ≥ 0

Using the resolution of the Willmore 
conjecture, only the area  
needs to be estimated from above.

g = 2
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Integrable PDEs are special PDEs  which occur as compatibility 
conditions for families of (linear) ODEs (flat connections) 

periodic solutions of the PDE yield a 
family of quasi-periodic solutions of the 
ODEs depending on a spectral 
parameter  λ ∈ ℂ*

iPDEs and linear ODEs

examples include the Euler-Lagrange equations for minimal 
surfaces in space forms and affine Toda equations 

⇒ (non-abelian) monodromy depending on  λ
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Topology and Monodromy of iPDEs
The topology predicts the behaviour of solutions

genus Fundamental 
Group Monodromies Solutions of 

iPDEs

0 trivial trivial ‘trivial’

1 abelian reducible linear flow

>1 non-abelian generically 

irreducible ?
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The geometry determines the monodromy curve:

  and apply IFT with  for the genus ∇λ
t ≅ d +

4

∑
i=1

Ai(t, λ) dz
z − pi

t = 1
2g + 2 g

IFT can be solved recursively by solving finite dimensional linear 
systems whose coefficients are given by iterated integrals 

‣   with polynomial  

‣expand monodromy via iterated integrals 
‣express MZVs and MPLs via iterated integrals 

  

Ai(t, λ) = λ−1 ∑ Ak
i (λ)tk Ak

i (λ)

Lin1,...,nd
(z1, . . . , zd) = (−1)d ∫L

dw
w − a1

{ dw
w }n1−1 . . . dw

w − ad
{ dw

w }nd−1

Why ?ζ(3)
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‣given as the residue of a meromorphic connection on the hyper-

holomorphic line bundle over  

‣computable in terms of the residues  in the Fuchsian system 

representation 

 

λ = 0 ∈ ℂP1

ℳ

Ai
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Enclosed volume

‣Chern-Simons line bundle  with unitary connection  

‣Hitchin: holonomy of  in terms of energy and WZW-term for 

harmonic tori in  

‣extension to CMC surface in  of genus  

         for  

‣computable in terms of Fuchsian system representation for  

ℒ → ℳu 𝒟

𝒟

𝕊3

𝕊3 g ≥ 2

Hol(𝒟, γ) = exp( i
π

c − sin(c)
4 𝒲( f )− i

π 𝒱( f )) c = 2 cot−1(H)

g ≥ 2
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V

‣minimizers only known in certain cases, e.g.,  1-dimensional or  small 

‣Conjecture: for ,  the solution is the Schwarz P-surface 

‣Conjecture (Ros et al): for , solutions are round 

spheres, flat cylinders or parallel planes depending on  

‣Example: hexagonal lattice 

                                                                                                

Γ V

Γ = ℤ3 V = 1
2

Γ = ℤ + (a + bi)ℤ ⊂ ℝ3

V

(a, b) = 1
2 (1, 3), V = 3

4π , Aconjecture = Aplanes = Acylinder = 3



Isoperimetric Inequalities in ℝ3/Γ

‣Ros et. al.: a surface close to 

CMC cousin of Lawson  with 

area less than    is 

a possible  competitor                       

ξ2,2

1.0003 × 3

least area surface enclosing fixed volume  exist and is CMC 
(Almgren, Morgan,..)

V
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Enclosed volume for CMC in ℝ3/Γ

    K = − i
2π 𝒜( f )+ 3i

2π 𝒱( f )− 3i
2π 𝒱(ΓΣ)

Theorem [Charlton-H2-Traizet]
The enclosed volume can be computed in terms of the  
monodromy curve:

‣next step: check on competitors!



Happy Birthday!


