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Minimal surfaces, WZW and
multiple zeta values

Current Developments

In Mathematics and Physics
Beijing, April 6th 2024
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Motivating questions

What is the ‘best’ realization of a given surface in space?
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Motivating questions

What is the ‘best’ realization of a given surface in space?

Minimal surfaces: critical points for the area functional
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Motivating questions

What is the ‘best’ realization of a given surface in space?

Minimal surfaces: critical points for the area functional

-H =0
»CMC surfaces ( H = const .): with fixed enclosed volume

>compact embedded examples only In S
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Motivating questions

What is the ‘best’ realization of a given surface in space?

Properties of minimal surfaces?
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Motivating questions

What is the ‘best’ realization of a given surface in space?

Properties of minimal surfaces?

»areas and index
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Motivating questions

What is the ‘best’ realization of a given surface in space?

Properties of minimal surfaces?

»areas and index

>first eigenvalue (Yau conjecture)
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Motivating questions

What is the ‘best’ realization of a given surface in space?

Properties of minimal surfaces?

>areas and Iindex
>first eigenvalue (Yau conjecture)

>enclosed volume and isoperimetric problems
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Motivating questions

What is the ‘best’ realization of a given surface in space?

Properties of minimal surfaces?

>areas and index
>first eigenvalue (Yau conjecture)

>enclosed volume and isoperimetric problems

- space of embedded minimal (CMC) surfaces in S°
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Motivating questions

What is the ‘best’ realization of a given surface in space?

Willmore surfaces:
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Motivating questions

What is the ‘best’ realization of a given surface in space?

Willmore surfaces:

> critical points for Willmore functional for S°

W(f)zJH2+1dA
2.
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Motivating questions

What is the ‘best’ realization of a given surface in space?

Willmore surfaces:

> critical points for Willmore functional for S°

W(f):JH2+1dA
2.

> absolute minimizers exist for every topological class
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Motivating questions

What is the ‘best’ realization of a given surface in space?

Willmore surfaces:

> critical points for Willmore functional for S°

W(f)zJH2+1dA
2.

> absolute minimizers exist for every topological class

» Li-Yau: compact surfaces with 77 < 8z are embedded
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Candidates

Lawson surfaces &, ;in S°
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Candidates

Lawson surfaces &, ;in S°
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Candidates

Lawson surfaces &, ;in S°

>first eigenvalue 2 (Choe-Soret)
~index: 2¢ + 3 (Kapouleas-Wiygul)

-conjectured Willmore minimizers ¢, |




AN

\

C

1)
1)
q
1)
)
.
S
¥
=
W
2
-
1
>,
=
O
¥,
o,

Candidates

Lawson surfaces &, ;in S°

>first eigenvalue 2 (Choe-Soret)
~index: 2¢ + 3 (Kapouleas-Wiygul)

- conjectured Willmore minimizers &, |

- algebraic equation: (x**! + Nyt +i) = -2
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R

>first eigenvalue 2 (Choe-Soret)
~index: 2¢ + 3 (Kapouleas-Wiygul)

- conjectured Willmore minimizers ¢, |

- algebraic equation: (x**! + Nyt +i) = -2
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Further examples

Karcher-Pinkall-Sterling

Images by N. Schmitt.
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Results

Theorem [Charlton-H2-Traizet]}

The areas of the Lawson surfaces 5&1 can be computed In
terms of alternating multi zeta values and are strictly

monotonic in the genus g.
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Results

Theorem [Charlton-H2-Traizet]}

The areas of the Lawson surfaces ¢,; can be computed in
terms of alternating multi zeta values.
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Results

Theorem [Charlton-H2-Traizet]}

The areas of the Lawson surfaces 5&1 can be computed In
terms of alternating multi zeta values.
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Results

Theorem [Charlton-H2-Traizet]}

The areas of the Lawson surfaces ¢,; can be computed in
terms of alternating multi zeta values.
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Results

Theorem [Charlton-H2-Traizet]}

The areas of the Lawson surfaces ¢,; can be computed in
terms of alternating multi zeta values.
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Results

Theorem [Charlton-H2-Traizet]}

The areas of the Lawson surfaces ¢,; can be computed in
terms of alternating multi zeta values.

A(E,)) =8n(1= ) ay, 2+
k

JU

i 2rt of the geodesic polygon

deformation via angle
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Results

Theorem [Charlton-H2-Traizet]}

The areas of the Lawson surfaces £, ; can
terms of alternating multi zeta values.

A(E,)) =8n(1= ) ay, 2+
k

be computed in
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Results

Theorem [Charlton-H2-Traizet]}

The areas of the Lawson surfaces £, ; can
terms of alternating multi zeta values.

A(E,)) =8n(1= ) ay, 2+
k

be computed in
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Results

Theorem [Charlton-H2-Traizet]}

The areas of the Lawson surfaces ¢,; can be computed in
terms of alternating multi zeta values.

A(E,)) =8n(1= ) ay, 2+
k

- a; = log(2) = — ¢()

=
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Results

Theorem [Charlton-H2-Traizet]}

The areas of the Lawson surfaces ¢,; can be computed in
terms of alternating multi zeta values.

A(E,)) =8n(1= ) ay, 2+
k

- oy = log(2) = — {(1)
- a5 = {3)
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Results

Theorem [Charlton-H2-Traizet]}

The areas of the Lawson surfaces ¢,; can be computed in
terms of alternating multi zeta values.

AE, ;) = 8x(1 — Z g 1251

= log(2) = — ¢&(1)

= ={(3)
— 8¢(1L 1.3+ (5)+Z¢(3) - 21¢L3)¢(1)? with a, of weight
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Results

Theorem [Charlton-H2-Traizet]}

The areas of the Lawson surfaces ¢,; can be computed in
terms of alternating multi zeta values.

AE, ;) = 8x(1 — 2 g 1251

= log(2) = — ¢&(1)

= —{(3)
= — 80(1,1.3)+2L(5)+2-¢(3) - 21¢(3)¢(1)? with a, of weight
a; = —256£(1,1,1,13)+=-0(1,1.5)+224(1,3.3) + 128 log?(2)¢(1,1.3)
+280(3)(1.3)+ 222 ()= 13 (5)- 222 £(3)- L2.£(5)log?(2) i~
+200(3)logt(2)- 22 5<3>1og2<2> — 112¢(3)Mlog(2) %F |
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Results

Theorem [Charlton-H2-Traizet]}

The areas of the Lawson surfaces 5g,1 can be computed In
terms of alternating multi zeta values.

A, 1) =8a(1 = ) ay, 1)
k

convergence radius r > (.137
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Results

Theorem [Charlton-H2-Traizet]}

The areas of the Lawson surfaces ¢, ; can be computed in
terms of alternating multi zeta values and are strictly

monotonic in the genus g for all g > 0.

convergence radius r > (.137

full control for genus g > 2.65
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Results

Theorem [Charlton-H2-Traizet]}

The areas of the Lawson surfaces ¢, ; can be computed in
terms of alternating multi zeta values and are strictly

monotonic in the genus g for all g > 0.

Using the resolution of the Willmore

conjecture, only the area g = 2
needs to be estimated from above.
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IPDEs and linear ODEs

Integrable PDEs are special PDEs which occur as compatibility
conditions for families of (linear) ODEs (flat connections)
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IPDEs and linear ODEs

Integrable PDEs are special PDEs which occur as compatibility
conditions for families of (linear) ODEs (flat connections)

examples include the Euler-Lagrange equations for minimal
surfaces in space forms and affine Toda equations
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IPDEs and linear ODEs

Integrable PDEs are special PDEs which occur as compatibility
conditions for families of (linear) ODEs (flat connections)

examples include the Euler-Lagrange equations for minimal
surfaces in space forms and affine Toda equations

periodic solutions of the PDE yield a
family of quasi-periodic solutions of the
ODEs depending on a spectral

parameter 4 € C*
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IPDEs and linear ODEs

Integrable PDEs are special PDEs which occur as compatibility
conditions for families of (linear) ODEs (flat connections)

examples include the Euler-Lagrange equations for minimal
surfaces in space forms and affine Toda equations

periodic solutions of the PDE yield a
family of quasi-periodic solutions of the
ODEs depending on a spectral

parameter 4 € C*
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IPDEs and linear ODEs

Integrable PDEs are special PDEs which occur as compatibility
conditions for families of (linear) ODEs (flat connections)

examples include the Euler-Lagrange equations for minimal
surfaces in space forms and affine Toda equations

periodic solutions of the PDE yield a
family of quasi-periodic solutions of the
ODEs depending on a spectral

parameter 4 € C*

= (non-abelian) monodromy depending on A
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Topology and Monodromy of IPDEs

The topology predicts the behaviour of solutions
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Topology and Monodromy of IPDEs
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Topology and Monodromy of IPDEs

The topology predicts the behaviour of solutions

onus Fundamental Monodromies Solutions of
9 Group iPDEs
0 trivial trivial ‘trivial’
1 abelian reducible linear flow
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Consider ‘compactified’ moduli spaces of monodromies .7 for
the associated families of ODEs (flat connections)
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Framework

Consider ‘compactified’ moduli spaces of monodromies .7 for
the associated families of ODEs (flat connections)

» Deligne-Hitchin moduli space .#
> obtained by gluing Higgs bundle moduli space

(1 = 0,00) with moduli of flat connections 4 # ()
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_‘Q the associated families of ODEs (flat connections)
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% » Deligne-Hitchin moduli space .#

.q,_) > obtained by gluing Higgs bundle moduli space

f__, (A = 0,00) with moduli of flat connections A # ()
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CE> monodromies satisfy reality conditions depending on the type of

3 the iPDE, e.g., unitary for unimodular 4 in the case of minimal

o surfaces ~
o Jj I~




)

S

Framework

r )

O
1)
1)

q
1)
)
.
-
¥,
=
W,
‘-
-
1
Q
=
O
W,
o,

Theorem [H, '14.}
The associated monodromy curve

LeCP'— M) e

determines the solution.
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Framework

Theorem [H, '14.]
The associated monodromy curve
LeCP'— M) e

determines the solution.

construction of monodromy curves with appropriate
reality conditions and extrinsic closing conditions is
a difficult task (Riemann-Hilbert problem)
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Framework

Theorem [H, '14.}
The associated monodromy curve

LeCP'— M) e

determines the solution.

construction of monodromy curves with appropriate
reality conditions and extrinsic closing conditions is
a difficult task (Riemann-Hilbert problem)
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Why ((3)?

The geometry determines the monodromy curve:
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Why ((3)?

The geometry determines the monodromy curve:
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Why ((3)?

The geometry determines the monodromy curve:

4
1~ dz : 1
Vizd+ Z A1, 1) — and apply IFT with 1 = P for the genus ¢
i=1

IFT can be solved recursively by solving finite dimensional linear
systems whose coefficients are given by iterated integrals
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Why ((3)?

The geometry determines the monodromy curve:

4
A~ dz : 1
Vizd+ Z A1, 1) — and apply IFT with 1 = P for the genus ¢
i=1

IFT can be solved recursively by solving finite dimensional linear
systems whose coefficients are given by iterated integrals

A1, A) = Y Z Al.k(/l)tk with polynomial Al.k(/l)
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Why ((3)?

The geometry determines the monodromy curve:

4
A~ dz : 1
Vizd+ Z A1, 1) — and apply IFT with 1 = P for the genus ¢
i=1

IFT can be solved recursively by solving finite dimensional linear
systems whose coefficients are given by iterated integrals

A1, A) = Y Z Al.k(/l)tk with polynomial Al.k(/l)

»expand monodromy via iterated integrals
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Why ((3)?

The geometry determines the monodromy curve:

A~ : - |
Vizd+ ZA (1, /1)Z B and apply IFT with 1 = P for the genus ¢
=1

IFT can be solved recursively by solving finite dimensional linear
systems whose coefficients are given by iterated integrals

A1, A) = Y Z Al.k(/l)tk with polynomial Al.k(/l)

»expand monodromy via iterated integrals
»express MZVs and MPLs via iterated integrals

Li”l ’”ld(zl’ s Zg) = (_l)dJ 2 { }nl_l - o { }”d_l
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Conserved Quantities

Area in terms of the monodromy curve
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Conserved Quantities

Area in terms of the monodromy curve
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Conserved Quantities

Area In terms of the monodromy curve
»encoded in terms of the 1-jet of the monodromy curve at
A=0¢eCP!
> given as the residue of a meromorphic connection on the hyper-

holomorphic line bundle over .#
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Conserved Quantities

Area In terms of the monodromy curve
»encoded In terms of the 1-jet of the monodromy curve at
A=0¢eCP!
>»given as the residue of a meromorphic connection on the hyper-
holomorphic line bundle over .#
~computable in terms of the residues A; in the Fuchsian system

representation
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Conserved Quantities

Enclosed volume

»Chern-Simons line bundle & — /" with unitary connection &

(Vo) ~(V.g,0(V,g)u) with
O(V,g) =exp(iCS(V.g) —iCS(V))
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Conserved Quantities

Enclosed volume

»Chern-Simons line bundle & — " with unitary connection &
> Hitchin: holonomy of & in terms of energy and WZW-term for

harmonic toriin S°
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Conserved Quantities

Enclosed volume

»Chern-Simons line bundle & — /" with unitary connection <
> Hitchin: holonomy of & in terms of energy and WZW-term for
harmonic tori in S°

- extension to CMC surface in S° of genus g > 2

; ¢ — sin(c)

Hol(2,7) = exp(+———W (/)—-=7(f))  forc = 2cot™ (H)
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Conserved Quantities

Enclosed volume

»Chern-Simons line bundle & — /" with unitary connection <
> Hitchin: holonomy of & in terms of energy and WZW-term for
harmonic tori in S°

- extension to CMC surface in S° of genus g > 2

; ¢ — sin(c)

Hol(2,7) = exp(+———W (/)—-=7(f))  forc = 2cot™ (H)

~computable in terms of Fuchsian system representation for g > 2
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Isoperimetric Inequalities in R>/T

least area surface enclosing fixed volume V exist and is CMC
(Almgren, Morgan,..)
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Isoperimetric Inequalities in R>/T

least area surface enclosing fixed volume V exist and is CMC
(Almgren, Morgan,..)

»minimizers only known in certain cases, e.g., | 1-dimensional or V small
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Isoperimetric Inequalities in R>/T

1)
1)
S least area surface enclosing fixed volume V exist and is CMC
Ty (Almgren, Morgan,..)
5"
GL) >minimizers only known in certain cases, e.g., | 1-dimensional or V small
. 1 L
% .Conjecture: for[' = Z°, V = ~ the solution is the Schwarz P-surface
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Isoperimetric Inequalities in R>/T

least area surface enclosing fixed volume V exist and is CMC

(Almgren, Morgan,..)

»minimizers only known in certain cases, e.g., | 1-dimensional or V small

. Conjecture: for[' = 7>,V = . the solution is the Schwarz P-surface

2

~Conjecture (Ros etal):forl = Z+ (a+ bi)Z C I

3, solutions are round

spheres, flat cylinders or parallel planes depending on V
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Isoperimetric Inequalities in R>/T

least area surface enclosing fixed volume V exist and is CMC
(Almgren, Morgan,..)

»minimizers only known in certain cases, e.g., | 1-dimensional or V small

. Conjecture: for[' = 7>,V = % the solution is the Schwarz P-surface

- Conjecture (Ros et al): for ' = Z + (a + bi)Z C R’, solutions are round

spheres, flat cylinders or parallel planes depending on V

> Example: hexagonal lattice

1 3
(Cl, b) — 5(1’\/5)’ V= Ar’ Acanjecture — planes — Acylinder — \/5
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Isoperimetric Inequalities in R>/T

least area surface enclosing fixed volume V exist and is CMC

»Ros et. al.: a surface close to

CMC cousin of Lawson ¢, , with

area less than 1.0003 X \/5 is

a possible competitor
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Enclosed volume for CMC in R°/TC

Theorem [Charlton-H2-Traizet]}

The enclosed volume can be computed in terms of the
monodromy curve:

K=——d(+>7 (f)— =7 Ty)
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Enclosed volume for CMC in R°/TC

Theorem [Charlton-H2-Traizet]}

The enclosed volume can be computed in terms of the
monodromy curve:

K=——d(+>7 (f)— =7 Ty)

»next step: check on competitors!
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