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Singular knots and the definition of finite type invariants

Each knot can be transformed to the unknot by switching some
crossings. Any crossing switch can be thought of as performed in R3.
Having a knot invariant f, one can consider its values on two knots
that differ at only one crossing.

While switching the crossing continuously, the most interesting
moment is the intersection moment: in this case we get what is called
a singular knot. More precisely, a singular knot of degree n is an
immersion of S! in R? with only n simple transverse intersection
points (i.e., points where two branches intersect transversely).

Singular knots are considered up to isotopy. The isotopy of singular
knots is defined quite analogously to that for the case of classical
knots. The set of singular knots of degree n (for n = 0 the set Xp
consists of the classical knots) is denoted by X;,. The set of all
singular knots (including Ap) is denoted by X.

So, while switching a crossing of a classical knot, at some moment we
get a singular knot of order one.
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Singular knots and the definition of finite type invariants

Then, we can define the derivative f' of the invariant f according to
the following relation:

f (X) = f(/() — f(;\) (1)
This relation holds for all triples of diagrams that differ on}_y outside a

small domain (two of them represent classical knots and X

represents the corresponding singular knot).
This relation is called the Vassiliev relation.

It is obvious that the invariant f’ is a well-defined invariant of singular
knots because with each singular knot and each vertex of it, we can
associate the positive and the negative resolutions of it in R3. If we
isotope the singular knot, the resolutions are “isotoped” together with
it.
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Singular knots and the definition of finite type invariants

Having a knot invariant f: Xy — A, one can define all its derivatives
of higher orders. To do this, one should take the same formula for two
singular knots of order n and one singular knot of order n + 1 (n
singular vertices of each of them lie outside of the “visible” part of the
diagram) and then apply the Vassiliev relation (1).

Thus, we define some invariant on the set X. This invariant is called
the extension of f for singular knots. Notation: f(*.

Let us calculate the extension of the Jones polynomial evaluated on
the simplest singular knot of order two. After applying the Vassiliev
relation twice, we have:

(=D
v @))—v@)*\/(@ﬂ/(@)
ZV<@))— v(@)): a+d—q-1

LA can be a ring or a field; we shall usually deal with the cases of Q,R and C
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gular knots and the definition of finite type invariants

An invariant f: Xy — A is said to be a (Vassiliev) invariant of order
< n if its extension for the set of all (n + 1)-singular knots equals zero
identically.

Denote by V, the space of all Vassiliev knot invariants of order less
than or equal to n.

.

Definition 1.3
A Vassiliev invariant of order (type) < n is said to have order n if it is
not an invariant of order less than or equal to n — 1.

.
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The definition of the Vassiliev knot invariant shows us that if an
invariant has degree zero then it has the same value on any two knots
having diagrams with the same shadow that differ at precisely one
crossing. Thus, it has the same value on all knots having the same
shadow. Let K be a knot diagram, and S be the shadow of K. There
is an unknot diagram with shadow S. So, the value of our invariant on
K equals that evaluated on the unknot.

Thus, such an invariant is constant.

It turns out that the first order gives no new invariants (in
comparison with O—type invariants, which are constants).
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Indeed, consider the simplest singular knot U shown in Fig. 1.

SR

Figure 1: The simplest singular knot

Let S be a shadow of a knot with a fixed vertex which is a singular
point. We will left the following statement as an exercise.

Prove that one can arrange all other crossing types for S to get a
singular knot isotopic to U.

It is easy to see that for each Vassiliev knot invariant I such that
I =0 we have I'(U) = 0. Indeed, I'(U) = I(C)) - {(CQ) =0.
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Now, consider an invariant I of degree less than or equal to one. Let
K be an oriented knot diagram. By switching some crossing types, the
knot diagram K can be transformed to some unknot diagram. Thus,
I(K) =1(Q) + > £I'(K;) where K; are singular knots with one
singular point. But, each K; can be transformed to some diagram U
by switching some crossing types. Thus, I'(K;) = I'(U) + > £1"(Kj),
where Kj; are singular knots of second order. By definition, I = 0,
thus I'(K;) = 0 and, consequently, I(K) = I((O). Thus, the invariant
function I is a constant. So, there are no invariants of order one.
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Consider the Conway polynomial C and its coefficients cy,.

Theorem 3.1

For each natural n, the function c, is a knot invariant of degree less
than or equal to n.

Proof.
Indeed, we just have to compare the Vassiliev relation and the
Conway skein relation:

Thus we see that the first derivative of C is divisible by x;

analogously, the n—th derivative of C is divisible by x". Thus, after
n + 1 differentiations, ¢, vanishes. [
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This gives us the first non-trivial example. The second coefficient co
of the Conway polynomial is a second-order invariant (one can easily
check that it is not constant; namely, its value on the trefoil equals
one).

However, this invariant does not distinguish the two trefoils because
the Conway polynomial itself does not. Later, we shall show how an
invariant of degree three can distinguish the two trefoils.

As will be shown in the future, all even coefficients of the Conway
polynomial give us finite—order invariants of corresponding orders.
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Chord diagrams Coproduct of chord diagrams

Contents

@ Symbols of Vassiliev’s invariants coming from the Conway
polynomial

Kim and V.O. Manturov Lecture e % ts. The chord di



‘hord diagrams Coproduct of chord diagrams

As we have shown, each coefficient ¢, of the Conway polynomial has
order less than or equal to n.

Let v be a Vassiliev knot invariant of order n. By definition,

v(®+1) = 0. This means that if we take two singular knots K, Ky of
n—th order whose diagrams differ at only one crossing (one of them
has the overcrossing and the other one has the undercrossing), then
v (K;) = v (Ky). Thus, for singular knots of n-th order one can
switch crossing types without changing the value of v(™). Hence, the
value of v(") does not depend on knottedness “that is generated” by
classical crossings. It depends only on the order of passing singular
points.

The function v(*") is called the symbol of v.
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Chord diagrams Coproduct of chord diagrams

Now, it is clear that the space V;,/V,—1 is just the space of symbols
that can be considered in the diagrammatic language.

We shall show that for even n, the coefficient ¢, of the Conway
polynomial has order precisely n. Moreover, we shall calculate its
symbols, according to [7].
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Chord diagrams Coproduct of chord diagrams

By a chord diagram we mean a finite cubic graph consisting of one
oriented cycle (circle) and unoriented chords (edges connecting
different points on this cycle). The order of a chord diagram is the
number of its chords.

A\

Chord diagrams are considered up to natural graph isomorphism
taking chords to chords, circle to the circle and preserving the
orientation of the circle.

.

We shall never indicate the orientation of the circle on a chord
diagram, always assuming that it is oriented counterclockwise.

.

S. Kim and V Manturov Lecture 9.



diagrams Coproduct of chord diagrams

The previous statements concerning singular knots can be put in
formal diagrammatic language. Namely, with each singular knot one
can associate a chord diagram that is obtained as follows. We think of
a knot as the image of the standard oriented Euclidian S' in R? and
connect by chords the preimages of the same point in R3.

So, each invariant of order n generates a function on the set of chord
diagrams with n chords. We can consider the formal linear space of
chord diagrams with coefficients, say, in Q, and then consider linear
functions on this space generated by symbols of n—th order Vassiliev
invariants (together with the constant zero function that has order
7€ero).

Now, the main question is: Which functions on chord diagrams can
play the role of symbols?
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Chord d ms Coproduct of chord diagrams

One-term relation

The simplest obbervatlon leads to the following fact. If we have a

chord diagram C = \o/ i with a small solitary chord, then each symbol
evaluated at this diagram equals zero. We have already discussed this
in the language of singular knots.

This relation is called the 1T-relation (or one—term relation).

One can easily prove the generalised 1T-relation where we can take a

diagram C = H with a chord that does not intersect any other
chord. Then, each symbol of a Vassiliev knot invariant evaluated at
the diagram C equals zero. The proof is left as an exercise.
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Chord d ms Coproduct of chord diagrams

Four—term relation

There exists another relation, consisting of four terms, the so-called
4T-relation. In fact, let us prove the following theorem.

Theorem 4.5 (The four—term relation)

For each symbol v" of an invariant v of order n the following relation

holds:
() - v (D) - v ED) + (D) =0

This relation means that for any four diagrams having n chords,
where (n — 2) chords (not shown in the Figure) are the same for all
diagrams and the other two look as shown above, the above equality
takes place.
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Chord diagrams Coproduct of chord diagrams

Proof of Theorem 4.5

Consider four singular knots Sy, Ss, S3, Sy of the order n, whose
diagrams coincide outside some small circle, and their fragments
S1,S2, 83, 84 inside this circle look like this:

Consider an invariant v of order n and the values of its symbol on
these four knots. Vassiliev’s relation implies the relations shown in
Fig. 2.
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Figure 2: The same letters express v for isotopic long knots

Obviously,
(a—b)—(c—=d)+(c—a)—(d—b)=0.

In order to get singular knots, one should close the fragments
S1,852,53,54.
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Proof of Theorem 4.5, continuec

Thus, the diagrams Sq, S2, S3, S, satisfy the relation

(Sl) — ! (SQ) + v( (Sg) — ! (S4) = 0. (2)

Each of the chord diagrams corresponding to S1, S, S3,S4 has n
chords; (n — 2) chords are the same for all diagrams, and only two
chords are different for these diagrams.

Since the order of v equals n, the symbol of v is correctly defined on
chord diagrams of order n. Thus, the value of v(") on diagrams
corresponding to singular knots Sy, S, S3,S4 equals the value on the
singular knots themselves.

Taking into account the formulae obtained above, and the
arbitrariness of the remaining (n — 2) singular vertices of the diagrams
S1,S9,S3,S4, we obtain the statement of the theorem.
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Chord diagrams Coproduct of chord diagram

Both 1T— and 4T-relations can be considered for chord diagrams and
on the dual space of linear functions on chord diagrams (since these
two dual spaces can obviously be identified). For the sake of
simplicity, we shall apply the terms 1T— and 4T-relation to both
cases.

Each linear function on chord diagrams of order n, satisfying these
relations, is said to be a weight system (of order n).

Notation: Denote the space of all weight systems of order n, by A, or
by A,.

In the last chapter, we considered invariants of orders less than or
equal to two. The situation there is quite clear: there exists the
unique non-trivial (modulo 1T-relation) chord diagram that gives the
invariant of order two. As for dimension three, there are two

diagrams: % and % It turns out that they are linearly dependent.
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1 diagrams

Namely, let us write the following 4T-relation (here the fixed chord is
represented by the dotted line):

This means that * = 2:*

So, if there exists an invariant of order three,? then its symbol is

uniquely defined by a value on % Suppose we have such an
invariant v and v”'(%) =1.

2We showed that the second Vassiliev invariant is the second Conway coefficient
up to addition of a constant.
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Chord diagrams Coproduct of chord diagrams

Let us show that this invariant distinguishes the two trefoils; see
Fig. 3.3

«(Q-w)-

"y

(- =Dy
Figure 3: Vassiliev invariant of order 3 distinguishes trefoils

The existence of this invariant will be proved later.

3Let us recall that the second Vassiliev invariant detects the non-triviality of
the trefoil, but does not separate the two trefoils.
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Chord diagrams Coproduct of chord diagrams

It turns out that the chord diagrams factorised by the 4T-relation
(with or without the 1T-relation) form an algebra. Namely, having
two chord diagrams C; and Cs, one can break them at points ¢; € Cy
and ¢y € Cy (which are not ends of chords) and then attach the
broken diagrams together according to the orientation. Thus we get a
chord diagram. The obtained diagram can be considered as the
product C; - C3. Obviously, this way of defining the product depends
on the choice of the base points ¢; and cg; thus, different choices
might generate different elements of .4°. However, this is not the case
since we have the 4T-relation.

The product of chord diagrams in A€ is well defined; i.e., it does not
depend on the choice of initial points.
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Chord diagrams Coproduct of chord diagrams

To prove this theorem, we should consider arc diagrams rather than
chord diagrams.

Definition 4.8

By an arc diagram we mean a diagram consisting of one straight
oriented line and several arcs connecting points of it in such a way
that each arc connects two different points and each point on the line
is incident to no more than one arc.

These diagrams are considered up to the natural equivalence; i.e., a
mapping of the diagram, taking the line to the line (preserving the
orientation of the line) and taking all arcs to arcs.

Obviously, by breaking one and the same chord diagram at different
points, we obtain different arc diagrams.
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Chord diagrams Coproduct of chord diagrams

Now, we can consider the 4T-relation for the case of the arc
diagrams, namely the relation obtained from a 4T-relation by
breaking all four circles at the same point (which is not a chord end).
The point is that the two arc diagrams A; and A, obtained from the
same chord diagram D by breaking this diagram at different points
are equivalent modulo 4T-relation. This will be sufficient for proving
Theorem 4.7. Obviously, one can obtain As from A; by “moving a
chord end through infinity”. Thus, it suffices to prove the following
lemma.

Let Aj, As be two arc diagrams that differ only at the chord: namely,
the rightmost position of a chord end of Ay corresponds to the
leftmost position of the corresponding chord end of A;; the other
chord ends of A; and Ay are on the same places. Then A; and A, are
equivalent modulo the four—term relation.
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Chord diagrams Coproduct of chord diagrams

Proof of Lemma 4.9

Suppose that each of the diagrams A; and A2 have n arcs. Denote the
common arc ends A1 and Az by X1,Xs,...,X2,-1 enumerated from the left
to the right. They divide the line into 2n intervals Iy, ..., I2, (from the left
to the right). Denote by Dj the arc diagram having the same “fixed” arc
ends as A; and Az and one “mobile” arc end at I. Thus,

A1 = Di1,A2 = Day. Suppose that the second end of the “mobile” arc is Xk.
Then, obviously, Dx = Dxy1. See Fig. 4 below.

-
XiXoXs Xy X5 X5 X7 X1 XoXs Xy X5Xs X7

Aoy Aoy +
L]
L]
L]
A

<«
X1X2X3 X;} XSX(S XT XIXZXS X4 XS X(i X7
Ay Ay

Figure 4: Sequence Az, — Aon—1 — -+ — Ay — Ay
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Chord d ms Coproduct of chord diagrams

Proof of Lemma 4.9, continued

Now, consider the following expression

Aoy — Ay = Aoy —Agp 1 + Ao — Aoy o+ ...
v+ Agio —Agpr AR — A 1+ A — Ay

Here we have 4n — 4 summands. It is easy to see that they can be
divided into n — 1 groups, each of which forms the 4T-relation
concerning one immobile chord and the mobile chord. Thus,

As, = A;. This completes the proof of the theorem.
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Chord diagrams Coproduct of chord diagrams
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duct of chord diagrams

Coproduct of chord diagrams

The chord diagram algebra A¢ has, however, very sophisticated
structures. It is indeed a bialgebra. The coalgebra structure of A° can
be introduced as follows.

Let C be a chord diagram with n chords. Denote the set of all chords
of the diagram C by X. Let A(C) be

Z Cs ® CX\sa

s€2X

where the sum is taken over all subsets s of X, and C, denotes the
chord diagram consisting of all chords of C belonging to the set y.
Now, let us extend the coproduct A linearly.

S. Kim and V.O. Manturov Lecture 9. liev’s invariants. The chord diagram alge



ms Coproduct of chord diagrams

Now we should check that this operation is well defined. Namely, for

each four diagrams A = @ B= M C= ’? D= ? such that

A — B+ C—D =0 is the 4T-relation, one must check that

A(A) - AB)+ A(C) - A(D) =0.

Actually, let A, B, C,D be four such diagrams (A differs from B only
by a crossing of two chords, and D differs from C in the same way).
Let us consider the comultiplication A. We see that when the two
“principal” chords are in different parts of X', then we have no
difference between A, B as well as between C,D. Thus, such subsets of
X give no impact. And when we take both chords into the same part
for all A, B, C,D, we obtain just the 4T-relation in one part and the
same diagram at the other part. Thus, we have proved that A is
well-defined.
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Now, let us give the formal definition of the bialgebra.*.

Definition 4.10

An algebra A with algebraic operation p and unit map e and with
coalgebraic operation A and counit map € is called a bialgebra if

@ e is an algebra homomorphism;
@ c is an algebra homomorphism;

@ A is an algebra homomorphism.

.

An element x of a bialgebra B is called primitive if
Ax)=x®1+1®x.

A

4In [13] this is also called a Hopf algebra. One usually requires more
constructions for the algebra to be a Hopf algebra, see e.g. [6, 11]. However, the
bialgebras of chord and Feynman diagrams that we are going to consider are
indeed Hopf algebras: the antipode map is defined by induction on the number of
chords. We shall not use the antipode and its properties.
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Chord diagrams Coproduct of chord d

Obviously, for the case of A° with natural e, e and endowed with the
product and coproduct A, e and € are homomorphic. The map A is
monomorphic: it has the empty kernel because for each x # 0, A(x)
contains the summand x ® 1. Thus, A€ is a bialgebra.
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‘hord diagrams Coproduct of chord diagrams

Consider a chord diagram D of order n. Let us “double” each chord
and erase small arcs between the ends of parallel chords. The
constructed object (oriented circle without 2n small arcs but with n
pairs of parallel chords) admits a way of walking along itself. Indeed,
starting from an arbitrary point of the circle, we reach the beginning
of some chord (after which we can see a “deleted small arc”), then we
turn to the chord and move along it. After the end of the chord we
again move to the arc (that we have not deleted), and so on.
Obviously, we shall finally return to the initial points. Here we have
two possibilities.

In the first case we pass all the object completely; in the second case
we pass only a part of the object.

By performing a small perturbation in R?® we can make all chords
non-intersecting. In this case our object becomes a manifold m(D).
The first possibility described above corresponds to a connected
manifold and the second one corresponds to a disconnected manifold.
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‘hord diagrams Coproduct of chord diagrams

Proposition 4.12 ([7])

The value of the n—th derivative of ¢, on D equals one if m(D) has
only one connected component and zero, otherwise.

Proof.

Let L be a singular knot with chord diagram D. Let us resolve
vertices of D by using the skein relation for the Conway polynomial
and the Vassiliev relation:

c'(X ) =x-C( ><

Applying this relation n times, we see that the value of the n—th
derivative of the invariant C on L (on D) equals the value of C on the
diagram obtained from D by resolving all singular crossings,
multiplied by x". Herewith, the coefficient c,, of the n—th derivative of
the Conway polynomial for the case of the singular knot is equal to
the coefficient cy evaluated at the “resolved” diagram.

This value does not depend on crossing types: it equals one on the
unknot and zero on the unlink with more than one component. That
completes the proof. [J
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‘hord diagrams Coproduct of chord diagrams

It turns out that knots (as well as odd—component links) have only
even—degree non-zero monomials of the Conway polynomial: ¢, =0
for odd n.

This fact can be proved by using the previous proposition. Let D be a
chord diagram of odd order n. Suppose that the curve m(D)
corresponding to D has precisely one connected component. Let us
attach a disc to this closed curve. Thus we obtain an orientable (prove
it!) 2-manifold with disc cut. Thus, the Euler characteristic of this
manifold should be odd. On the other hand, the Euler characteristic
equals V—E+S=2n—-3n+1= —n+ 1. Taking into account that n
is odd, we obtain a contradiction that completes the proof.

Obviously, for even n, there exist chord diagrams, where c, does not
vanish.
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Chord diagrams Coproduct of chord diagrams

Exercise 4.13

Show that for each even n the value of the n—th derivative of the
invariant ¢, evaluated on the diagram with all chords pairwise
intersecting is equal to one.

This exercise shows the existence of Vassiliev invariants of arbitrary
even orders.

Thus we have proved that the Conway polynomial is weaker than the
Vassiliev knot invariants.

Thus, we can say the same about the Alexander polynomial that can
be obtained from the Conway polynomial by a simple variable change.
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res polynomial Jones polynomial in two

If we try to apply formal differentiation to the coefficients of other
polynomials, we might fail. Thus, for example, coefficients of the
Jones polynomial themselves are not Vassiliev invariants. The main
reason is that the Jones polynomial evaluated at some links might
have negative powers of the variable q in such a way that after
differentiation we shall still have negative degrees.

In [9] the authors give a criterion to detect whether the derivatives of
knot polynomials are Vassiliev invariants. They also show how to
construct a polynomial invariant by a given Vassiliev invariant.
Although other polynomials can not be obtained from the Conway
(Alexander) polynomial by means of a variable change, Vassiliev
invariants are stronger than any of those polynomial invariants of
knots (possibly, except for the Khovanov polynomial). The results
described here first arose in the work by Birman and Lin [4] (the
preprint of this work appeared in 1991); see also [5, 10].
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nomial Jones polynor

Outline

First, let us consider the Jones polynomial. Recall that the Jones
polynomial satisfies the following skein relation:

Now, perform the variable change q = e*. We get:

e_XV('-,A:') — eXV('-;“\S) =(e2 —e72 )V()()
Now let us write down the formal Taylor series in x of the expression
above and take all members divisible by x explicitly to the right part.

In the right part we get a sum divisible by x and in the left part we
obtain the derivative of the Jones polynomial plus something divisible

by x:
V(X) — V(X) = x(some mess)
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Jones polynomial Jones polynomial in two variables

Arguing as above, we see that after the second differentiation, only
terms divisible by x? arise in the right part.

Consequently, after (n+ 1) differentiations, the n—th term of the series
expressing the Jones polynomial in x, becomes zero. Thus, all terms
of this series, are Vassiliev invariants. So, we obtain the following
theorem.

Theorem 5.1

The Jones polynomial in one variable is weaker than Vassiliev
invariants.
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olynomial in two varia

Jones polynomial in two variables

One can do the same with the Jones polynomial (denoted by X)) in
two variables.
Let us write down the skein relation for it:

L
A 2 - ayari - ) G

and let us make the variable change \/Zl = e¥, \/X = ¢¥ and write
down the Taylor series in x and y.

In the right part we get something divisible by x and in the left part
something divisible by xy plus the derivative of the Jones polynomial.
Finally, we have

X(X) - X(X) = x(some mess).

Thus, after (n+ 1) differentiations, all terms of degree < n in x,
vanish.
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Jones polynomial Jones polynomial in two variables Kau

Consequently, we get the following theorem.

Theorem 5.2

The Jones polynomial in two variables is weaker than Vassiliev
invariants.

Since the HOMFLY-PT polynomial is obtained from the Jones
polynomial by a variable change, we see that the following theorem
holds.

The HOMFLY-PT polynomial is weaker than Vassiliev invariants.
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Kauffman polynomial in two variables

The most difficult and interesting case is the Kauffman 2-variable
polynomial because this polynomial does not satisfy any Conway

relations. This polynomial can be expressed in the terms of functions
-1
a—a

z, a, and

In order to represent the Kauffman polynomial as a series of Vassiliev
invariants, we have to represent all these functions as series of positive
powers of two variables.
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We recall that the Kauffman polynomial in two variables is given by
the formula®

Y(L) = a VD),

where D is a function on the chord diagram that satisfies the
following relation%

(L) = D(L') = z(D(La) — D(Lg)); (3)
p(O) = (1+25); 0
DO, QY = ab(x), D, D) = a D (X), (5)

\/
where the diagrams L = ‘/\ L' = /\ JLa = N ‘Lp = > <
coincide outside a small nelghbourhood of some vertex.

5Here we denote the oriented and the unoriented diagrams by the same letter L.
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Let us rewrite (3) for Y. We get:

—1y( ) —aY( X >< (Power of a). (6)

. . _ —1
Let us perform the variable change: p = In(%

). Then, in terms of z

a”! by using only positive powers and

and p, one can express z, a, 2=
series. Actually, we have:

a=zP4+1=z(1+p+...)+1,

=1zl 4p+. )+ )P+

_— = a_l(a + 1)eP

Each of these right parts can evidently be represented as sequences of
positive powers of p and z.
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Thus, the value of the Kauffman polynomial in two variables on each
knots is represented by positive powers of p and z. On the other
hand, taking into account that a = 1 + z(some mess); and

a~! =1+ z(some mess)s, we can deduce from (6) and (5) that

Y’ = z(some mess).

Herewith, all terms of our double sequence having degree less than or
equal to n in the variable z, vanish after the (n + 1)-th differentiation.
Thus, all these terms are Vassiliev invariants.
Thus, we have proved the following theorem.

The Kauffman polynomial in two variables is weaker than Vassiliev
invariants.
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Let us show how to calculate the derivative of products of two
functions.

For any two functions f and g defined on knot diagrams one can
formally define the derivatives f' and g’ on diagrams of first-order
singular knots just as we define the derivatives of the invariants.
Analogously, one can define higher-order derivatives.

Consider the function f- g and consider a singular knot diagram K of
order n. By a splitting is meant a choice of a subset of i singular
vertices of n singular vertices belonging to K. Choose a splitting s.
Let Ky5 be the diagram obtained from K by resolving (n — i)
unselected vertices of s negatively, and let Kog be the knot diagram
obtained by resolving i selected vertices positively.

Let K be a chord diagram of degree n. Then the Leibniz formula

holds:

(fg)™ ZZ“ (K1s)g™ ™ (Ka).

i=0 s
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Proof of Lemma 5.5

Proof.

We shall use induction on n.

First, let us establish the induction base (the case n = 1). Given a
singular knot of order one, let us consider a diagram of it and the only
singular vertex A of this diagram. Write down the Vassiliev relation
for this vertex:

(g)'( >'< = f(: V y —f( \ (‘\i)
X g \ ) + £ \"‘)@GX?)—g(’X?))
_y (X)g(‘/b +g XXX, @)

The equality (7) holds by definition of f' and g’. Thus, we have proved
the claim of the theorem for n = 1. Note that we can apply the
obtained formula for functions on singular (not ordinary) knots, when
all singular points do not take part in the relation; i.e., lie outside the
neighbourhood.
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Proof of Lemma 5.5

Now, for any given singular knot K of order n, let us fix a singular
vertex A of the knot diagram K. The value of (fg)™ on K equals the
difference of (fg)(®~1 evaluated on two singular knots K! and K?;
these two diagrams of singular knots of order n — 1 are obtained by
positive and negative resolution of A, respectively.

By the induction hypothesis, we have:

(fg)™ ZZf (Ki)g™ 1 I(Ky), (8)

where s runs over the set of all splittings of order (n — 1).
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Proof of Lemma 5.5

We have:
(fg) ™ (K) = (fg) ™V (K") — (fg) "V (K?)

—ZZ[ (K1)g™ 17 (14,) — 10 (K3, )g 1) (K3, )|

5y 10 ()1 () — 0 (K3, )e D (Kh,)
i=0 s

+ (O (R3,)g I (K,) — 19 (KE)e ™) (K3

_ ZZ [ £ (K, )1 (KL ) — 0 (K2, )™ (K%)}

—ZZf< (K16)g®™ ™ (Ko).
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Corollary 5.6

Let f and g be two functions defined on the set of knot diagrams (not
necessarily knot invariants) such that f®+1) =0, g&+1) = 0. Then
(fg) (2 tk+D) =,

In particular, the product of Vassiliev invariants of orders n and k is a
Vassiliev invariant of order less than or equal to (n + k).

We left the proof of this corollary as an exercise.

The converse of Corollary 5.6 follows from remarkable structures: the
chord diagram algebra, weight systems, Hopf algebras and
Milnor-Moore theorem. We will study in the next subsequence
lectures.

Kau
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Until now, we have dealt only with invariants either having
finite-order or invariants that can be reduced to finite order
invariants. We have not yet given any proof that some knot invariant
has infinite order.

Here we give an example of a knot invariant that has infinite order,

[4].

The unknotting number U(K) of an (oriented) link K is the minimal
number n € Z such that K can be transformed to the unlink by
passing n times through singular links. In other words, n is the
minimal number such that there exists a diagram of K that can be
transformed to an unlink diagram by switching n crossings.
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By definition, our invariant equals zero only for unlinks.

The invariant U has infinite order.

Proof. Let us fix an arbitrary i € N. Now, we shall give an example of
the singular knot for which U® # 0. Fix an integer m > 0 and
consider the knot Ky, with 4m singularity points which are shown in
Fig. 5.

A

4m vertices

Figure 5: Singular knot, where U' # 0.
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Proof of Theorem 6.2

By definition of the derivative, the value of U*™) on this knot is equal
to the alternating sum of 2(#™) summands; each of them is the value
of U on a knot, obtained by somehow resolving all singular vertices of
Kym.

Note that for each such singular knot the value of U does not exceed
one: by changing the crossing at the point A, we obtain the unknot.
On the other hand, the knot obtained from Ky, by splitting all
singular vertices is trivial if and only if the number of positive
splittings equals the number of negative splittings (they are both
equal to 2m).
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Proof of Theorem 6.2

The case of q positive and 4m — q negative crossings generates the
sign (—1)9.
Thus we finally get that U®™) (Ky,,) is equal to

U(4m) (K4m) = 2[02111 - Céllm o= Ciﬁ_l]

This sum is, obviously, negative: U*™) (Ky,,,) # 0. So, for m > j we
get UW = 0. Thus, the invariant U is not a finite type invariant of
order less than or equal to i. Since i was chosen arbitrarily, the
invariant U is not a finite type invariant. [J

We do not claim that U cannot be represented via finite type
invariants.
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@ Show that every invariant of order < 1 is constant.
@ Consider the simplest singular knot U shown in Fig. 6.

Figure 6: The simplest singular knot

Let S be a shadow of a knot with a fixed vertex which is a
singular point. Prove that one can arrange all other crossing
types for S to get a singular knot isotopic to U.

@ Show that the Kauffman polynomial in two variables is weaker
than Vassiliev invariants.

@ Express coefficients of Kauffman and Homflypt polynomials in
terms of Vassiliev invariants.
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Hard E

@ Prove that the product of invariants f and g of degrees m and n,
respectively, is an invariant of degree less than or equal to m + n.
This can be split into two parts:

a) Prove that it is of degree (m + n). (relatively easy)
b) Prove that it is exactly (m + n). (very hard)
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Research problem:

o

© 000

Construct the non-commutative Vassiliev invariant theory.
(The idea is to make the relation f(X*) = f(X;.) — {(X_) into
f(X4) = £(X_) - £(X,)).

Construct Vassiliev’s invariant for surface knots.

To construct a complexification of Vassiliev’s invariant.

Do Vassiliev knot invariant detect unknot?

Do Vassiliev knot invariant detect knot invertibility?

In other words: do there exist any K such that the knot K’ with
the inverse orientation K’ can be separated by K by some
Vassiliev invariant?
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