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To my mother, Elena Ivanovna Manturova

Gelegentlich ergreifen wir die Feder
Und schreiben Zeichen auf ein weißes Blatt,
Die sagen dies und das, es kennt sie jeder,
Es ist ein Spiel, das seine Regeln hat.

Doch wenn ein Wilder oder Mondmann käme
Und solches Blatt, solch furchig Runenfeld
Neugierig forschend vor die Augen nähme,
Ihm starrte draus ein fremdes Bild der Welt,
Ein fremder Zauberbildersaal entgegen.
Er sähe A und B als Mensch und Tier,
Als Augen, Zungen, Glieder sich bewegen,
Bedächtig dort, gehetzt von Trieben hier,
Er läse wie im Schnee den Krähentritt,
Er liefe, ruhte, litte, flöge mit
Und sähe aller Schöpfung Möglichkeiten
Durch die erstarrten schwarzen Zeichen spuken,
Durch die gestabten Ornamente gleiten,
Säh Liebe glühen, sähe Schmerzen zucken.
Er würde staunen, lachen, weinen, zittern,
Da hinter dieser Schrift gestabten Gittern
Die ganze Welt in ihrem blinden Drang
Verkleinert ihm erschiene, in die Zeichen
Verzwergt, verzaubert, die in steifem Gang
Gefangen gehn und so einander gleichen,
Daß Lebensdrang und Tod, Wollust und Leiden
Zu Brüdern werden, kaum zu unterscheiden...

Und endlich würde dieser Wilde schreien
Vor unerträglicher Angst, und Feuer schüren
Und unter Stirnaufschlag und Litaneien
Das weiße Runenblatt den Flammen weihen.
Dann würde er vielleicht einschlummernd spüren,
Wie diese Un-Welt, dieser Zaubertand,
Dies Unerträgliche zurück ins Niegewesen
Gesogen würde und ins Nirgendland,
Und würde seufzen, lächeln und genesen.

Hermann Hesse, “Buchstaben” (Das Glasperlenspiel).





Preface

Knot theory now plays a large role in modern mathematics, and the most
significant results in this theory have been obtained in the last two decades.
For scientific research in this field, Jones, Witten, Drinfeld, and Kontsevich
received the highest mathematical award, the Fields medals. Even after these
outstanding achievements, new results were obtained and even new theories
arose as ramifications of knot theory. Here we mention Khovanov’s categori-
fication of the Jones polynomial, virtual knot theory proposed by Kauffman
and the theory of Legendrian knots.

The aim of the present monograph is to describe the main concepts of
modern knot theory together with full proofs that would be both accessible
for beginners and useful for professionals. Thus, in the first chapter of the
second part of the book (concerning braids) we start from the very beginning
and in the same chapter construct the Jones two-variable polynomial and the
faithful representation of the braid groups. A large part of the present title
is devoted to rapidly developing areas of modern knot theory, such as virtual
knot theory and Legendrian knot theory.

In the present book, we give both the “old” theory of knots, such as the fun-
damental group, Alexander’s polynomials, the results of Dehn, Seifert, Burau,
and Artin, and the newest investigations in this field due to Conway, Matveev,
Jones, Kauffman, Vassiliev, Kontsevich, Bar–Natan and Birman. We also in-
clude the most significant results from braid theory, such as the full proof of
Markov’s theorem, Alexander’s and Vogel’s algorithms, Dehornoy algorithm
for braid recognition, etc. We also describe various representations of braid
groups, e.g., the famous Burau representation and the newest (1999–2000)
faithful Krammer–Bigelow representation. Furthermore, we give a description
of braid groups in different spaces and simple newest recognition algorithms
for these groups. We also describe the construction of the Jones two–variable
polynomial.

In addition, we pay attention to the theory of coding of knots by d–
diagrams, described in the author’s papers [Man1, Man4, Man5]. Also, we
give an introduction to virtual knot theory, proposed recently by Louis H.
Kauffman [Kau5]. A great part of the book is devoted to the author’s results
in the theory of virtual knots.

Proofs of theorems involve some constructions from other theories, which
have their own interest; i.e., quandle, product integral, Hecke algebras, con-
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nection theory and the Knizhnik–Zamolodchikov equation, Hopf algebras and
quantum groups, Yang–Baxter equations, LD–systems, etc.

The contents of the book are not covered by existing monographs on knot
theory; the present book has been taken a lot out of the author’s Russian lec-
ture notes book [Man’2] on the subject. The latter describes the lecture course
that has been being delivered by the author since 1999 for undergraduate stu-
dents, graduate students, and professors of the Moscow State University.

The present monograph contains many new subjects (classical and mod-
ern) which are not represented in [Man’2].

While describing the skein polynomials we have added the Przytycki–
Traczyk approach and Conway algebra. We have also added the complete knot
invariant, the distributive groupoid, also known as a quandle, and its general-
isation. We have rewritten the virtual knot and link theory chapter. We have
added some recent author’s achievements on knots, braids, and virtual braids.
We also describe the Khovanov categorification of the Jones polynomial, the
Jones two–variable polynomial via Hecke algebras, the Krammer–Bigelow rep-
resentation, etc.

The book is divided into thematic parts. The first part describes the state
of “pre-Vassiliev” knot theory. It contains the simplest invariants and tricks
with knots and braids, the fundamental group, the knot quandle, known skein
polynomials, Kauffman’s two–variable polynomial, some pretty properties of
the Jones polynomial together with the famous Kauffman–Murasugi theorem
and a knot table.

The second part discusses braid theory, including Alexander’s and Vogel’s
algorithms, Dehornoy’s algorithm, Markov’s theorem, Yang–Baxter equations,
Burau representation and the faithful Krammer–Bigelow representation. In
addition, braids in different spaces are described, and simple word recognition
algorithms for these groups are presented. We would like to point out that the
first chapter of the second part (Chapter 9) is central to this part. This gives
a representation of the braid theory in total: from various definitions of the
braid group to the milestones in modern knot and braid theory, such as the
Jones polynomial constructed via Hecke algebras and the faithfulness of the
Krammer–Bigelow representation.

The third part is devoted to the Vassiliev knot invariants. We give all
definitions, prove that Vassiliev invariants are stronger than all polynomial
invariants, study structures of the chord diagram and Feynman diagram al-
gebras, and finally present the full proof of the invariance for Kontsevich’s
integral. Here we also present a sketchy introduction to Bar-Natan’s theory
on Lie algebra representations and knots. We also give estimates of the di-
mension growth for the chord diagram algebra.

In the fourth part we describe a new way for encoding knots by d–diagrams
proposed by the author. This way allows us to encode topological objects
(such as knot, links, and chord diagrams) by words in a finite alphabet. Some
applications of d–diagrams (the author’s proof of the Kauffman–Murasugi
theorem, chord diagram realisability recognition, etc.) are also described.
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The fifth part contains virtual knot theory together with “virtualisations”
of knot and link invariants. Here we describe Kauffman’s results (basic defini-
tions, foundation of the theory, Jones and Kauffman polynomials, quandles,
finite–type invariants), the work of Goussarov, Polyak, and Viro (finite–type
invariants), and Vershinin (virtual braids and their representation). We also
include our own results concerning new invariants of virtual knots: those com-
ing from the “virtual quandle”, matrix formulae and invariant polynomials in
one and several variables, generalisation of the Jones polynomials via curves
in 2–surfaces, invariants of “long virtual link” and virtual braids.

The final part gives a sketchy introduction to two theories: knots in 3-
manifolds (e.g., knots in RP 3 with Drobotukhina’s generalisation of the Jones
polynomial), the introduction to Kirby’s calculus and Witten’s theory, and
Legendrian knots and links after Fuchs and Tabachnikov. We recommend the
newest book on 3-manifolds by Matveev [Mat5].

At the end of the book, a list of unsolved problems in knot and link theory
and the knot table is given.

The description of the mathematical material is sufficiently closed; the
monograph is quite accessible for undergraduate students of younger courses,
thus it can be used as a course book on knots. The book can also be useful for
professionals because it contains the newest and the most significant scientific
developments in knot theory. Some technical details of proofs which are not
used in the sequel are either omitted or printed in small type.

Besides the special course at the Moscow State University, I have also
held a seminar “Knots and Representation Theory” since 2000, where many
aspects of modern knot theory were discussed. Until 2002 this seminar was
held together with Professor Valery Vladimirovich Trofimov (1952–2003). I am
deeply indebted to him for his collaboration over many years and for fruitful
advice.

It is a great pleasure to express my gratitude to all those who helped me
at different stages of the present book. I am grateful to my father, Professor
Oleg V. Manturov [ManO1, ManO2, ManO3, ManO4, ManO5, ManO6], for
attention to my mathematical work during my entire life. I wish to thank
Professor Victor A. Vassiliev for constant attention to my scientific papers on
knots, fruitful ideas and comments.

I am glad to express my gratitude to Profs. Louis H. Kauffman, Roger
A.Fenn, Heiner Zieschang, Alexey V. Chernavsky, Sergei V. Matveeev, Nikita
Yu. Netsvetaev, Joan Birman, Patrick Dehornoy, Kent E. Orr, Michiel
Hazewinkel, Vladimir V. Vershinin, Drs. Vladimir P. Lexin, Sergei K. Lando,
Sergei V. Duzhin, Alexei V. Shchepetilov for many useful comments concern-
ing my book and papers.

I am also grateful to the participants of the seminar “Knots and Repre-
sentation Theory”, especially to Evgeny V. Teplyakov.

It is a pleasure for me to thank my friend and colleague Dr. Rutwig
Campoamor–Stursberg for constant consultations and correspondence.

The book was written using knots.tex fonts containing special symbols
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from knot theory, such as and created by Professor M.M. Vinogradov
and A.B. Sossinsky. I am grateful to them for these fonts.

I am also very grateful to A.Yu. Abramychev for helpful advices about
typesetting this book.

Vassily Olegovich Manturov,
May 2003.
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The modern knot theory has undergone yet more combinatorial developments
over the last few decades. Here one has to mention the “hard” techniques
coming from instanton, Seiberg–Witten theory [Ati1, KrMr3, Hil, Akb, Sav,
GoSt, Moo01, Sco, Wit1, Wit2, Wit3], and Heegaard–Floer homology due
to Ozsvath–Szabo [OS1, OS2, OS3, OS4]. These developments led to various
“unknot detectors”: knot Floer homology [OS5], the A-polynomial [DG], and
finally, the Khovanov homology [KrMr4], which, being defined combinatori-
ally, turned out to have various mysterious relations with the Heegaard–Floer
homology (many of them are not yet understood, but the spectral sequence
from Khovanov to Heegaard–Floer allows one to detect the unknot).

On the other hand, a wealth of new ideas arose from virtual knot the-
ory [Kau6]; this theory arose as a combinatorial generalisation of the classical
knot theory and works as a source of new ideas for the latter.

Various results on virtual knot theory belonging to the author are collected
in [MI]; among them there is Khovanov homology theory for virtual knots with
arbitrary coefficients, algorithmic recognizability of virtual links and many
other results.

The present book is the second edition of ”Knot Theory” published in
2004. We tried not to change the style of exposition drastically and not to
start writing a new book. Nevertheless, we have added several topics devoted
to

• Heegard Floer homology

• Rasmussen invariant

• Khovanov homology for virtual knots

• A-polynomial

• Solution to braid conjugacy problem

Some material (like knot tables that are available online [BNk]) was re-
moved, and some other chapters and appendices were rearranged. Neverthe-
less, some classical aspects of knot theory are still missing (e.g., Milnor’s link
homotopy theory [HL, Lev, Lin1, Lin2, Mil2], here we refer the reader to
Milnor’s original book [Mil1]).

The list of unsolved problems is somewhat random. On one hand, we did

xi
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not touch a lot of the list written 14 years ago (many problems still remain
unsolved).

On the other hand, we added one separate problem about picture-valued
invariants for classical knots (such invariants give lots of powerful results for
virtual knots and we hope they will lead to picture-valued invariants of clas-
sical knots).

It gave us a great pleasure to look through knot theory again. We corrected
some existing misprints and small mistakes; in particular, I am grateful to
Carlo Petronio who mentioned a gap in the construction of Conway algebra
invariants.

I am extremely grateful to the editor of this book, my friend and colleague
Igor Mikhailovich Nikonov, who has undertaken an enormous job as a scientist,
proofreader, typesetter.

Long discussions of different topics with him led me to a better under-
standing of various aspects of modern knot theory.

Vassily Olegovich Manturov,
October, 2017
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Knots, links, and invariant
polynomials
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Chapter 1

Introduction

As a mathematical theory, knot theory appeared at the end of the 18th cen-
tury. It should be emphasised that for more than two hundred years knot
theory was studied by A.T. Vandermonde, C.-F. Gauss (who found the fa-
mous electromagnetic link coefficient formula [Gau]), F. Klein, and M. Dehn
[Dehn2]. Systematic study of knot theory begins at the end of the 19th century,
when mathematicians and physicists started to tabulate knots. A very inter-
esting (but incorrect!) idea belonged to W. Thompson (later known as Lord
Kelvin). He thought that knots should correspond to chemical elements [Kel].
However, the most significant results in knot theory took place in the sec-
ond part of the 20th century. These achievements are closely connected with
the names of J.H. Conway, V.F.R. Jones, V.A. Vassiliev, M.L. Kontsevich,
V.G. Turaev, M.N. Goussarov, J.H. Birman, L.H. Kauffman, D. Bar–Natan,
M. Khovanov, P.S. Ozsváth, Z. Szabó, J. Rasmussen and many others.

Knot theory originates from a beautiful and quite simple (or so it can
seem) topological problem [ChFa, Per, Reid, Rol]. In order to solve this prob-
lem, one should involve a quite complicated and sophisticated mathematical
approach, coming from topology, discriminant theory, Lie theory, product in-
tegral theory, quantum algebras, and so on. Knot theory is rapidly developing;
it stimulates constructions of new branches of mathematics. One should men-
tion that in recent years Jones, Witten, Drinfeld (1990) and Kontsevich (1998)
were awarded their Fields medals for work in knot theory.

And even after these works, new directions of knot theory appeared. Here
we would like to mention the beautiful construction of Khovanov [Kho1] who
proposed a categorification of the Jones polynomial — a new knot invariant
based on brand new ideas. We shall also touch on the theory of Legendrian
knots, lying at the junction of knot theory and contact geometry and topology.
The most significant contributions to this (very young) science were made in
the last few years (Fuchs, Tabachnikov, Chekanov, Eliashberg).

Another beautiful ramification is virtual knot theory proposed by Kauff-
man in 1996. The main results in this area are still to be obtained.

Besides this, knot theory is instrumental in constructing other theories;
a very important example is the Kirby calculus; i.e., the theory of encoding
3–manifolds by means of links with a special structure — framed links.
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4 Knot Theory

1.1 Basic definitions

Here, knot means a smooth embedding of the circle S1 in R3 (or in the
sphere S3)1 as well as the image of this embedding.

While deforming the ambient space R3, our knot (image) will be deformed
as well and hence be embedded. Two knots are called isotopic, if one of them
can be transformed to the other by a diffeomorphism of the ambient space
onto itself; here we require that this homeomorphism should be homotopic to
the identical one in the class of diffeomorphisms.

The main question of knot theory is the following: which two knots are
(isotopic) and which are not? This problem is called the knot recognition prob-
lem. Having an isotopy equivalence relation, one can speak about knot isotopy
classes. When seen in this context, we shall say “knot” when referring to the
knot isotopy class. One can also talk about knot invariants; i.e., functions on
knot isotopy classes or functions on knots invariant under isotopy.

A partial case of the knot recognition problem is the trivial knot recognition
problem. Here, trivial knot means the simplest knot that can be represented
as the boundary of a 2-disc embedded in R3.

Both questions are very difficult. Though they are solved their solution
requires many techniques (see [Hem]) and cannot in fact be implemented for
practical purposes. The main stages of the complete solutions of these (and
some other) problems can be read in [Mat1].

In the present book we shall give partial answers to these questions. As
usual, in order to prove that two knots are isotopic, one should present a step-
by-step isotopy transforming one knot to the other. Later we shall present the
list of Reidemeister moves, which are indeed step–by–step isotopy moves. To
show that two knots are not isotopic, one usually finds an invariant having
different values on these two knots.

Usually, knots are encoded as follows. Fix a knot; i.e., a map f : S1 → R3.
Consider a plane h ⊂ R3 and the projection of the knot on it. Without loss
of generality, one can assume that h = Oxy. In the general position case, this
projection is a quadrivalent graph embedded in the plane. Usually, we shall
call a part (the image of an interval) of a knot a branch of it. Each vertex V
of this graph (also called a crossing) is endowed with the following structure.
Let a, b be two branches of a knot, whose projections intersect in the point V .
Since a and b do not intersect in R3, the two preimages of V have different
z-coordinates. So, we can say which branch (a or b) comes over, or forms
an overcrossing; the other one forms an undercrossing ( see Fig. 1.1). The
quadrivalent graph obtained is called a knot diagram.

The quadrivalent projection graph without an over– and undercrossing
structure is called the shadow of the knot. The complexity of a knot is the

1These two theories are equivalent because of codimension reasons. In the sequel, we
shall deal with knots in R3, unless otherwise specified.
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overcrossing

undercrossing

FIGURE 1.1: Local structure of a crossing

1 2 3 4

FIGURE 1.2: The simplest knots

minimal number of crossings for knots of given isotopy type. There are also
other parameters that can measure knot complexity (bridge number, knot
genus etc.).

The following exercise is left for the reader.

Exercise 1.1. Show that any two knots having the same combinatorial struc-
ture of planar diagrams (i.e. isomorphic embeddings with the same crossing
structure) are isotopic.

Let us now give some examples.

Example 1.1. The knot having a diagram without crossings (see Fig. 1.2.1) is
called the unknot or the trivial knot. Figure 1.2.2. represents another planar
diagram of the unknot. The knot shown in Fig. 1.2.3. is called the trefoil, and
that in Fig. 1.2.4. is called the figure eight knot. Both knots are not trivial;
they are not isotopic to each other.

Definition 1.1. A knot diagram L is called ascending (starting from a point
A on it different from any vertex) if while walking along L from A (in some
direction) each crossing is first passed under and then over.

Exercise 1.2. Show that each ascending diagram represents an unknot.

We shall use this fact in Chapter 5.
For each knot, one can construct its mirror image; i.e. the knot obtained

from the initial one by reflecting it in some plane. Typical diagrams of a knot
and its mirror image can be obtained by switching all crossing types (over-
crossing replaces undercrossing and vice versa). A knot is called amphicheiral
if it is isotopic to its mirror image.



6 Knot Theory

FIGURE 1.3: a.Left trefoil b.Right trefoil

1 2 3 4

FIGURE 1.4: The simplest links

For example, the trefoil knot is not amphicheiral. We shall prove this fact
later. This allows us to speak about two trefoil knots, the right one and the
left one; see Fig. 1.3.

Exercise 1.3. Show that figure eight is an amphicheiral knot.

One can also speak about oriented knots; i.e. smooth mappings (images)
of an oriented circle in R3. By an isotopy of oriented knots is meant an isotopy
of knots preserving orientation.

Considering several circles instead of one circle, one comes to the notion
of a link. A link is a smooth embedding (image) of several disjoint circles in
R3. Each knot, representing the image of one of these circles is called a link
component. One can naturally define link isotopy (by using an orientation-
preserving diffeomorphism of the ambient space), link planar diagrams and
link invariants. By an oriented link is meant a smooth mapping (image) of
the disjoint union of several oriented circles.

There is another approach to link isotopy, when each link component is
allowed to have self–intersections during the isotopy, but intersections of differ-
ent components are forbidden. This theory is described in a beautiful paper
[Mil1] of John Willard Milnor, who introduced his famous µ–invariants for
classification of links up to this “isotopy”.

The trivial n–component link or n–unlink is a link represented by a diagram
consisting of n circles without crossings.

Example 1.2. Figure 1.4.1. represents the trivial two–component link. Fig-
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ures 1.4.2., 1.4.3., and 1.4.4. show us links, representing the Hopf link, the
Whitehead link and the Borromean rings, respectively. The latter link is
named in honour of the famous Italian family Borromeo, whose coat of arms
was decorated by these rings. All these three links are not trivial (this will be
shown later, when we are able to calculate values of some invariants). Bor-
romean links demonstrate an interesting effect: while deleting any of three link
components, one obtains the trivial link, whence the total link is not trivial.

Exercise 1.4. Show that the Whitehead link has component symmetry: there
is an isotopy to itself permuting the link components.

Let us now talk about knot (and link) invariants. The first well–known
link invariant (after the Gauss electromagnetic linking coefficient) is the fun-
damental group of the complement to the knot (link). This invariant is purely
topological; it distinguishes different knots quite well (in particular, it recog-
nises the unknot as well as the trivial link with arbitrary many components).
However, this “solution” of the knot recognition problem is not complete be-
cause we only reduce this problem to the group recognition problem, which
is, generally, indecidable.

In 1923, the famous American mathematician James Alexander [Ale1,
Ale3] derived a polynomial invariant of knots and links from the fundamen-
tal group. This invariant is, certainly, weaker than the fundamental group
itself, but the invariant polynomial is much easier to recognise: one can easily
compare two polynomials (unlike groups given by their presentation).

In 1932, the German topologist K. Reidemeister published his book Kno-
tentheorie (English translation: [Reid]), in which he presented a list of local
moves (known as Reidemeister moves) and proved that any two planar dia-
grams generate isotopic knots (links) if and only if there exists a finite chain of
Reidemeister moves from one of them to the other. In addition, he tabulated
knot isotopy classes up to complexity seven, inclusively.

Since that time, to prove the invariance for some function on knots, one
usually checks its invariance under Reidemeister moves.

Among books describing the state of knot theory at that time, we would
like to point out those by Ashley [Ash], Crowell and Fox [CF] and that by
Burde and Zieschang [BZ].

The next stage of development of knot theory was the discovery of the
Conway polynomial [Con]. This discovery is based on so–called skein rela-
tions. These relations are purely combinatorial and based on the notion of the
planar diagram. The Alexander polynomial [Ale1, Tor] can also be interpreted
in terms of skein relations. Moreover, Alexander knew about this. However,
Conway was the first to show that skein relations can be used axiomatically
for defining a knot invariant.

This discovery stimulated further beautiful work presenting polynomials
based on skein relations. By using these polynomials, some old problems were
solved, e.g. Tait’s problem [Tai].

Among the other skein polynomials, we would like to emphasise the
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A1 A2 A3
A4

B1 B2
B3 B4

FIGURE 1.5: Closure of a braid

HOMFLY-PT polynomial and the Kauffman polynomial; HOMFLY is the ab-
breviation of the first letters of the authors: Hoste, Ocneanu, Millett, Freyd,
Lickorish and Yetter ( see [HOMFLY]). This polynomial was also discovered
by Przytycki and Traczyk [PT].

The most powerful of the skein polynomials is the Jones polynomial of two
variables; each of those named above can be obtained from it by a variable
change. About Jones polynomials of one and two variables one can see [Jon1,
Jon2].

The planar diagram approach for coding links is not the only possibil-
ity. Besides knot theory one should point out another theory — the theory
of braids. Braids were proposed by the German mathematician Emil Artin,
who gave initial definitions and proved basic theorems on the subject [Art1];
English translation [Art2]. There are four classical definitions of the braid
group. Braids are closely connected with polynomials without multiple roots,
discriminant theory, representation theory, etc. By an n-strand braid we mean
a set of n ascending simple non-intersecting piecewise-linear curves (strands),
connecting points A1, . . . , An on a line with points B1, . . . , Bn on a parallel
line. Analogously to the case of knots, one can describe braids by their planar
diagrams; the equivalence of braids is defined as an isotopy of strands preserv-
ing all strands ascending. The product of two braids a and b is obtained by
juxtaposing one braid under the other and rescaling the height coordinate.

It is easy to see that by closing the braid in the most natural way (i.e., by
connecting Ai with Bi, i = 1, . . . , n; see Fig. 1.5) we obtain a link diagram.

In the present book we describe the three important theorems on braids
and links. The Alexander theorem states that each link isotopy class can be
obtained as a closure of braids. The Artin theorem [Art1] gives a presenta-
tion of the braid group by generators and relations. The Markov theorem
[Mar, Mar’] gives a list of sufficient relations transforming one braid to the
other in the case when their closures represent isotopic knots. We also present
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algorithms for braid recognition: a simple algorithm described in [GM] and
that of Dehornoy.

The great advantage of braid theory (unlike knot theory) is that braids
form a group. This simplifies some problems (i.e., reduces the word recognition
problem to the trivial word recognition problem).

We would like to recommend the following monographs on those parts of
knot theory described above: Louis Kauffman’s two books [Kau2, Kau4], and
those of Adams [Ada], Kawauchi [Kaw] and Atiyah [Ati2].

Suppose we have a knot and we want to change its isotopy class, by chang-
ing the smooth map of the circle in R3. By definition, it is impossible to do
this without intersection. Thus, the most important moment of this map is the
intersection moment. If there exists only a finite number of transversal inter-
sections, one can speak about a singular knot. The space of all singular knots
(that contains the space of all knots as a subspace) is called the discriminant
space.

By studying the properties of the discriminant sets, V.A. Vassiliev pro-
posed the notion of finite type invariants, later known as Vassiliev’s invariants.
Initially, Vassiliev’s knot invariants required a complicated and non-trivial
mathematical approach. However, a purely combinatorial interpretation of
them was found. In the present book, we shall give a proof of the fact that
the Vassiliev knot invariants are stronger than all the polynomial invariants
named above.

The initial proof of the existence of the Vassiliev knot invariants is given in
[Vas1]; the structure of these invariants was obtained by M.L. Kontsevich by
means of his remarkable integral construction now known as the Kontsevich
integral. The work of Kontsevich is published in [Kon1, Kon2]. We would also
recommend the profound and detailed description of the Kontsevich integral
in [BN1, BN3]. There one can also find good points of view for the connection
between knots, Vassiliev’s invariants, and the representation of Lie algebras.

The calculation of the Kontsevich integral had been very difficult before
the work by Le and Murakami [LM] appeared. In this work, they present
explicit techniques for the Kontsevich integral calculations. This technique is,
however, very difficult.

One should also mention the outstanding work by Khovanov [Kho1] from
1997 who gave a generalisation of the Jones polynomial in terms of homologies
of some formal algebraic complex. A new knot invariant appeared after so
much had been discovered.

Here we would like to mention another way of representing knots and links.
This is based on the notion of d-diagram (see [Man5]). A d–diagram can be
seen as a circle with two families of non–intersecting chords where no point
can be the end of two different chords. This theory has its origin in atoms and
Hamiltonian systems. However, the d-diagram theory allows us to represent
all links by using words in a finite alphabet, see [Man5]. Here we have an
advantage in comparison with, say, encoding knots by braids: in the latter
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FIGURE 1.6: Left trefoil; right trefoil.

(0,0) (0,0)
FIGURE 1.7: Left trefoil Right trefoil

case one requires an infinite number of letters. This encoding can be easily
generalised for cases of braids, singular knots and certain other purposes.

By using d–diagrams, one can represent all links as loops on checked paper;
these loops should lie inside the first quadrant and come from the origin of
coordinates.

The simplest d–diagrams corresponding to the left and right trefoil knots
are shown in Fig. 1.6.

Their bracket structures look like

( ( ( ( [ ) ) ) ) ]

for the left one and

( ( [ [ ) ) ] ]

for the right one.

Example 1.3. The left trefoil knot can be represented as the rectangle 1× 4.
The square 2× 2 represents the right trefoil knot (see Fig 1.7).

Actually, the theory of atoms first developed for the classification of Hamil-
tonian systems can be useful in many areas of geometry and topology, e.g. for
coding 3-manifolds.

In the last few years, one of the most important branches of knot theory is
the theory of virtual knots. A virtual knot is a combinatorial notion proposed
by Louis H. Kauffman in 1996 (see [Kau5]). This notion comes from a gener-
alisation of classical knot diagram with generalised Reidemeister moves. The
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theory can be interpreted as a “projection” of knot theory from knots in some
3-manifolds. This theory is developed very rapidly. There are many common
approaches coming from classical knot theory, and there are “purely virtual
invariants” (see [Man4]).





Chapter 2

Reidemeister moves. Knot arithmetics

In the present chapter, we shall discuss knots, their planar diagrams and the
semigroup structure on knots; the latter is isomorphic to that on natural num-
bers with respect to multiplication. This allows us to investigate knot arith-
metics and to establish some properties of multiplication and decomposition
of knots.

As we have shown in the previous chapter, all links can be encoded by
their regular planar diagrams. Obviously, while deforming a link, its planar
projection might pass through some singular states. These singular states give
the motivation for writing down the list of simplest moves for planar diagrams.

2.1 Polygonal links and Reidemeister moves

Because each knot is a smooth embedding of S1 in R3, it can be arbitrarily
closely approximated by an embedding of a closed broken line in R3. Here we
mean a good approximation such that after a very small smoothing (in the
neighbourhood of all vertices) we obtain a knot from the same isotopy class.
However, generally this might not be the case.

Definition 2.1. An embedding of a disjoint union of n closed broken lines
in R3 is called a polygonal n–component link. A polygonal knot is a polygonal
1–component link.

Definition 2.2. A link is called tame if it is isotopic to a polygonal link and
wild otherwise.

Remark 2.1. The difference between tame and wild knots is of great impor-
tance. To date, the serious systematic study of wild knots has not been started.
We shall deal only with tame knots, unless otherwise specified.

All C1–smooth knots are tame; for a proof see [CF]. In the sequel, all knots
are taken to be smooth, hence, tame.

In higher dimensions there is a difference between piecewise linear and
smooth knots.

Definition 2.3. Two polygonal links are isotopic if one of them can be trans-
formed to the other by means of an iterated sequence of elementary isotopies

13
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A
B

C

. . .

∼

A B

C

. . .

FIGURE 2.1: Elementary isotopy

and inverse transformation. Here the elementary isotopy is a replacement of
an edge AB with two edges AC and BC provided that the triangle ABC has
no intersection points with other edges of the link; see Fig. 2.1.

It can be proved that the isotopy of smooth links corresponds to that of
polygonal links; the proof is technically complicated. It can be found in [CF].
When necessary, we shall use either the smooth or polygonal approach for
representing links.

Like smooth links, polygonal links admit planar diagrams with overcross-
ings and undercrossings; having such a diagram one can restore the link up to
isotopy.

Exercise 2.1. Show that all polygonal links with less than six edges are trivial.

Exercise 2.2. Draw a polygonal trefoil knot with six edges.

Definition 2.4. By a planar isotopy of a smooth link planar diagram we
mean a diffeomorphism of the plane onto itself not changing the combinatorial
structure of the diagram.

Remark 2.2. The polygonal knot planar diagram is defined analogously to
the smooth diagram. However bivalent vertices give us redundant information.
Thus, dividing an edge into two edges by an additional vertex we obtain a
diagram that is planar–isotopic to the initial one.

Obviously, planar isotopy is an isotopy; i.e., it does not change the link
isotopy type in R3.

Theorem 2.1 (Reidemeister [Reid]). Two diagrams D1 and D2 of smooth
links generate isotopic links if and only if D1 can be transformed into D2 by
using a finite sequence of planar isotopies and the three Reidemeister moves
Ω1,Ω2,Ω3, shown in Fig. 2.2.

One can prove this fact by using the notion of codimension; it involves
some complicated technicalities. Here we give another proof for the case of
polygonal links.
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The first Reidemeister move

The second Reidemeister move

The third Reidemeister move

FIGURE 2.2: Reidemeister moves Ω1,Ω2,Ω3

Proof. One implication is evident: one should just check that moves Ω1,Ω2,Ω3

do not change the link isotopy class.
Now, let us prove the inverse statement of the theorem. Let D1, D2 be two

planar diagrams of the two isotopic polygonal links K1 and K2. By defini-
tion, the isotopy between K1 and K2 consists of a finite number of elementary
isotopies looking like [AB] → [AC]

⋃
[CB]. Here the “link before” is recon-

structed to the “link after”. Without loss of generality, let us assume that for
each step for the triangle ABC, the edges [DA] and [BE], coming from the
ends of [AB], do not intersect the interior of ABC. Otherwise, we can obtain
it by using Ω1.

Let L0 be the projection of the “link before” on the plane ABC. Let us
split the intersection components of ABC and L0 into two sets: upper and
lower according to the location of edges of the link K0 with respect to the
plane ABC.

Let us tile ABC into small triangles of the four types in such a way that
edges of small triangles do not contain vertices of L0. Each first-type triangle
contains only one crossing of L0; here edges of L0 intersect two sides of the
triangle. The second-type triangle contains the only vertex of L0 and parts
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First type Second type

Third type

FIGURE 2.3: Types of small triangles

of outgoing edges. The third-type triangle contains a part of one edge of
L0 and no vertices. Finally, the fourth-type triangle contains neither vertices
nor edges. All triangle types except the fourth (empty) one are illustrated in
Fig. 2.3.

Such a triangulation of ABC can be constructed as follows. First, we cut
all vertices and all crossings by triangles of the first and the second type,
respectively. Then we tile the remaining part of ABC and obtain triangles of
the last two types.

The plan of the proof is now the following. Instead of performing the
elementary isotopy to ABC, we perform step–by–step elementary isotopies
for small triangles, composing ABC. It is clear that these elementary moves
(isotopies) can be represented as combinations of Reidemeister moves and
planar isotopies.

More precisely, the first-type triangle generates a combination of the sec-
ond and third Reidemeister moves, the second and the third-type triangles
generate Ω2 or planar isotopy. The fourth-type triangle generates planar iso-
topy.

Exercise 2.3. Show that two variants of the third Reidemeister moves, shown
in Fig. 2.2, are not independent. More precisely, each of them can be obtained
from the other and the second Reidemeister move.

The above reasonings show that, in a general position, links have projec-
tions with many intersection points, which are simple and transverse. However,
“the opposite case” is also interesting.

Difficult exercise 2.1 (H. Brunn). Prove that for each link L ⊂ L′, there
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FIGURE 2.4: Non-invertible knot

exists a link L′ and a plane P such that the projection of L′ on P has the only
intersection point, which is transverse for all branches.

Definition 2.5. A knot is called invertible if it is isotopic to the knot obtained
from the initial one by the orientation change.

Remark 2.3. Do not confuse knot invertibility and the existence of the in-
verse knot (in the sense of concatenation, see Def. 2.7).

Exercise 2.4. By using Reidemeister moves, show that each of the the two
trefoil knots is invertible.

The existence of non–invertible knots had been an open problem for a
long time. This problem was solved positively in 1964 by Trotter [Tro]. The
simplest non-invertible knot is 817, see the knot table [BNk, HTW2].

An example of a non-invertible knot is shown in Fig. 2.4.

Definition 2.6. A link diagram is called alternating if while moving along
each component, one passes overcrossings and undercrossings alternately.

The simplest non–alternating knot (i.e. a knot not having alternating di-
agrams) is shown in Fig. 2.5.

2.2 Independence of Reidemeister moves

Let us show that each of the three moves Ω1,Ω2,Ω3 is necessary for estab-
lishing knot isotopy; i.e. that for each move there exist two diagrams of the
same classical link which cannot be transformed to each other by using the
two remaining Reidemeister moves (without the chosen one).



18 Knot Theory

FIGURE 2.5: Non-alternating knot

K1

K2

K3

K4

K1

K3

K2

K4

FIGURE 2.6: Diagrams L and M

Example 2.1. The first Reidemeister move is the only move that changes
the parity of the number of crossings. Thus, each unknot diagram with an odd
number of crossings cannot be transformed to the diagram without crossings
by using only Ω2,Ω3.

Example 2.2. Let K1,K2,K3,K4 be some diagrams of different prime (non-
trivial) knots. Consider the diagrams L = K1#K2#K3#K4 and
M = K1#K3#K2#K4, shown in Fig. 2.6.a,b. These diagrams represent the
same knot.

Let us show that there is no isotopy transformation from L to M involving
all Reidemeister moves but Ω2. Actually, consider the subdiagrams Ki, i =
1, 2, 3, 4 inside L. Their order is such that between the knots K1 and K3 there
are trivial knots at both sides. Let us show that this property remains true
under Ω1,Ω3. Actually, while performing these moves, different Ki do not
meet; thus one can always indicate each of these knots on the diagram. During
the isotopy their order remains the same. However, in M , the knots K1 and
K3 are adjacent. Thus L cannot be transformed to M by using only Ω1,Ω3

and planar isotopy.

Example 2.3. Now, let us consider the shadow of the standard Borromean
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a b

FIGURE 2.7: Diagrams L1 and L2

FIGURE 2.8: The domain U is shaded.

rings diagram and construct a link diagram as shown in Fig. 2.7.a. Denote
this diagram by L1.

Since the link represented by L1 is trivial, it has a diagram L2, shown in
Fig. 2.7.b.

Let us show that the diagram L1 cannot be transformed to L2 by using a
sequence of Ω1 and Ω2. Actually, let us consider an arbitrary planar diagram
of the three–component unlink and assign a certain element of Z2 to it as
follows. Define the domain U , restricted by one link component. Let us fix this
component l. It tiles the plane (sphere) into cells which admit a checkboard
colouring. Let us use the colouring where the cell containing the infinite point
is white. Denote by U(l) the set of all black cells; see Fig. 2.8.

Let us now consider crossings of the two components different from l, select
those lying inside U and calculate the parity of their number.

Let us do the same for the second and the third component. Thus, we get
three elements of Z2. It is easy to see that for L1 all these three numbers are
equal to one and for L2 they all are equal to zero.

Then this (non-ordered) triple of numbers is invariant under Ω1,Ω2.
For Ω1 this statement is evident. In the case of Ω2 the move is applied
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K2

K1

K2

K1

−→ K1#K2

FIGURE 2.9: Connected sum of knots

to arcs of two different circles. It suffices to see that either both crossings lie
outside U(l) or they both lie inside l.

Thus, L1 cannot be transformed to L2 by using only Ω1,Ω2.
Let us note that analogous statements hold place in ornament theory, see

Chapter 6 of [Vas3] and [Bjö, BW].

2.3 Knot arithmetics and Seifert surfaces

Let us now discuss the algebraic structure on the set of knot isotopy classes.
Let K1 and K2 be two oriented knots.

Definition 2.7. By a composition, concatenation or connected sum of knots
K1 and K2 is meant the oriented knot obtained by attaching the knot K2

to the knot K1 with respect to the orientation of both knots; see Fig. 2.9.
Notation: K1#K2.

Exercise 2.5. Show that the concatenation operation is well defined; i.e., the
isotopy class of K1#K2 does not depend on the two places of attachment.

Exercise 2.6. Show that the concatenation operation is commutative: for any
K1,K2 the knots K1#K2 and K2#K1 are isotopic.

The exercise above is intuitively clear. However, the desired isotopy can
be performed for the case of knots with fixed ends (or long knots).

Definition 2.8. Analogously, one defines the disconnected sum: one just takes
two diagrams and situates them inside two non–intersecting domains on the
plane.

Notation: K1 ⊔K2.
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K1

K2 K1 K2

· · ·

FIGURE 2.10: A wild knot

Theorem 2.2. Let K1 be a non-trivial knot. Then for each knot K2, the knot
K1#K2 is not trivial either.

We shall give here three proofs of the theorem. One of them is a bit “spec-
ulative” but very clear. Another one is based on a beautiful idea that belongs
to J.H. Conway. The last proof is a corollary from a stronger statement.

Let us begin now with the “speculative” one.

Proof. Suppose K1 is not an unknot and K1#K2 is. Consider the sequence of
knots

K1#K2, (K1#K2)#(K1#K2), . . . ,

where the knot K1 lies inside the ball with radius 1, the knot K2 lies inside
the ball of radius 1

2 , the knot K3 lies inside the ball of radius 1
4 , and so on.

Thus, one can place the infinite series on a finite interval; see Fig. 2.10.
Thus we obtain a knot that will be, possibly, wild. Denote this knot by a.

Since the knot K1#K2 is trivial, the knot a is trivial as well. On the other
hand, we have the following decomposition: a = K1#(K2#K1)#(K2#K1) . . .
Since the concatenation is commutative, the knot K2#K1 is trivial. Thus, the
trivial knot a is isotopic to K1. This contradiction completes the proof.

There is a beautiful and simple proof of this fact proposed by J. H. Conway.

Proof. Let us look at Fig. 2.11.

Definition 2.9. By a standardly embedded (in R3) handlebody Sg for a nat-
ural number g we mean the small tubular neighbourhood of a graph lying in
R2 ⊂ R3; see Fig. 2.12.

By a standardly embedded handle surface we mean the boundary of a stan-
dardly embedded handlebody.

Here we see that the connected sum K1#K2 has a tubular neighbourhood
T isomorphic to the natural tubular neighbourhood of K2. This neighbour-
hood is such that the intersection of each meridional disc D with K1#K2 is
not trivial (homologically).

But for the unknot U the only possible neighbourhood T ′ with the property
described above is a standardly embedded torus.
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FIGURE 2.11: The product of non-trivial knots is not trivial

. . .

g − 1 vertical lines

FIGURE 2.12: A graph on the plane

The knot K1 is not trivial and hence “thick” knots T ′ and T are not
isotopic. Thus, K1#K2 is not a trivial knot.

Definition 2.10. A knot K is said to be prime if for any knots L,M , such
that K = L#M , one of the knots L,M is trivial. All other knots are said to
be composite.

Definition 2.11. If for some knots K,L,M the statement K = L#M holds
then one says that the knots L,M divide the knot K.

Thus, we have proved that all elements of the knot semigroup except the
unknot have no inverse elements. Let us study another property of this semi-
group.

Exercise 2.7. Show that each knot (link) isotopy class can be represented as
a curve (several curves) on some handled body standardly embedded in R3.

Now let us give the definition of the Seifert surface first introduced by
Seifert in [Sei1], see also [Sei2, Pra2, CF].

Definition 2.12. Let L be an oriented link. A Seifert surface for the link L
is a closed compact oriented two–dimensional surface in R3, whose boundary
is the link L and the orientation of the link L is induced by the orientation of
the surface.
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FIGURE 2.13: Smoothing the diagram crossings

Theorem 2.3. For each link in R3, there exists a Seifert surface of it.

Proof. Consider a planar diagramD of the link L. Let us smooth link crossings
as shown below.

After such a smoothing, we obtain a set of closed nonintersecting simple
curves on the plane.

Definition 2.13. These curves are called Seifert circles.

Let us attach discs to these circles. Though the interiors of these circles on
the plane might contain one another, discs in 3–space can be attached without
intersections.

In the neighbourhood of each crossing, two discs meet each other. Let us
choose two closed intervals on the boundary of these discs and connect them
by a twisted band; see Fig. 2.14. The boundaries of this band are two branches
of the link incident to the chosen crossing. The two positions (upper and lower)
in Fig. 2.14 show different ways of twisting (in one case the vertical line lies
over the horizontal line, in the other case — vice versa).

Thus we obtain some surface that might not be connected. Connecting
different components of this surface by thin tubes, we easily obtain a connected
surface with the same boundary.

It remains to prove now that the obtained surface is orientable. Actually,
consider the plane P of the link projection. Choose a positive frame of refer-
ence on P . This generates an orientation for any discs attached to a Seifert
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disc

disc

disc

disc

disc

disc

disc

disc

FIGURE 2.14: Attaching a band to discs

circle. Herewith, for two Seifert surfaces adjacent to the same vertex, these
orientations are opposite (in the sense of the Seifert surface) since there is a
twisted band between them.

It remains to show that for each sequence C1, . . . Cn = C1 of Seifert circles,
where any two adjacent circles Ci, Ci+1 have a common vertex, the number n
is odd. In other words, while passing from a circle to itself one should pass an
even number of twistings. The latter follows from the fact that for a polygon
with an odd number of sides one cannot choose an orientation of sides in such
a way that any two adjacent sides have opposite orientations.

Theorem 2.4. The parity of the number of Seifert surfaces for the diagram
of
a k–component link with n crossings coincides with the parity of n− k.

Proof. Let L be a diagram of a k–component link with n vertices. Consider a
Seifert surface S(L). Let us construct a cell decomposition of it. First let us
choose the one–dimensional frame as follows: vertices of the diagram corre-
spond to crossings of L (two vertices near each crossing), and edges correspond
to edges of the diagram (two); one edge is associated with each crossing that
connects the two vertices; see Fig.2.15. The number of cells of such a decom-
position equals the number of Seifert surfaces. Now, let us attach discs to
the boundary components (components of the initial link). Thus we obtain
a closed oriented manifold. Its Euler characteristic should be even. It equals
2n − 3n + S + k, where n is the number of crossings of the diagram L, and
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First cell

Second cell

FIGURE 2.15: Cell decomposition of a Seifert surface

S is the number of Seifert surfaces of this diagram. Taking into account that
the number 2n− 3n+ S + k is even, we obtain the claim of the theorem.

The Seifert surface for the knot K is a compact 2–surface whose boundary
is K. By attaching a disc to this surface we get a sphere with some handles.

Definition 2.14. A knot K is said to have genus g if g is the minimal number
of handles for Seifert surfaces corresponding to K.

The notion of knot genus was also introduced by Seifert in [Sei1].

Remark 2.4. Actually, the calculation problem for the knot genus is very
complicated but it was solved by Haken. For this purpose, he developed the
theory of normal surfaces — surfaces in 3–manifolds lying normally with re-
spect to a cell decomposition, see [Hak]. The trivial knot (knot of genus 0)
recognition problem is a partial case of this problem.

Lemma 2.1. The function g is additive; i.e. for any knots K1,K2 the equality
g(K1) + g(K2) = g(K1#K2) holds.

Proof. First, let us show that g(K1#K2) ≤ g(K1) + g(K2).
Consider the Seifert surfaces F1 and F2 of minimal genii for the knots K1

and K2. Without loss of generality, we can assume that these surfaces do not
intersect each other. Let us connect the two surfaces by a band with respect
to their orientation.

Thus we obtain a Seifert surface for the knot K1#K2 of genus g(K1) +
g(K2). Thus

g(K1#K2) ≤ g(K1) + g(K2).

Now, let us show that g(K1#K2) ≥ g(K1) + g(K2). Consider a minimal
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genus Seifert surface F for the knot K1#K2. There exists a (topological)
sphere S2, separating knots K1 and K2 in the connected sum K1#K2 at
some points A,B.

The sphere S2 intersects the surface F along several closed simple curves
and a curve ended at points A,B. Each circle divides the sphere S2 into two
parts; one of them does not contain points of the curve AB. Without loss of
generality, assume that the intersection F ∩S2 consists of several closed simple
curves a1, . . . , ak and one curve connecting A and B. The neighbourhood of
each ai in F looks like a cylinder. Let us delete a small cylindrical part that
contains the circle (our curve) from the cylinder and glue the remaining parts
of the cylinder by small discs. If the obtained surface is not connected, let
us take the part of it containing K1#K2. After performing such operations
to each circle, we obtain a closed surface F ′ containing the knot K1#K2

and intersecting S2 only along AB. The operations described before can only
decrease the number of handles. Thus, g(F ′) ≤ g(F ). Because F has minimal
genus, we conclude that g(F ′) = g(F ) = g(K1#K2).

The sphere S2 divides the surface F ′ into surfaces that can be treated as
Seifert surfaces for K1 and K2. Thus,

g(K1) + g(K2) ≤ g(F ′) = g(K1#K2)

Taking into account that we have proved the “≥”–inequality, we conclude
that the genus is additive.

As a corollary, one can conclude that any non-trivial knot has no inverse,
since the unknot has genus zero and the others have genus greater than zero.
This is the third proof of the non-invertibility of non-trivial knots.

Exercise 2.8. Show that the trefoil has genus one.

Thus, each knot can be decomposed in no more than a finite number of
prime knots. To clarify the situation about knot arithmetics, it remains to
prove one more lemma, the lemma on unique decomposition.

Lemma 2.2. Let L and M be knots, and let K be a prime knot dividing
L#M . Then either K divides L or K divides M .

Proof. Consider the knot L#M together with some plane p, intersecting it at
two points A and B and separating the knot L from the knot M . If we go
from considering R3 to S3 = R3 ∪∞, the plane p turns into the sphere P .

Since L#M is divisible by K, there exists (topological) two-dimensional
sphere S2 intersecting the knot L#M at two points.

If this sphere does not intersect the sphere P , then the problem is solved.
Without loss of generality, suppose that the sphere S2 intersects the sphere
P by some disjoint non-self-intersecting curves (circles). Each of these circles
on the sphere P either separates the points A and B, or does not. The circles
that do not separate the points A and B are easyly destroyed by a small
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modification of the sphere: you need to start with the circles that do not
contain other curves inside themselves.

When you destroy the curves ci that separate the points A and B, you need
use the simplicity of the knot K. The P sphere breaks the sphere S3 = R3∪∞
into two three-dimensional balls. Let BK be the ball containing the knot K.
Consider the connected component of S2∩BK containing ci. It may be either
a two-dimensional disk or a cylinder. In the case of a cylinder, the curve ci
is destroyed by a small perturbation of the sphere S2 together with another
curve (the other edge of the same cylinder). In the first case the disc D2

under consideration intersects the knot L#M exactly in one point. From the
simplicity of the knot K it follows that in BK it is entirely located on one side
of the disk D2. Therefore, we can destroy the disk D2, and the curve together
with it .

From the above, we conclude that if the connected sum L#M is divisible
by K, then one of the links L or M is divisible by K.

Remark 2.5. This basic statement of knot arithmetics belongs to Schubert,
see [Sch].

Thus we have:

1. Knot isotopy classes form a commutative semigroup related to the con-
catenation operation; the unit element of the semigroup is the unknot.

2. Each non-trivial knot has no inverse element;

3. Prime decomposition is unique up to permutation;

4. The number of different prime knots is denumerable.

Exercise 2.9. Prove the last statement.

Hence the number of smooth knot isotopy classes is denumerable, and we
get the following:

Theorem 2.5. The semigroup of knot isotopy classes with respect to con-
catenation is isomorphic to the semigroup of natural numbers with respect to
multiplication. Here prime knots correspond to prime numbers.

However, the isomorphism described above is not canonical, hence there
is no canonical linear order on the set of all knots (prime knots); i.e., it is
impossible to say that “the (prime knot) right trefoil corresponds to the prime
number three or to the prime number 2017”. To do this, one should be able
to recognise knots, which that is quite a difficult problem.

There exists only one semigroup defined by the properties described above
(up to isomorphism).

In [Man5], we propose a purely algebraic description for this semigroup;
i.e., we give an explicit isomorphism between this geometric semigroup and
some algebraically constructed “bracket semigroup”.





Chapter 3

Links in 2–surfaces in R3. Simplest link

invariants

Knots (links) embedded in R3 can be considered as curves (families of curves)
in 2–surfaces, where the latter surfaces are standardly embedded in R3. In
this chapter we shall prove that all knots and links can be obtained in this
manner.

In the present chapter, we shall describe some series of knots and links,
e.g., torus links that can be represented as links lying on the torus standardly
embedded in R3.

We shall also present some invariants of knots and links and demonstrate
that the trefoil knot is not trivial.

3.1 Knots in 2–surfaces. The classification of torus knots

Consider a handle surface Sg standardly embedded in R3 and a curve
(knot) K in it. We are going to discuss the following question: which knot
isotopy classes can appear for a fixed g?

First, let us note that for g = 0 there exists only one knot embeddable in
S2, namely, the unknot.

Exercise 3.1. Show, that for each link isotopy class L ⊂ R3 there exists a
representative link L′ (of the class L) lying in some handle surface standardly
embedded in R3.

The case g = 1 (torus, torus knots) gives us some interesting information.
Consider the torus as a Cartesian product S1×S1 with coordinates φ, ψ ∈

[0, 2π], where 2π is identified with 0. In Fig. 3.1, the torus is illustrated as a
square with opposite sides identified.

Let us embed this torus standardly in R3; more precisely:

(φ, ψ) −→ ((R + r cosψ) cosφ, (R + r cosψ) sinφ, r sinψ)

Here R is the outer radius of the torus, r is the small radius (r < R), φ is
the longitude, and ψ is the meridian coordinates, the direction of the longitude
and the meridian seen in Fig. 3.2.

29
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(0,0)

(2π, 2π)

φ

ψ

FIGURE 3.1: Torus

l

m

FIGURE 3.2: Longitude and meridian of the torus

For the classification of torus knots we shall need the classification of iso-
topy classes of non-intersecting curves in T 2: obviously, two curves isotopic in
T 2 are isotopic in R3.

Without loss of generality, we can assume that the considered closed curve
passes through the point (0, 0) = (2π, 2π). It can intersect the edges of the
square several times. Without loss of generality, assume all these intersections
to be transverse. Let us calculate separately the algebraic number of inter-
sections with horizontal edges and that of intersections with vertical edges.
Here passing through the right edge or through the upper edge is said to be
positive; that through the left or the lower is negative.

Thus, for each curve of such type we obtain a pair of integer numbers.

Exercise 3.2. Show that if both numbers are equal to zero then the knot is
trivial.

Remark 3.1. In the sequel, we shall consider only those knots for which at
least one of these numbers is not equal to zero.

The following fact is left for the reader as an exercise.

Exercise 3.3. For a non-self-intersecting curve these numbers are coprime.

So, each torus knot passes p times the longitude of the torus, and q times its
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(0,0)

(2π, 2π)

φ

ψ

FIGURE 3.3: Trefoil on the torus

meridian, where GCD(p, q) = 1. It is easy to see that for any coprime p and q
such a curve exists: one can just take the geodesic line {qφ−pψ = 0(mod 2π)}.
Let us denote this torus knot by T (p, q).

Exercise 3.4. Show that curves with the same coprime parameters p, q are
isotopic on the torus.

So, in order to classify torus knots, one should consider pairs of coprime
numbers p, q and see which of them can be isotopic in the ambient space R3.

The simplest case is when either p or q equals one.

Exercise 3.5. Show that for p = 1, q is arbitrary or q = 1, p is arbitrary we
get the unknot.

The next simplest example of a pair of coprime numbers is p = 3, q = 2
(or p = 2, q = 3). In each of these cases we obtain the trefoil knot.

Let us prove the following important result.

Theorem 3.1. For any coprime integers p and q, the torus knots (p, q) and
(q, p) are isotopic.

Proof. Let us take S3 as the ambient space for knots (instead of R3). As we
know, it does not affect isotopy.

It is well known that S3 can be represented as a union of two full tori
attached to each other according to the following boundary diffeomorphism.
This diffeomorphism maps the longitude of the first torus to the meridian of
the second one, and vice versa. More precisely, S3 = {z, w ∈ C | |z|2 + |w|2 =
1}. The two tori (each of them is one half of the sphere) are given by the

inequalities |z|2 ≥ |w|2 and |z|2 ≤ |w|2; their common boundary is defined by

the equation |z| = |w| =
√

1
2 . It is easy to see that the circles defined as

|w| =
√

1

2
, z — fixed with absolute value

√
1

2

and

|z| =
√

1

2
, w — fixed with absolute value

√
1

2
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FIGURE 3.4: Torus p, q–knot diagram

are the longitude and the meridian of the boundary torus.
Thus, the (p, q) torus knot in one full torus is just the (q, p) torus knot in

the other one. Thus, mapping one full torus to the other one, we obtain an
isotopy of (p, q) and (q, p) torus knots.

Exercise 3.6. Express this homotopy of full tori as a continuous process in
S3.

Torus knots of type (p, q) can be represented by the following series of
planar diagrams; see Fig. 3.4.

Remark 3.2. Figure 3.4 demonstrates a way of coding a knot (link) as a
(p–strand) braid closure. We shall speak about braids later in the book.

Analogously to the case of torus knots, one can define torus links which
are links embedded into the torus standardly embedded in R3.

We know the construction of torus knots. So, in order to draw a torus link
one should take a torus knot K ⊂ T (one can assume that it is represented by
a straight-linear curve defined by the equation qφ−pψ = 0(mod 2π)) and add
to the torus T some closed non–intersecting simple curves; each curve should
be non-intersecting and should not intersect K. Thus, these curves should be
embedded in T \K; i.e. in the open cylinder.

Each closed curve on the cylinder is either contractible or passes the lon-
gitude of the cylinder once; see Fig. 3.5.

So, each curve in T \K is either contractible inside T \K, or “parallel” to K
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FIGURE 3.5: Possible simple curves on the cylinder

inside T ; i.e. isotopic to the curve given by the equation qφ−pψ = ε(mod 2π)
inside T \K.

Thus, the following theorem holds.

Theorem 3.2. Each torus link is isotopic to the disconnected sum of a trivial
link and a link that is represented by a set of parallel torus knots of the same
type (p, q).

3.2 The linking coefficient

From now on, we shall construct some invariants of links. As we know
from the first chapter, a link invariant is a function defined on links that is
invariant under isotopies. One can consider separately invariants of knots and
links (oriented or non-oriented).

We shall represent links by using their planar diagrams. According to the
Reidemeister theorem, in order to prove the invariance of some function on
links, it is sufficient to check this invariance under the three Reidemeister
moves.

First, let us consider the simplest integer–valued invariant of two–
component links.

Let L be a link consisting of two oriented components A and B and let L′

be a planar diagram of L. Consider those crossings of the diagram L′ where
the component A goes over the component B. There are two possible types
of such crossings with respect to the orientation; see Fig. 3.6.
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A B B A
+ −

FIGURE 3.6: Two types of crossings for an oriented link

For each positive crossing we assign the number (+1), for each negative
crossing we assign the number (−1). Let us summarise these numbers along
all crossings where the component A goes over the component B. Thus we
obtain some integer number.

Exercise 3.7. Show that this number is invariant under Reidemeister moves.

Thus, we have an oriented link invariant.

Definition 3.1. The obtained invariant is called the linking coefficient .

Remark 3.3. This invariant was first invented by Gauss [Gau]. He calculated
it by means of his famous formula. This formula is named the Gauss electro-
magnetic formula in honour of him. The linking coefficient can be generalised
for the case of p– and q–dimensional manifolds in Rp+q+1.

The formula for the parametrised curves γ1 and γ2 with radius–vectors
r1(t), r2(t) is given by the following formula

lk(γ1, γ2) =
1

4π

∫

γ1

∫

γ2

(r1 − r2, dr1, dr2)
|r1 − r2|3

.

The proof of this fact is left for the reader as an exercise.

Hint 3.1. Prove that this function is the degree of a map from the torus
generated by two link components to a sphere and, thus, it is invariant; then
prove that it is proportional to the linking coefficient and find the coefficient
of proportionality.

The linking coefficient allows us to distinguish some two–component links.

Example 3.1. Let us consider the trivial two–component link and enumer-
ate its components in an arbitrary way. Obviously, their linking coefficient
is zero. For the Hopf link, the linking coefficient equals ±1 depending on the
orientation of the components. Hence, the Hopf link is not trivial.

Exercise 3.8. Show that the linking coefficient of two “parallel” torus knots
of type (1, n) equals n.
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Example 3.2. For any two components of the Borromean rings, the linking
coefficient equals zero; each component of this link is a trivial knot. However,
the Borromean rings are not isotopic to the trivial three–component link. This
will be shown later in the text.

For one–component link diagrams (knot diagrams), one can define the self–
linking coefficient. To do this, one should take an oriented knot diagram K
and draw a parallel copyK ′ of it on the plane. After this, one takes the linking
coefficient of K and K ′. It is easy to check that this is invariant under Ω2 and
Ω2, but not Ω1: adding a loop changes the value by ±1.

There exists another approach to the link coefficients, namely that involv-
ing Seifert surfaces.

Definition 3.2. Let F be a Seifert surface of an oriented knot J . Assume that
an oriented link K intersects F transversely in finitely many points. With each
intersection point, we associate a number εi = ±1 according to the following
rule.

Let us define the orientation of F , assuming the reference point {e1, e2}
positive, where e1 is the speed vector of J and e2 is the interior normal vector
(it is perpendicular to e1 and directed inside F ). Let e3 be the speed vector of
the curve K at a point a ∈ K∩F, and {e′1, e′2} be a positive frame of reference
on the surface F at a. Then, εi = +1 if the orientation {e′1, e′2, e3} coincides
with the orientation of the ambient space R3; otherwise, let us set εi = −1.

The sum of all signs εi is called the linking coefficient of J and K.

Exercise 3.9. Prove that the linking coefficient (in the latter sense) is well
defined (does not depend on the choice of the Seifert surface) and coincides
with the initial definition.

Hint 3.2. Use the planar projections and investigate the behaviour of two
knot projections in neighbourhoods of crossings.

3.3 The Arf invariant

We have constructed a simple invariant of two–component links, the link
coefficient. For unoriented links this construction allows us to define an in-
variant with coefficients from Z2.

It turns out that there exists a knot invariant valued in Z2 that is closely
connected with the link coefficient, namely, the so–called Arf invariant. There
are many ways to define this invariant; here we follow [Kau1] and [Ada].

The Arf invariant comes from Seifert surfaces. Namely, let K be a knot
and l be a band that is a part of the Seifert surface of the knot K, see the
upper part of Fig. 3.7.
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FIGURE 3.7: Simple twisting

Let us transform the knot by twisting this band by two full turns; see
Fig. 3.8.

We obtain a knot K ′.

Definition 3.3. Let us say that K and K ′ are Arf equivalent.

Definition 3.4. The Arf invariant is the complete invariant of the Arf equiv-
alent classes.

Now, let us denote the Arf invariant by A and decree A(©) = 0 and

A( ) = A( ) = 1 where © denotes the unknot.
It turns out that the Arf invariant defined above has only two values, one

and zero!

Theorem 3.3. Each knot is either Arf equivalent to the unknot or to a trefoil
(both trefoils are Arf equivalent).

The main idea for proving this theorem (for a rigorous proof see, e.g. in
[Ada]) is the following. First, let us mention that each Seifert surface can be
thought of as a disc with several bands attached to its boundary. Each band
can be twisted many times, and bands can be knotted. This observation is left
to the reader as an exercise.

The number of half–turn twists for each band can be taken to be zero or
one according to the Arf equivalence. Besides, the Arf equivalence allows us to
change the disposition of bands in 3–space, for instance, to erase knottedness.
Namely, a simple observation shows that passing one band through the other
is also an Arf equivalence.

Thus we obtain a Seifert surface of a very simple type: it looks like a
disc together with some bands attached to its boundary according to some
“chord diagram” law; some of these bands are half–turn twisted; the others
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FIGURE 3.8: Double twisting

are not twisted. After this, one can perform some reducing operations, which
will transform our knot into the connected sum of some trefoils. Finally, the
only thing to do is the following exercise.

Exercise 3.10. Show that the connected sum of the trefoil with another trefoil
is Arf equivalent to the unknot. It does not matter which trefoils you take (right
or left).

In the sequel, all calculations concerning the Arf invariant will be per-
formed modulo Z2.

It turns out that the Arf invariant is very easy to calculate.

Let and be two knot diagrams that differ in a small neighbourhood.

Then, one of the diagrams , is a knot diagram, and the other one is a

link diagram. Suppose that is a link diagram, consisting of the two link
components l1 and l2. Then the following theorem holds.

Theorem 3.4. Under conditions described above,

a( )− a( ) ≡ lk(l1, l2) (modZ2).

This relation in fact allows us to calculate the value of the Arf invariant
for different knots. Later, we shall show how to transform any knot diagram
to an unknot diagram only by switching some crossing types. Thus will work
in many other situations while calculating some polynomials.

Furthermore, it looks similar to the so–called skein relations that will be
defined later. The skein relations lead to much stronger knot invariants.
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3.4 The colouring invariant

Let us consider now a simple invariant for unoriented links starting from
the link diagram. This invariant was well known a long ago. It turns out that
it is connected with much stronger invariants of links.

Consider a non–oriented link.

Definition 3.5. By an arc of a planar link diagram we mean a connected
component of the planar diagram.

Thus, each arc always goes “over”; it starts and stops at undercrossings.
For link diagrams in general position, each vertex is incident to three arcs.
Some of them may (globally) coincide.

Now, let us associate colours with arcs of a given link. We shall use three
colours: red, blue, white.

Definition 3.6. A colouring of a link diagram is said to be proper if for each
crossing of the diagram, the three arcs incident to it have either all three
different colours or one and the same colour.

Theorem 3.5. The number of proper colourings is an invariant of link isotopy
types.

Proof. Let us prove the invariance in the following way. Consider a Reidemeis-
ter move and two diagrams L,L′ obtained one from the other by using this
move. Then we present a one–to–one correspondence of proper colourings for
L and L′.

In the case of a Ω1–move the situation is clear: the two edges of L′ corre-
sponding to one “broken” edge of L should have one colour because we have
the situation where two of three edges meeting at a crossing are the same (and
hence, there is no possibility to use three colours).

Thus, the desired one–to–one correspon-
dence is evident. Analogously, there are “one
colour” cases of the second and third Reide-
meister moves. The invariance under second
Reidemeister move is shown here:

1 2 ←→
1 2

2

3

In Fig. 3.9, we give the corresponding colourings for edges taking part
in the third Reidemeister moves. For the corresponding colouring all edges
outside the area should be coloured identically. Here we show some examples of
such colourings and their one–to–one correspondences. The other possibilities
can be obtained from these by some permutation of colours (here colours are
marked by numbers 1, 2, 3).

Thus, each proper colouring of the initial diagram uniquely corresponds
to a colouring of the diagram obtained from the initial one by applying a
Reidemeister move. Thus, the number of proper colourings is invariant under
Reidemeister moves.
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The third Reidemeister move

FIGURE 3.9: Invariance of proper colouring number

Let us now call the number of proper colourings the colouring invariant.
Notation: for a link L we have CI(L).
Obviously, for the unknot, we have CI(©) = 3; for the k–component

unlink, we have CI = 3k.

Exercise 3.11. Calculate the colouring invariant for the unknot and that for
the (right) trefoil knot and show that the trefoil knot is not trivial.

Exercise 3.12. Calculate the colouring invariant for the Whitehead link and
show that it is not trivial.

Exercise 3.13. Calculate the values of the colouring invariant for the Bor-
romean rings. Show that they are not trivial.

However, if we observe this invariant on the figure eight knot, we see that
each colouring is monochrome. Thus, our invariant does not distinguish be-
tween the figure eight knot and the unknot. This encourages us to seek stronger
knot and link invariants.





Chapter 4

Fundamental group. The knot group

4.1 Digression. Examples of unknotting

Let us now discuss a sympathetic example (or problem) concerning unknot
diagrams and ways of unknotting them.

First, consider an arbitrary diagram of the trivial knot. Let us try to
unknot it by using Reidemeister moves. In the “good” case this can be done
only by decreasing the number of vertices (we mean the “decreasing” version
of the first two Reidemeister moves and the third move).

However, this is not always so. More precisely, there exists an unknot
diagram with a non-empty set of vertices such that we can apply neither
decreasing versions of the first or second Reidemeister move nor the third
Reidemeister move to this diagram. Thus, in order to transform this diagram
to the unknot, one should first increase the number of vertices of it. We are
going to construct such diagrams.

Example 4.1. Consider the knot diagram shown in Fig. 4.1. Obviously, this is
a diagram of the unknot because it can be obtained from the stretched unknotted
circle by using a sequence of Ω2’s.

Example 4.2. Now let us consider the knot diagram shown in Fig. 4.2. This

A

B

FIGURE 4.1: First unknot diagram

41
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A

B

D

C

FIGURE 4.2: Second unknot diagram

A

B
D

C

FIGURE 4.3: Third unknot diagram

can be obtained from that shown in Fig. 4.1 by throwing the arc AB over infin-
ity (we think of the plane as compactified by the point at infinity). Obviously,
this throwing does not change the knot isotopy class. Hence, we see the unknot
in Fig. 4.2.

Example 4.3. Let us consider now the knot diagram shown in Fig. 4.3. This
can be obtained from that shown in Fig. 4.2 by applying the second Reidemeis-
ter move to CD and throwing it over infinity. Hence, the knot diagram shown
in Fig. 4.3 also represents the unknot.

Theorem 4.1. Each Reidemeister move that can be applied to the unknot
diagram shown in Fig. 4.3 increases the number of vertices of the diagram.

Proof. Consider the knot diagram shown in Fig. 4.3 as a four–valent graph
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FIGURE 4.4: Fourth unknot diagram

with over– and undercrossings. It is sufficient to check that in order to perform
the first or the second decreasing Reidemeister move, the shadow must con-
tain loops or bigons. Additionally, in order to perform the third Reidemeister
move, the shadow must contain a triangle such that one edge of it has no over-
crossings. It is easy to see that the knot diagram shown in Fig. 4.3 has neither
such loops, nor bigons, nor “good” triangles. Thus, each of the Reidemeister
moves applicable to this diagram will increase the number of vertices. This
completes the proof.

However, one can consider not only planar knot (link) diagrams, but also
spherical diagrams. Namely, one can think of the sphere as the plane compact-
ified by the point at infinity. Without loss of generality, one can assume that
the shadow of the link does not contain this point. In this case, there appears
one more “elementary isotopy”, when some edge of the shadow passes through
the infinity. This operation is called the infinity change.

It is intuitively clear that the infinity change is indeed an isotopy. Actually,
it can be represented as a sequence of Reidemeister moves.

Exercise 4.1. Prove this fact directly.

Thus, the knot shown in Fig. 4.3 can be unknotted only by using the second
decreasing Reidemeister move, after the preliminary infinity change (throwing
an arc over infinity) in the very beginning.

Actually, the knot shown in Fig. 4.4 cannot be unknotted only by non-
decreasing Reidemeister moves even if we admit the infinity change (the infi-
nite cell is no longer a bigon).

Now, if we consider the knot diagram from Fig 4.3 as a spherical diagram,
we shall see the bigon, containing the infinite point. Thus, after the infinity
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FIGURE 4.5: An unknot diagram that cannot be decreased in one turn

change, one gets this bigon inside a compact domain. Then one can easily
untangle the diagram by using only decreasing moves.

In Fig. 4.4, we illustrate an example of a knot diagram having no loops,
no bigons and no “good” triangles with one edge forming two overcrossings.
These properties remain true even if considering this as a spherical diagram.
Thus, in order to untangle the knot shown in Fig. 4.4, one should first perform
some increasing moves.

Another example of such an unknot diagram that cannot be decreased in
one turn is shown in Fig. 4.5. This example was invented by the student I.M.
Nikonov who attended the author’s lecture course.

4.2 Fundamental group. Basic definitions and examples

Let us now start the main part of the present chapter. We shall describe
the notion of fundamental group for arbitrary topological spaces and show
how to calculate it for link complements. We are going to introduce some
presentations of this group.

The topological theory of the fundamental group can be read in, e.g.,
[Fom, FFG, Vas3, CF]. The theory of three-manifolds can be read in [Mat5].

Consider a topological space X and a point x0 ∈ X . Fix a point a on the
circle S1. Consider the set of continuous mappings f : S1 → X such that
f(a) = x0. The set of homotopy classes of such mappings admits a group
structure. Indeed, the multiplication of two such mappings can be represented
by concatenating their paths. The inverse element is obtained by passing over
the initial path in the inverse order. Obviously, these operations are well de-
fined up to homotopy.
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FIGURE 4.6: Changing the crossing

Definition 4.1. The obtained group is called the fundamental group of the
space X ; it is denoted by π1(X, x0).

Exercise 4.2. Show that for the case of connected X the group π1(X, x0) does
not depend on the choice of x0; i.e., π1(X, x0) ∼= π1(X, x1).

Remark 4.1. There is no canonical way to define the isomorphism for fun-
damental groups with different initial points.

The fundamental group is a topological space homotopy invariant.
Now let K be a link in R3.
Let MK = R3\K be the complement to K. It is obvious that while per-

forming a smooth isotopy of K in R3 the complement always stays isotopic
to itself. Hence, the fundamental group of the complement is an invariant of
link isotopy classes.

In [GL] it is shown that the complement to the knot (more precisely, to
its small tubular neighbourhood in R3) is a complete invariant of the knot up
to amphicheirality.

However the analogous statement for links is not true. Before constructing
a counterexample, let us prove the following lemma.

Lemma 4.1. Let D3 ⊂ R3 be a ball and T ⊂ D3 be the full torus γ;
see Fig. 4.6. There exists a homeomorphism of R3\T onto itself, mapping
the curves AB and CD (as they are shown in Fig. 4.6.a) to AB and CD
(Fig. 4.6.b) that is constant inside the ball D3.

Proof. In order to have a more intuitive outlook, let us imagine that the inte-
rior diameter of T is very big (so that the “interior” boundary of it represents
a high cylinder) in comparison with the exterior one. Thus, we have a deep
hole surrounded by the boundary of the full torus; see Fig. 4.7.

Let us consider the ball D3 and cut a circle from the plane, as shown
in Fig. 4.7.a. Let us rotate the part of this cut (that is a circle with two
marked points) in the direction indicated by arrows. This operation is possible
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FIGURE 4.7: Rotating upper part of the cylinder

since the full torus T is deleted from D3. Performing the 180–degree turn, we
obtain the configuration shown in Fig. 4.7.b. Then, let us make one more
turnover. Thus we obtain the embedding represented in Fig. 4.7.c. Thus, each
point of the cut returns to the initial position. So, both copies of the cut
can be glued together in such a way that the total space remains the same.
In this way, we obtain a homeomorphism of the manifold D3\T onto itself.
This homeomorphism can be extended to a homeomorphism of R3\T onto
itself, identical outside D3. The latter homeomorphism realises the crossing
change.

Exercise 4.3. Show that links L1 and L2 (Fig. 4.8.a and 4.8.b) are not
isotopic, but their complements are homeomorphic.

This gives us an example of non–isotopic links with isomorphic fundamen-
tal groups.

Difficult exercise 4.1. Find two non-isotopic (and not mirror) knots with
isotopic fundamental groups.

Definition 4.2. The link (knot) complement fundamental group is also called
the link (knot) group.

Exercise 4.4. Show that the fundamental group of the circle is isomorphic to
the fundamental group of the complement to the unknot. Show that they are
both isomorphic to Z.

Exercise 4.5. Show that the fundamental group of the complement to the
trivial n–component link is isomorphic to the free group in n generators.

The link complement fundamental group is a very strong invariant. For
instance, it recognises trivial links among links with the same number of com-
ponents. This result follows from Dehn’s theorem.
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FIGURE 4.8: Non-isotopic links with isomorphic complements

Theorem 4.2 (Dehn). An m–component link L is trivial if and only if
π1(R

3\L) is isomorphic to the free group in m generators.

Thus, Dehn’s theorem reduces the trivial link recognition problem to the
free group recognition problem (for some class of groups). In the general case,
the free group recognition problem is undecidable. For more details see [Bir1,
Bir2] and [BZ, ECH..., MKS].

Dehn’s theorem follows from the following lemma.

Lemma 4.2. Let M be a 3–manifold with boundary and let γ be a closed
curve on its boundary ∂M . Then if there exists an immersed 2–disc D →M ,
such that ∂D = γ then there exists an embedded disc D′ ⊂M with the same
boundary ∂D′ = γ.

This lemma was first proved by Dehn [Dehn1], but this proof contained
lacunas. The rigorous proof was first found by Papakyriakopoulos [Pap]. This
proof used the beautiful techniques of towers of 2–folded coverings.

Now the Dehn theorem (for the case of knots) is proved as follows. Hav-
ing a knot K ⊂ R3 with its tubular neighbourhood N(K), let us consider
π1(R

3\N(K), A) where A ∈ T (K) = ∂N(K). Obviously, each closed loop
which can be isotoped to a loop lying on T (K) then can be represented via
the longitude and meridian of T (K), which are non-intersecting closed curves.
Obviously, the meridian µ; i.e. the simple curve on T (K) that lies in a small
neighbourhood of some point on K and has linking coefficient with K equal to
one, cannot be contracted to zero. Let λ be the longitude; i.e. a simple curve
in T “parallel to K” and having linking coefficient zero with K. The curves µ
and λ generate the fundamental group of the torus T .

Suppose the group of the knot K is isomorphic to Z. Obviously, this group
contains {µ} = Z. Besides, no power of λ can be equal to a non-trivial expo-
nent of µ (because of linking coefficients). Thus, the curve λ is isotopic to zero
in π1(R

3\N(K)). Thence, there is a singular disc bounded by λ. By Dehn’s
lemma, there is a disc embedded in R3\N(K) bounded by λ. Contracting
N(K) to K, we obtain a disc bounded by K. Thus, K is the unknot. This
completes the proof of Dehn’s theorem.
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The statement of Dehn’s theorem shows that the fundamental group is
rather a strong invariant. However, it does not allow us to distinguish mirror
knots and some other knots. The first example of distinguishing two different
mirror knots, namely, the two trefoils, was made by Dehn in [Dehn2]. There
he considered the group together with the element representing an oriented
meridian. This was sufficient to distinguish these two trefoils. Later, we will
return to this structure (while speaking of the peripheral system of the knot
complement).

According to modern terminology, we can say that complements to non-
trivial links are so–called sufficiently large manifolds,

Definition 4.3. A manifold M is called sufficiently large if one can embed a
handlebody (not the sphere) in M in such a way that the image map for the
fundamental group has no kernel.

These manifolds are classified by S.V. Matveev; however the algorithm is
quite formal and cannot be performed practically (e.g. by means of a computer
program).

In [Mat1], he constructed the full invariant of knots, the knot quandle
(distributive groupoid). We shall consider this invariant later.

Exercise 4.6. Show that π1(A1 ∨A2) (of the union of spaces A1 and A2 with
one identified point) is isomorphic to the free product of π1(A1) and π1(A2)
in the case when both A1 and A2 are pathwise connected.

Let us demonstrate two ways of calculating a representation for the fun-
damental group of a knot complement. The first of them is more common; it
can be used in many other situations.

Let X be a topological space that admits a decomposition X = X1 ∪X2,
where each of the sets X1, X2, X0 = X1∩X2 is open, pathwise–connected and
non-empty. Choose a point A ∈ X0. Suppose fundamental groups π1(X1, A)
and π1(X2, A) have presentations 〈a1, . . . |f1 = e, . . . 〉 and 〈b1, . . . |g1 = e, . . . 〉,
respectively. Suppose that the generators c1, c2 . . . of π1(X0, A) (which are
elements of both groups π1(X1, A) and π1(X2, A)) are represented as ci =
ci(a1, . . . ) and as ci = ci(b1, . . . ) in the terms of π1(X1, A) and π1(X2, A),
respectively.

Then the following theorem holds.

Theorem 4.3. (The van Kampen theorem) The group π1(X,A) admits a
presentation

〈ai, bi, |fi = e, gi = e, ci(a) = ci(b)〉.

In the case of CW–complices, the proof of the theorem is evident. For more
details in the general case, see, e.g. [CF].

Corollary 4.1. If both X1 and X2 described above are simply connected then
X is simply connected as well.
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FIGURE 4.9: Gluing a handlebody

As an example, let us show how to calculate fundamental groups of 2–
manifolds.

Theorem 4.4. The fundamental group of the connected oriented 2–surface of
genus g (g > 0) without boundary has a presentation

〈a1, b1, . . . , ag, bg|a1b1a1−1b1
−1 . . . agbgag

−1bg
−1 = e〉.

Proof. Consider this handle surface as a 4g–gon with some pairs of edges glued
together; see Fig. 4.9.

Let us divide this manifold into two parts: one of them is located inside
the big circle in Fig. 4.9; the other one is outside the small circle (it contains
all edges and all gluings are performed for this part).

The first part is simply connected; the second one is contractible to the
union of 2g circles and hence its fundamental group is isomorphic to the free
group with generators1 a1, b1, . . . , ag, bg.

The intersection of the two areas described above is isotopic to the circle;
hence its fundamental group is isomorphic to Z. Thus, the only relation we
have to add that deals with the generator of this Z is going to be e.

Applying the van Kampen theorem we get that

π1(Sg) = 〈a1, b1, . . . , ag, bg|a1b1a1−1b1
−1 . . . agbgag

−1bg
−1 = e〉.

For each link L, there exists a handle surface Sg standardly embedded in
R3 and a link L′ ⊂ Sg ⊂ R3 isotopic to L in R3. Thus, one can calculate
the fundamental group of the complement to L by using the van Kampen
theorem: we divide the complement to L′ into two parts lying on different
sides of Sg.

1Here each letter means an oriented edge of the octagon; this edge is closed since all
vertices are contracted to one point.
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4.3 Calculating knot groups

Let us demonstrate this technique for the case of torus knots. Let K be a
(p, q)–torus knot, embedded to the standard torus in R3.

Now, consider R3\K as

(Interior full torus without K) ∪ (Exterior full torus without K).

Since deleting some set on the boundary does not change the fundamen-
tal group (of the full torus), we conclude that both fundamental groups are
isomorphic to Z (one of them has the generator a, the other one has the gen-
erator b; they correspond to the longitude and meridian of the torus). The
intersection of these parts is homeomorphic to the cylinder; the fundamental
group of this cylinder is isomorphic to Z. The only generator of this group can
be expressed as ap on one hand, and as bq on the other hand. This implies the
following theorem.

Theorem 4.5. The fundamental group of the complement to the (p, q)–torus
knot has a presentation with two generators a and b and one relation ap = bq.

It is obvious that the fundamental group does not distinguish a knot (not
necessarily torus) and its mirror image.

As they should be, fundamental groups of isotopic knots are isomorphic.
Thus, T (p, q) has the same group as T (q, p), and the group of the knot T (1, n)
is isomorphic to Z. Torus knots of types (p, q) and (p,−q) are mirror images
of each other, thus their groups coincide.

In all the other cases the fundamental group distinguishes torus knots.
Now, we present another way of calculating the fundamental group for

arbitrary links. Consider a link L given by some planar diagram L̄. Consider
a point x “hanging” over this plane. Let us classify isotopy classes of loops
outgoing from this point. It is easy to see (the proof is left to the reader)
that one can choose generators in the following way. All generators are classes
of loops outgoing from x and hooking the arcs of L̄. Let us decree that the
loop corresponding to an oriented edge is a loop turning according to the
right–hand screw rule; see Fig. 4.10.

Now, let us find the system of relations for this group.
It is easy to see the geometrical connection between loops hooking adjacent

edges (i.e., edges separated by an overcrossing edge). Actually, we have b =
cac−1, where c separates a and b; see Fig. 4.11.

Let us show that all relations in the fundamental group of the complement
arise from these relations.

Actually, let us consider the projection of a loop on the plane of L̄ and
some isotopy of this loop. While transforming the loop, its written form in
terms of generators changes only when the projection passes through crossings
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FIGURE 4.10: Loops corresponding to edges

a

b

c
b = cac−1

FIGURE 4.11: Relation for a crossing

of the link. Such an isotopy is shown in Fig. 4.12. During the isotopy process,
the arc connecting P and Q passes under the crossing.

Obviously, the loop shown on the left hand (Fig. 4.12) generates the ele-
ment c−1bc, that on the right hand is just a.

Thus, our presentation of the fundamental group of the link complement is
constructed as follows: arcs correspond to the generators and the generating
relations come from crossings: we take cac−1 = b for adjacent edges a and b,
separated by c, when the edge b lies on the left hand from c with respect to
the orientation of c.

P Q
a

c

b

P Q
a

c

b

FIGURE 4.12: Isotopy generating relation
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Definition 4.4. This presentation of the fundamental group for the knot
complement is called the Wirtinger presentation.

Exercise 4.7. Find a purely algebraic proof that the Wirtinger presentation
for two diagrams of isotopic links generates the same group.

Exercise 4.8. Find a Wirtinger presentation for the trefoil knot and prove
that the two groups presented as 〈a, b|aba = bab〉 and 〈c, d|c3 = d2〉 are iso-
morphic.

Remark 4.2. The group with presentation 〈a, b|aba = bab〉 will appear again
in knot theory. It is isomorphic to the three–strand braid group.

It turns out that not only mirror (or equivalent) knots may have isomorphic
groups.

Exercise 4.9. Show that for the two trefoils T1 = and T2 = , the
fundamental groups of complements for T1#T1 and T1#T2 are isomorphic.

Exercise 4.10. Calculate a Wirtinger presentation for the figure eight knot
(for the simplest planar diagrams).

Exercise 4.11. Calculate a Wirtinger presentation for the Borromean rings.

Now let us prove the following theorem.

Theorem 4.6. For each knot K, the number CI(K)+3 is equal to the number
of homomorphisms of π1(R

3\K) to the symmetric group S3.

Proof. Consider a knot K and an arbitrary planar diagram of it. In order to
construct a homeomorphism from π1(R

3\K) to S3, we should first find images
of all elements corresponding to arcs of K.

Suppose that there exists at least one such element mapped to an even
permutation. Consider the arc s, corresponding to this element. Then any
arc s′ having a common crossing A with s and separated from s by some
overcrossing arc at A, should be mapped to some even permutation. Since K
is a knot, we can pass from s to any other arc by means of “passing through
undercrossings”. Thus, all elements corresponding to arcs of K are mapped to
even permutations. Because the group A3 is commutative, we conclude that
all elements corresponding to arcs are mapped to the same element of A3

(even symmetric group). There are precisely three such mappings.
If at least one element–arc is mapped to an odd permutation then so are

all arcs. There are three odd permutations: (12), (23), (31). If we conjugate
one of them by means of another one, we get precisely the third one. This
operation is well coordinated with the proper colouring rule.

So, all homomorphisms of the group π1(R
3\K) to S3, except three “even”

ones, are in one–to–one correspondence with proper colourings of the selected
planar diagram of K.
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Thus we obtain the following statement.

Corollary 4.2. The colouring invariant does not distinguish mirror knots.

This statement does not obviously follow from the definition of the colour-
ing invariant.





Chapter 5

The knot quandle and the Conway

algebra

5.1 Introduction

The aim of the present chapter is to describe the universal knot invari-
ant discovered independently by S.V. Matveev [Mat2] and D. Joyce [Joy]. In
Matveev’s work and in other works by Russian authors, this invariant is usu-
ally called the distributive groupoid; in Western literature it is usually called
quandle.1 This invariant is a complete one;2 however, it is barely recognisable.
In the present chapter, we shall construct some series of “weaker” invariants
coming from the knot quandle; the series of invariants to be constructed are
easier to calculate and to compare. We shall tell about so-called Conway al-
gebras, describing them according to [PT]. Both these directions, the knot
quandle and the Conway algebras, allow us to construct various knot invari-
ants.

First, let us return to the simplest knot invariant; i.e., to the colouring
invariant. Why is it possible to construct an invariant function by so simple
means?

Even the fact that this invariant is connected with maps from the knot
group to the symmetric group S3 does not tell us very much: an analogous
construction with a greater number of colours does not work.

Let us now try to use a greater palette of colours. Let Γ be an arbitrary
finite set (here the finiteness will be used in order to be able to count the
number of colourings); all elements of Γ are to be called colours.

Suppose the set Γ is equipped with a binary operation α : Γ×Γ→ Γ; this
operation will be denoted like this: a ◦ b ≡ α(a, b).

Definition 5.1. By a proper colouring of a diagram D of an oriented link K
we mean a way of associating some colour with each arc of D in such a way
that for each overcrossing arc (that has colour b), undercrossing arc lying on
the left hand (colour a) and undercrossing lying on the right hand (colour c),
the relation a ◦ b = c holds; see Fig. 5.1.

1There are some other names for this and similar objects, e.g., crystal and rack.
2In a slightly weaker sense.

55
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ab

c = a ◦ b

FIGURE 5.1: The rule of colourings

Which should be the conditions for ◦ for the number of proper colourings
to be invariant under Reidemeister moves?

It is easy to show that the invariance of such a colouring function under Ω1

implies the idempotence relation a ◦ a = a for all the elements a ∈ Γ that can
be associated to arcs and play the role of colour. However, in order to simplify
the situation we shall not restrict ourselves only to this case, and require that
∀a ∈ Γ : a ◦ a = a.

Analogously, the invariance under Ω2 requires the left invertibility of the
operation ◦: for any a and b from Γ, the equation x◦a = b should have only the
solution x ∈ Γ (in the case of the three–colour palette, the inverse operation
for ◦ and the operation ◦ itself coincide).

Finally, the invariance under Ω3 implies right self distributivity of the
operation ◦, which means that ∀a, b, c ∈ Γ the equation (a◦b)◦c = (a◦c)◦(b◦c)
holds. In the sequel, each set with an operation ◦ satisfying the three properties
described above, is called a quandle.

Each quandle generates a rule for proper colouring of link diagrams de-
scribed above.

Thus, we conclude the following

Proposition 5.1. The number of proper colourings by elements of any quan-
dle is a link invariant.

In any quandle, the inverse operation for ◦ is denoted by /. More precisely,
the element b/a is defined to be the unique solution to the equation x ◦ a = b.

Exercise 5.1. Show that each quandle Γ (with operation ◦) is a quandle with
respect to the operation /.

Furthermore, prove the following identities for Γ: (a ◦ b)/c = (a/c) ◦ (b/c),
(a/b) ◦ c = (a ◦ c)/(b ◦ c).

There is a common way for constructing quandles by using their presen-
tations by generators and relations.

Let A be an alphabet consisting of letters. A word in the alphabet A is an
arbitrary finite sequence of elements of A and symbols (, ), ◦, /. Now, let us
define inductively the set D(A) of admissible words according to the following
rules:
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1. For each a ∈ A, the word consisting of only the letter a is admissible.

2. If two words W1,W2 are admissible then the words (W1) ◦ (W2) and
(W1)/(W2) are admissible as well.

3. There are no other admissible words except for those obtained induc-
tively by rules 1 and 2.

Sometimes we shall omit brackets when the situation is clear from the
context. Thus, e.g. for letters a1, a2 we write the word a1 ◦ a2 instead of
(a1) ◦ (a2).

Let R be a set of relations; i.e., identities of type rα = sα, where rα, sα ∈
D(A) and α runs over some set X of indices. Let us introduce the equivalence
relation for D(A), supposingW1 ≡W2 if and only if there exists a finite chain
of transformations starting fromW1 and finishing atW2 according to the rules
1-5 described below:

1. x ◦ x⇐⇒ x;

2. (x ◦ y)/y ⇐⇒ x;

3. (x/y) ◦ y ⇐⇒ x;

4. (x ◦ y) ◦ z ⇐⇒ (x ◦ z) ◦ (y ◦ z);

5. ri ⇐⇒ si.

The set of equivalence classes is denoted by Γ〈A|R〉. It is easy to check
that it is a quandle with respect to the operation ◦.

Remark 5.1. There is an analogous construction of biquandles also known
as rack [FR] which instead of edges deals with half-edges. By a half-edge we
mean the result of breaking each edge at every overpass.

Hence, for each crossing, we have four elements of the biquandle, say, two
incoming and two outgoing.

Then one can define the colourings of the two outgoing edges in terms
of colourings of the two incoming edges. The invariance under Reidemeister
moves will lead us to some conditions, we are not going to write directly.

Similarly to the quandle, for biquandles we have a fundamental biquandle
and its realisations.

Quandles are partial cases of biquandles where the outgoing edge forming
an overpass has the same colour as the incoming edge forming the overpass.

Let us give one more example of a finite quandle (denoted by G4). Denote
by G4 the set of four different elements a1, a2, a3, a4.

Remark 5.2. This example comes from the universal construction of quan-
dles from groups. Later, this construction will be discussed in detail.
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Let us define the operation ◦ according to the rule:

◦ a1 a2 a3 a4
a1 a1 a3 a4 a2
a2 a4 a2 a1 a3
a3 a2 a4 a3 a1
a4 a3 a1 a2 a4

Here the result ai ◦ aj occupies the position number j in the i–th line.

Exercise 5.2. Check the quandle axioms for the operation described above.

It is easy to see that the figure eight knot admits non–trivial colourings by
elements of G4. The same can be said about the trefoil knot.

Remark 5.3. Note that the quandle G4 is not especially connected with any
knot; it is only used for construction of knot invariants.

From Proposition 5.1 we see that quandles are useful for constructing
knot invariants. It turns out that one can associate with each knot (link)
a quandle, that is the universal (almost3 complete) knot invariant. For the
sake of simplicity, we shall describe this invariant for the case of a knot.
The universal knot quandle can be described in two ways: geometrically and
algebraically.

5.2 Geometric and algebraic definitions of the knot
quandle

5.2.1 Geometric description of the quandle

Let K be an oriented knot in R3, and let N(K) be its small tubular neigh-
bourhood. Let E(K) = (R3\N(K)) be the complement to this neighbourhood.
Fix a base point xK on E(K). Denote by ΓK the set of homotopy classes of
paths in the space E(K) with fixed initial point at xK and endpoint on ∂N(K)
(these conditions must be preserved during the homotopy). Note that the ori-
entations of R3 and K define the orientation of the tubular neighbourhood of
the knot (right screw rule). Let mb be the oriented meridian hooking an arc
b. Define a ◦ b = [bmbb

−1a], where for x ∈ ΓK the letter x means a represen-
tative path, and square brackets denote the class that contains the path [x];
see Fig. 5.2.

The quandle axioms can also be checked straightforwardly. Also, one can
easily check that the groupoids corresponding to different points xK are iso-
morphic. This statement is left for the reader as an exercise.

3Later, we shall comment on the incompleteness of the quandle in the proper sense.
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N(K)

xK

a

a◦b

b

FIGURE 5.2: Intuitive description of the quandle operation.

Here, we should emphasise that we first define our map from barely the
set of elements of the quandle to the set of elements of the group. Then it will
naturally yield a quandle operation on the group; this quandle operation will
then lead us to further examples.

There is a natural map from the knot quandle Γ(K) to the group
π1(R

3\E(K)). Let us fix a point x outside the tubular neighbourhood. Now,
with each element γ of the quandle (path from x to ∂E(K)) we associate the
loop γmγ−1, where m is the meridian at the point x.

This interpretation shows that the fundamental group can be constructed by
the quandle: all meridians can play the role of generators for the fundamental
groups, and all relations of type a ◦ b = c have to be replaced with bab−1 = c.

Besides, the fundamental group has an obvious action on the quandle: for
each loop g and element of the quandle γ, the path gγ is again an element of
the quandle.

5.2.2 Algebraic description of the quandle

Let D be a diagram of an oriented knot K. Denote the set of arcs of D
by AD. Let P be a crossing incident to two undercrossing arcs a and c and
an overcrossing arc b. Let us write down the relation: a ◦ b = c, where a is
the arc lying on the left hand with respect to b and c is the arc lying on the
right hand with respect to b. Denote the set of all relations for all crossings
by RD. Now, consider the quandle Γ〈AD|RD〉, defined by generators AD and
relations RD.
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a

sa

x

FIGURE 5.3: Defining the path sa.

Theorem 5.1. Quandles ΓK and Γ〈AD|RD〉 are isomorphic.

Before proving the theorem, let us first understand its possible interpreta-
tions. On one hand, the theorem shows how to describe generators and rela-
tions for the geometrical quandle ΓK . On the other hand, it demonstrates the
independence Γ〈AD|RD〉 of the choice of concrete knot diagram. Now, Propo-
sition 5.1 (concerning colouring number) evidently follows from this theorem
as a corollary because any proper colouring of a knot diagram by elements of
Γ is a presentation of Γ〈AD|RD〉 to Γ.

Proof of Theorem 5.1. With each arc a of the projection D, we associate the
path sa in E(K) in such a way that

1. the path sa connects the base point with a point of the part of the torus
∂NK corresponding to the arc a;

2. at all points where the projection of sa intersects that of D, the path sa
goes over the knot; see Fig. 5.3.

Obviously, these conditions are sufficient for the definition of the homotopy
class of sa.

Consequently, to each generator of Γ = 〈AD|RD〉, there corresponds an
element of the quandle ΓK . Thus we have defined the homomorphism φ :
Γ〈AD|RD〉 → ΓK . In order to define the inverse homomorphism ψ : ΓK →
Γ〈AD|RD〉, let us fix s ∈ ΓK . Then, the path representing s is constructed
in such a way that the projection of the path intersects D transversely and
contains no diagram crossing.

Denote by an, an−1, . . . , a1 those arcs of D going over the path s. Denote
by a0 the arc corresponding to the end of s. Now, for each s ∈ ΓK , let us
assign the element ((. . . (a0ε1a1)ε2 . . . an−1)εnan of the quandle Γ〈AD|RD〉,
where εi means / if s goes under ai from the left to the right, or ◦, otherwise;
see Fig. 5.4.



The knot quandle and the Conway algebra 61

s

xK

a2

a1

a0

φ(s)=(a0◦a1)/a2

FIGURE 5.4: Constructing the map ψ : ΓK → Γ〈AD, RD〉.

It is easy to check that this map is well defined (i.e., it does not depend
on the choice of representative s for the element of ΓK) and that maps φ and
ψ are inverse to each other. This completes the proof.

The quandle corresponding to the knot, is a complete invariant. However,
it is difficult to recognise quandles by their presentation. This problem is
extremely difficult. But it is possible to simplify this invariant making it weaker
but more recognizable.

5.3 Completeness of the quandle

Roughly speaking, the quandle is a complete knot invariant because it
contains the information about the fundamental group and “a bit more”. To
prove this fact about the completeness of the quandle, we shall use one very
strong result by Waldhausen [Wal] concerning three–dimensional topological
surgery.

By Matveev, two (non–isotopic) knots are equivalent if one can be obtained
from the other by changing both the orientation of the ambient space and that
of the knot. In this sense, the two trefoils are equivalent and have isomorphic
quandles.

Here by complete we mean that the quandle distinguishes knots up to
equivalence defined above.
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The key points of the proof are the following:

1. For the unknot the situation is very clear: the fundamental group recog-
nises it by Dehn’s theorem (Theorem 4.2).

2. If a knot is not trivial then its complement is sufficiently large (by Dehn’s
theorem); it also has some evident properties to be defined.

3. For the class of manifolds satisfying this condition the fundamental
group “plus a bit more” is a complete invariant up to equivalence defined
above.

4. The knot quandle allows us to restore the fundamental group structure
for the complement and “a bit more”.

For the sake of simplicity, we shall work only with knots. The same results
are true for the case of links.

It is easy to see that the fundamental group of the knot complement can
be restored from the quandle (this will be shown a bit later).

Let us first introduce some definitions.

Definition 5.2. A surface F in a manifold M is compressible in either of the
following cases:

1. There is a non–contractible simple closed curve k in the interior of F
and a disc D in M (whose interior lies in the interior of M) such that
D ∩ F = ∂D = k.

2. There is a ball E in M such that E ∩ F = ∂E.

Otherwise the surface is called incompressible

Definition 5.3. A 3–manifold M is called irreducible if any sphere S2 ⊂ M
is compressible.

A 3–manifoldM with boundary is called boundary–irreducible if its bound-
ary ∂M is incompressible.

Let K be an oriented knot. Consider the fundamental group π of R3\N(K)
where N is a tubular neighbourhood of K. Obviously, ∂N = T is a torus that
has an oriented meridian m (a curve that has linking coefficient 1 with K).

If K is not trivial then the fundamental group π(T ) is embedded in π.
This result follows from Dehn’s theorem.

Definition 5.4. For a non-trivial knot K, the embedded system m ∈ π(T ) ⊂
π is called a peripherical system of K.

The Waldhausen theorem4 says the following:

4We use the formulation taken from [Mat2]



The knot quandle and the Conway algebra 63

Theorem 5.2. [Wal] Let M,N be irreducible and boundary–irreducible 3–
manifolds. Let M be sufficiently large and let ψ : π1(N) → π1(M) be an
isomorphism preserving the peripherical system. Then there exists a homeo-
morphism f : N →M , inducing ψ.

We are going to prove that the knot quandle is a complete knot invariant.
Now let K1,K2 be two knots. Suppose that φ is an isomorphism Γ(K1)→

Γ(K2) of the quandles. Denote the complements to tubular neighbourhoods
of K1,K2 by EK1 , EK2 , respectively.

Note that if K1,K2 are not trivial then the manifolds EK1 , EK2 are
boundary–irreducible, sufficiently large and irreducible (by Dehn’s lemma).

Now, let us suppose that one of the two knots (say, K1) is trivial. Then
π(K1) is isomorphic to Z. Since the knot group can be restored from the
quandle, we have π(K2) is also Z. Thus, K2 is trivial.

Now consider the case when K1,K2 are non-trivial.
In this case, we know that the knot group can be restored from the quandle;

besides, the meridian can also be obtained from the knot quandle: it can
be chosen to be the image of any element of the quandle under the natural
morphism.

Now, let us prove that the normaliser of the meridian (as an element of
the quandle representing the path from x to xK) in the fundamental group
consists precisely of the fundamental group of the tubular neighbourhood of
the knot π1(T2) = Z2. Indeed, each element of the group π1(T2) is a path
looking like ana−1 where a represents the meridian in the quandle (path from
the initial point to the point on T 2), and n is a loop on the torus T 2. So, we
have: ana−1 · a = an which is homotopic to a in the quandle.

Now, suppose that for some g we have: ga is homotopic to a. Then, there
exists a path on the torus drawn by the endpoint while performing this ho-
motopy. Denote this path by x. So, we have: gaxa−1 = e, so g is homotopic
to ax−1a−1 that belongs to the fundamental group of T2.

The next step of the proof is the following. The quandle knows the periph-
eral system. Let K1,K2 be two non-trivial knots with the same peripheral
structure. Consider an isomorphism of the knot groups. By the Waldhausen
theorem, it generates a homeomorphism h between EK1 and EK2 and maps
the meridian of the first one to a meridian of the second one. Thus, we have
the same information on how to attach full tori N1 and N2 to EK1 and EK2

in order to obtain R3. Having a full torus Ni, i = 1, 2, in R3, we can contract
its meridian to a point; hence, we get a curve λi which will be exactly the
knot Ki. So, they are obviously isotopic. To perform all this, we must fix the
orientation of EK1 and EK2 . Then we shall be able to choose the orientation
of the meridian. If we choose the opposite orientation of them both, we shall
obtain an equivalent knot.

However, if the orientation of the meridian is fixed, the knot can be
uniquely restored.
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5.4 Special realisations of the quandle: colouring invari-
ant, fundamental group, Alexander polynomial

One can easily define the free quandle with generators a1, . . . , ak. Namely,
one takes into account idempotence, the existence of a unique solution x◦b = c
and self–distributivity. No more conditions will be given for this quandle.

Let us give two more examples.

Example 5.1. (see [Prz]) Consider the free group in an infinite number of
generators. Define the quandle operation on it according to the rules: a ◦ b =
bab−1, a/b = b−1ab. All axioms can be checked straightforwardly. In this case,
we have obtained a natural morphism of the free quandle to the free group. As
in the case of quandles, free groups can be transformed to arbitrary groups; we
only have to describe the quandle relations in terms of groups.

It can be easily checked that the image of the knot quandle is the funda-
mental group of the knot complement (to do this, we should just compare the
presentation of the quandle and the fundamental group corresponding to a knot
diagram).

Other examples of quandle structure which can be obtained from the group
operation are

a ◦ b = ba−1b

and (for a fixed n)
a ◦ b = b−nabn.

Example 5.2. One can consider maps of the quandle to the free module over
Laurent polynomial ring (with respect to a variable t) as well. To do this, one
should decree

a ◦ b = ta+ (1 − t)b, a/b =
1

t
a+

(
1− 1

t

)
b.

In this case, we obtain the quotient ring that has a quadratic matrix of lin-
ear relations for the generators a1, a2, . . . . This matrix is called the Alexander
matrix of the knot diagram. The Alexander polynomial of the knot can be de-
fined as follows: we set one variable ai to be equal to 0 and then we solve the
system of n equations for n− 1 variables. Finally, we obtain some relation for
the ring elements: f(t) = 0, where f is a Laurent polynomial. The function f
(defined up to multiplication by ±tk), is called the Alexander polynomial. It
can be calculated by taking any minor of the Alexander matrix of (n − 1)–th
order.
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5.5 The Conway algebra and polynomial invariants

Now we shall describe the construction that allows us to look in the same
way at different polynomial invariants of knots: those by Jones, Conway, and
HOMFLY-PT. In particular, we shall prove the invariance and uniqueness of
the HOMFLY-PT polynomial. Note that HOMFLY is not a surname, but an
abbreviation of the first letters of six surnames, [HOMFLY]: Hoste, Ocneanu,
Millett, Freyd, Lickorish, and Yetter. This polynomial was later rediscovered
by Przytycki and Traczyk [PT]. We shall use the approach proposed in the
article [PT], the book [Prz] etc.

The main idea is the following. Unlike the previous approach, where we
associated a special algebraic object to each link, here we construct some
algebraic object and assign some element of this algebraic object to each link.
This is going to be the link invariant.

Caveat. We are now going to introduce the two operations, ◦ and /. They
have another sense and other properties than those described above.

Let A be an algebra with two binary operations ◦ and / such that the
following properties hold: for all a, b ∈ A we have (a ◦ b)/b = a, (a/b) ◦ b = a.
For each link (diagram) L, let us construct the element W (L) of A as follows.
Denote by an the element of A corresponding to the n–component trivial link.

Let us also require the following algebraic equation for any Conway triple

(i.e. three diagrams coinciding outside a small circle and looking like , ,

inside this circle; such diagrams are called a Conway triple):

W ( ) =W ( ) ◦W ( ). (5.1)

The uniqueness of the inverse element means that we must require the

existence of the inverse function /, such that W ( )/W ( ) = W ( ). So,
W is going to be a map from the set of all links to the algebraic object to be
constructed. Later we shall see that some partial cases of the equation (5.1)
coincide with some skein relations. Let us now take into account the following
circumstance: because each link can be transformed to the trivial (ascending)
one (Exercise 1.2) by switching some crossing types, the value of the function
W on any m–component link with n crossings can be described only by using
the value of W for the trivial m–component link and the value of W for some
links with fewer crossings (see [Prz]).

Indeed, they can also be represented by ai and values of W on links with
less than n − 1 crossings. Consequently, for each link L with arbitrary num-
ber of crossings, the value of W (L) can be expressed somehow (possibly, not
uniquely) in ai, i = 1, 2, . . . , by using ◦ and /.

At the present moment, we do not know whether the function W is well
defined and if so, whether it is a link invariant. Let us try to look at the
algebra A and find the restrictions for the uniqueness of the definition.
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FIGURE 5.5: Two ways of resolving two crossings

Consider the trivial n–component link diagrams with only one crossing at
one (twisted) circle. The value of W on this trivial link should be equal to an.
Depending on the crossing type, the relation (5.1) leads to

an = an ◦ an+1 (5.2)

and
an = an/an+1. (5.3)

These two relations should hold for arbitrary n ≥ 1.
There is one more argument that one may call “the switching order”.

Consider the diagram of L and choose two (say, positive) crossings p, q of it;
see Fig. 5.5.

Denote by Lαβ for α, β ∈ {+,−, 0} the link diagram coinciding with L
outside small neighbourhoods of p, q and having type α at p and type β at q.

Let us consider the relation (5.1) at p and then at q.
We get:W (L++) =W (L−+)◦W (L0+) = (W (L−−)◦W (L−0))◦(W (L0−)◦

W (L00)). See [Zhi]
Now, let us consider the same relation for q and later, for p (the other

order). We have: W (L++) = W (L+−) ◦ W (L+0) = (W (L−−) ◦ W (L0−)) ◦
(W (L−0) ◦W (L00)).

Comparing the obtained equalities, we get:

(a ◦ b) ◦ (c ◦ d) = (a ◦ c) ◦ (b ◦ d), (5.4)

where a =W (L−−), b =W (L0−), c =W (L−0), d =W (L00).
We shall require the equation (5.4) for arbitrary a, b, c, d, which are going

to be the elements of the algebra to be constructed.
In the case when both p and q are negative, we get the analogous equation

(a/b)/(c/d) = (a/c)/(b/d). (5.5)

Analogously, if one crossing is positive, and the other is not, we get the equa-
tion

(a/b) ◦ (c/d) = (a ◦ c)/(b ◦ d). (5.6)
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Thus, we have found some necessary conditions for W (L) to be well defined.
Let us show that these conditions are sufficient.

Definition 5.5. An algebra A with two operations ◦ and / (inverse to each
other) and a fixed sequence an of elements is called a Conway algebra if the
conditions (5.2)–(5.6) hold.

We shall need later the following simple fact.

Lemma 5.1. There exists a unique monomorphism φ of the universal Conway
algebra AU (see page 72) such that φ(an) = an+1.

Theorem 5.3. For each Conway algebra, there exists a unique functionW (L)
on link diagrams that has value an on the n–component unlink diagrams and
satisfies (5.1). This function is an invariant of oriented links.

Proof. First, let us show that this invariant is well defined on diagrams with
numbered components. We shall use induction on the number of crossings.

Let Ck be the class of links having diagrams with no more than k crossings.
The main induction hypothesis. There exists a well-defined function

W (L) on Ck which is invariant under those Reidemeister moves, which do not
let the diagram leave the set Ck and satisfy the relation (5.1) for all Conway
triples with all elements from Ck. Note that if L⊔© is any diagram which can
be obtained from a diagram L by adding a small circle bounding an empty
disc and having no crossings, then W (L ⊔©) = φ(W (L))

The induction base (k = 0) is trivial since in this case the class Ck consists
only of unlinks and no Reidemeister moves can be performed. In order to
perform the induction step, let us first choose a canonical way of associating
W (L) with a link L ∈ Ck+1 by ordering components and choosing a base
point on each of them.

After this, we shall prove the independence ofW (L) from the choice of base
points, its invariance under Reidemeister moves, and, finally, independence of
the order of components.

The construction of W . Let us enumerate all components of L. Fix a
point b1 on the first component, b2 on the second one, and so forth; base points
should not coincide with crossings. Let us now describe how to construct the
element Wb(L) (here the index b means the ordered set b1, b2, . . . of base
points). Let us walk along the link components according to the orientation.
First, take the point b1 and pass the first component until b1, then take b2
and pass the second component, and so forth. A crossing p is called good if it
is first passed under, and then over. All other points are said to be bad.

Now we are going to use the (second) induction on the number of bad
points. The induction step is obvious: if all points are good then the link is
trivial (the diagram is ascending). In this case, we set by definition Wb(L) =
an, where n is the number of link components.

Suppose we have defined Wb for all links with k+1 crossings and no more
than m bad points. Let L be a link diagram with k + 1 crossings and m + 1
bad points.
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Let us fix the first bad point (in accordance with the chosen circuit).
Without loss of generality, suppose that this crossing is positive. Let us apply
the relation (5.1) to this crossing. Thus we obtain two links: L− that has one
bad point less than the diagram L (consequently,Wb(L−) is well defined by the
induction hypothesis) and L0 that belongs to Ck (and W (L0) (consequently,
Wb(L0)) is also well defined). By definition, let us put for L

Wb(L) =Wb(L−) ◦W (L0).

Thus, we have defined Wb for Ck+1.
Now, let us prove that the function Wb satisfies the relation

Wb( ) =Wb( ) ◦W ( )

for each crossing q. We have already used this relation to define the module.
However, we have not yet proved that it does not yield to a contradiction.
Thus, the relation (5.1) deserves proving. Suppose the point q is bad. If it is
the first bad point according to our circuit, the desired equality holds by con-
struction. Now, let us apply the induction method (the third induction) on the
number N of this bad point. Suppose that if N < m then the Conway relation
holds. Let p be the first bad (say, positive) crossing. By using the definition of
Wb, the induction hypothesis and the main induction hypothesis, (5.4), and
again, the induction hypothesis and the main induction hypothesis, we obtain:

Wb(L++) =Wb(L−+)◦W (L0+) = (Wb(L−−)◦W (L−0))◦ (W (L0−)◦W (L00))

= (Wb(L−−) ◦W (L0−)) ◦ (W (L−0) ◦W (L00)) =Wb(L+−) ◦W (L+0).

Here we use the following notation: the first index of Lε1ε2 is related to the
point p and the second is related to the point q. Thus, the obtained formula
is just what we wanted.

If q is a good point (say, positive) for L+, then it is bad for L−. As we have
already proved, the identity Wb(L−) = Wb(L+)/W (L0) holds for this point,
and the desired equality Wb(L+) =Wb(L−) ◦W (L0) is just its corollary.

Now, let us prove that the function Wb does not depend on the
choice of base points (the order of components remains fixed). It
is sufficient to consider only the case when one base point (say, bk) passes
through one crossing (denote it by q) to a position b′k; see Fig. 5.6.

Suppose the crossing q is positive. If q is good for both base points
b = (b1, . . . , bn) and b′ = (b1, . . . , bk−1, b

′
k, bk+1, . . . , bn) then the equality

Wb(L) = Wb′ (L) holds just by definition. If q is bad in both cases then we
have Wb(L+) = Wb(L−) ◦W (L0),Wb′(L+) = Wb′(L−) ◦W (L0). Since q is
good for L− for both choices of base points, we see that Wb(L−) = Wb′ (L−)
and hence Wb(L+) =Wb′(L+). It remains only to consider the case when q is
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q

bk

b′k

FIGURE 5.6: Changing the starting point

good for b and bad for b′ (or vice versa). This happens only in the case when
both parts of the link passing through q lie on the same component.

Now we can assume that L has no more bad points (either with respect to
b or with respect to b′); in this case they all can be transformed to good ones
by using the Conway relation (that preserves the equality Wb(L) =Wb′(L)).

So, the link L has no bad points with respect to b, hence,Wb(L) = an. The
link L has the only bad point q with respect to b′ (by definition, Wb′(L) =
Wb′(L−) ◦W (L0)). Now, it remains to note that the links L− and L0 have
no bad points either. Thus, they are trivial. Besides, W (L−) = an,W (L0) =
an+1. Taking into account an = an ◦ an+1, we get Wb(L) =Wb′(L).

Let us prove now that the function Wb(L) is invariant under Rei-
demeister moves that preserve the link in the class Ck+1.

The main idea is the following: suppose we perform some Reidemeister
move inside the area U . Thus, we have two pictures inside U : the picture before
and the picture after. Outside U , both diagrams have the same crossings and
the same shadow. If we can arrange all other crossing types in order to obtain
an ascending diagram (with respect to enumerated components) with each of
the two fixed crossings inside U , then the invariance is trivial: we just express
our diagrams in the same way via diagrams of unlinks. These unlink diagrams
differ only inside U . In the other case, we need to perform the relation (5.1)
and then consider the case described above.

Let us be more detailed. First, let us consider the move Ω1. By moving the
base point, the point added or deleted by Ω1 can be thought to be good. In
this case, the existence of the loop does not affect the result of the calculation
of Wb.

For the same reason, the value of Wb does not change under Ω2 if both
points appearing (disappearing) while performing the move are good. If both
points are bad and cannot be made good by moving base points (this may
happen when two different components are involved in Ω2), one should apply
the Conway relation at both points and note that L−0

∼= L0− and W (L−0) =
W (L0−); see Fig. 5.7.

Because Wb(L−+) = Wb(L−−) ◦ W (L−0) = (Wb(L+−)/W (L0−)) ◦
W (L−0) =Wb(L+−), then the procedure of making all bad points good does
not affect the behaviour of Wb under Ω2.

Finally, let us consider the case of Ω3. Let us assume that all base points
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L=L-+

L--

L-0 L0-

L+-

FIGURE 5.7: Different ways of resolving two crossings
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z

FIGURE 5.8: Third Reidemeister move

are outside the area of Ω3. Denote the crossings by x (upper and lower arcs),
y (upper and middle) and z (lower and middle); see Fig. 5.8

Denote the link obtained after performing Ω3 by L′. Let us note that x
cannot be the only bad point or the only good point from the set {x, y, z}. If,
for instance, x is good, and y, z are bad then the branch xz is passed before
xy with respect to the orientation, the branch xy is before yz, and yz is before
xz, which leads to a contradiction.

Thus, if x is good then so is one of y, z. Suppose, y. In this case moving
the branch xy over the crossing z does not change the invariant Wb by con-
struction. If the crossing x is bad then one of y, z (say, z) is bad as well. Let
us write the Conway relation for the crossings z, x. We get:

Wb(L++) =Wb(L−+) ◦W (L0+) = (Wb(L−−) ◦W (L−0)) ◦W (L0+),

Wb(L
′
++) =Wb(L

′
−+) ◦W (L′

0+) = (Wb(L
′
−−) ◦W (L′

−0)) ◦W (L′
0+).
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The first index for L·· is related to z and the second one is related to x.
Since for the link L−− the points x, z are good, then Wb(L−−) = Wb(L

′
−−)

(this case has already been considered). Diagrams L−0 and L′
−0 coincide, and

L′
0+ can be obtained from L0+ by applying the move Ω2 twice, which does

not change the value of Wb. Consequently, Wb(L++) =Wb(L
′
++).

Thus, we have constructed a function W that is an invariant of links with
marked components.

Let us show that it is a link invariant (no marked point informa-
tion is needed).

In order to do this, let us introduce the crossing switch operation Ω0.
Denote the versions of Ω1,Ω2 decreasing the number of crossings by Ω−

1 ,Ω
−
2 .

We shall need the following lemma.

Lemma 5.2. Each link diagram can be transformed to the unlink diagram
without crossing by using Ω0,Ω

−
1 ,Ω

−
2 ,Ω3 and removing components without

crossings.

The necessity of removing trivial components in the reduction process was
pointed out by Carlo Petronio.

We shall prove this lemma later.
Note that the equation Wb(L) = Wb′(L) is invariant under Ω0. As we

proved earlier, it is also invariant under Ω1,2,3. Given a diagram D, remov-
ing a component without crossings corresponds to the equality Wβ(D) =
φ(Wβ(D

′)) where β = b, b′, D′ is the diagram with the component removed
and φ is the map of Lemma 5.1.

Since for the standard diagram of the unlink we have φk(Wb(L)) =
φk(Wb′ (L)) for any orders of components with base points, where k is the
number of removed trivial components. Since φ is a monomorphism,Wb(L) =
Wb′(L) holds in the general case.

Below, we give a prove of the auxiliary lemma we have used.

Proof of Lemma 5.2. Let L be a link diagram. A branch l of this diagram
is called a loop if it starts and ends at the same crossing. A loop is called
simple if it has no self-intersection and if in the domain bounded by it there
are no other loops. We say that two arcs l1, l2 ⊃ L bound a bigon if they
have no selfintersections, have common initial and final points and no other
intersections. A bigon is called simple if it does not contain smaller bigons and
loops inside. In Fig. 5.9 we show that if L has a simple bigon then the number
of its intersection points can be decreased by making this bigon empty (using
Ω0,Ω3 and removing trivial components) and deleting it by means of Ω−

2 .
In the case of a simple loop, we can do the same and finally delete it by

Ω−
1 .
The only thing to note is that if a link diagram has at least one crossing

then it contains either a simple bigon or a simple loop. This is left to the
reader as a simple exercise.
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Ω0Ω3
Ω2

FIGURE 5.9: Removing arcs from a bigon

Let us show now that Jones, Conway and HOMFLY-PT polynomials are
just special cases of the invariant W for some special algebras A.

We have shown that for each Conway algebra A there exists an A–valued
invariant of oriented links W (·) ∈ A. Among all such algebras there exists the
universal algebra AU . It is generated by an, n ≥ 1 and has no other relations
except for (5.2)–(5.6).

The universal link invariant corresponding to the universal algebra is the
strongest one among all those obtained in this way. However, it has a signifi-
cant disadvantage: it is difficult to recognise two different presentations of an
element in the algebra A.

We are going to show how to construct a family of Conway algebras. The
invariants to be constructed are more convenient than the universal one: they
are easier to recognise.

Let A be an arbitrary commutative ring with a unit element, a1 ∈ A and
α, β be some invertible elements of A. Let us define ◦, / as follows:

x ◦ y = αx + βy (5.7)

and

x/y = α−1x− α−1βy, (5.8)

where

an = (β−1(1− α))n−1a1, n ≥ 1. (5.9)

Then the following proposition holds.

Proposition 5.2. For any choice of invertible elements α, β and element a1,
the ring A endowed with operations ◦, / defined above and with elements an,
see (5.9), is a Conway algebra.

The proof follows straightforwardly from the axioms.
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FIGURE 5.10: The Kinoshita–Terasaka knot

5.6 Realisations of the Conway algebra. The Conway–
Alexander, Jones, HOMFLY-PT and Kauffman
polynomials

Let us give here some examples of simple invariants that originate from
the Conway algebra.

Example 5.3. Let A be the ring of polynomials of variable x with integer
coefficients. Let α = 1, β = x, a1 = 1. Then W (L) coincides with the Conway
polynomial (also called the Conway potential function).

The Conway polynomial was the first among the polynomials satisfying the
Conway relation. It was proposed in the pioneering work by Conway [Con].
All other polynomials and modifications appeared much later.

In Fig. 5.10, we present the celebrated Kinoshita–Terasaka knot. This knot
is not trivial. However, it can be easily checked that this knot has Conway
polynomial equal to one. Thus, the Conway (consequently, Alexander) poly-
nomial does not always distinguish the unknot.

This knot has the non-trivial Jones polynomial. It is not yet known whether
the Jones polynomial always distinguishes the unknot. We will touch on this
problem later.

Example 5.4. Let A be the ring of Laurent polynomials in
√
q, where α =

q2, β = q(
√
q − 1√

q ), a1 = 1. In this case, W (L) coincides with the Jones

polynomial of q.

Example 5.5. Let A be the integer coefficient Laurent polynomial ring of
the variables l,m. Let α = −m

l , β = 1
l , a1 = 1. Then the obtained invariant

P(l,m) coincides with the HOMFLY-PT polynomial.

Exercise 5.3. Write down the skein relations for these polynomials.
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5.7 More on Alexander’s polynomial. Matrix represen-
tation

There is another way to define the Alexander polynomial more exactly.
We shall not give exact proofs. On one hand, they follow from “quandle

properties” of the function a ◦ b defined as ta + (1 − t)b. On the other hand,
the reader can check them by a direct calculation.

Given an oriented link diagram L with n vertices, let us construct the
Alexander matrix M(L) as follows. We shall return to such matrices in the
future when studying virtual knot invariants.

Let us enumerate all crossings by natural numbers 1, . . . , n. In the general
position, there exists precisely one arc outgoing from each crossing (if there
are no separated cyclic arcs). It is easy to see that each knot isotopy class has
such a diagram. So, we can enumerate outgoing arcs by integers from 1 to
n, correspondingly. Now, we construct an incidence matrix, where a crossing
corresponds to a row, and an arc corresponds to a column.

Suppose that no crossing is incident twice to one and the same arc (no
loops). Then, each crossing (number i) is incident precisely to three arcs:
passing through this crossing (number j), incoming (number k) and outgoing
(number i).

In this case, the i–th row of the Alexander matrix consists of the three
elements at places i, j, k. If the i–th crossing is positive, then mii = 1,mik =
−t,mij = t− 1. Otherwise we set mii = t,mik = −1,mij = 1− t. See [CF].

Obviously, this matrix has determinant zero, because the sum of elements
in each row equals zero.

Define the algebraic complement to mij by ∆ij .
Then the following theorem holds.

Theorem 5.4. All ∆ij coincide up to multiplication by ±tk.
Denote ∆ij by ∆(L).

Theorem 5.5. The function ∆ defined on links (and normed properly) sat-
isfies the following skein relation:

∆( )−∆( ) = (t1/2 − t−1/2)∆( ).

It is easy to check that for the unknot ©, we have ∆(©) = 1.
Thus, we can conclude that the polynomial ∆ coincides with the Conway

polynomial up to the variable change x = t1/2− t−1/2. So, it is a well–defined
link invariant.

Remark 5.4. This way derives Alexander–like polynomials from groups that
can be found in, e.g., [CF, Cro].
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The Conway polynomial [Con] is obtained from the Alexander polynomial

just by a variable change: x = (t
1
2 − t− 1

2 ). Thus, the polynomial (denoted

by C) satisfies the skein relation C( ) − C( ) = x · C( ). Conway first
proved that this relation (together with C(©) = 1) can be axiomatic for
defining a knot invariant. The approach by Przytycki and Traczyk described
in this chapter was a generalisation of the Conway approach.





Chapter 6

Kauffman’s approach to Jones

polynomial

In the present chapter, we shall describe another approach for constructing
invariant polynomials from link diagrams. It was proposed by Kauffman. It is
quite expressive and allows us to construct polynomials (known as Kauffman
polynomials in one and two variables).

The first polynomial to be constructed coincides with the Jones polynomial
up to a suitable variable change. So, one can also speak about the Jones–
Kauffman polynomial or the Jones polynomial in Kauffman’s form.

The second polynomial includes some more sophisticated techniques in
comparison with the first one. So, the second Kauffman polynomial is stronger
than the first one. It is “in the general position” with the Jones two–variable
polynomial that will be discussed later in the book.

6.1 State models in physics and Kauffman’s bracket

First, let us seek an invariant polynomial for unoriented links. Let L̄ be
an unoriented link diagram having n crossings. Each crossing of L̄ can be
“smoothed” in two ways.

These ways L→ LA and L→ LB are shown in Fig. 6.1.
Now, let us try to construct some function (later, it will be called the Kauff-

L LA LB L′

FIGURE 6.1: Two ways of smoothing the diagram
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man bracket) in the three variables a, b, c satisfying the following axiomatic
relations.

〈L〉 = a〈LA〉+ b〈LB〉 (6.1)

〈L ⊔©〉 = c〈L〉 (6.2)

〈©〉 = 1. (6.3)

Here we consider arbitrary diagrams L = , L′ = , LA = and

LB = which coincide outside a small circle; inside this circle, the diagrams
differ as shown in Fig. 6.1.

Herewith, © denotes the unknot, and ⊔ denotes the disconnected sum.
Let us try to find the conditions for a, b, c in order to obtain a polynomial

invariant under Reidemeiser moves.
First, let us test the invariance of the function to be constructed under the

second Reidemeister move. By using (6.1) and (6.2), we obtain the following
properties of the hypothetical function:

〈 〉 = a〈 〉+ b〈 〉 = (a2 + b2)〈 〉+ ab〈 〉+ ab〈 〉

= (a2 + b2 + abc)〈 〉+ ab〈 〉
Thus,

〈 〉 = (a2 + b2 + abc)〈 〉+ ab〈 〉.

This equality should hold for all such triples looking like , , inside
some small circle and coinciding outside it.

Thus, the Ω2–invariance of the polynomial to be constructed should imply
the following relations: ab = 1 and a2 + b2 + abc = 0.

Let us decree b = a−1 and c = −a2 − a−2.
Thus, if the Ω2–invariant link polynomial from Z[a, a−1] exists, then it

satisfies the properties described above and it is unique.
It turns out that here the Ω2–invariance implies Ω3–invariance.
Let us discuss this in more detail.
Consider the two diagrams and where one can be obtained from

the other by using Ω3. Smoothing them at one vertex we have:

〈 〉 = a〈 〉+ a−1〈 〉
and

〈 〉 = a〈 〉+ a−1〈 〉.

Let us compare the second parts of these equalities. We have: ≡ .
Furthermore, after applying Ω2 twice, we obtain:
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= = .

Thus we have shown the invariance of the bracket under Ω3. Now, one
should mention that Ω3 does not change the writhe number (see page 80).

This implies the invariance of the “hypothetical” bracket polynomial 〈L〉
under Ω3.

However, while studying the invariance of the hypothetical polynomial
under the first Reidemeister move, we meet the following unpleasant circum-
stance: addition (removal) of a curl multiplies the polynomial by −a3 or by
−a−3. In fact, by applying (6.1) to the vertex incident to a curl, we obtain a
sum of brackets of two diagrams. One of them gives us p(−a2 − a−2)〈L〉, the
other one gives p−1〈L〉, where p is equal to a±1. The sign ± depends on the
type of curl twisting.

Taking the sum of these two values, we get (−a±3)〈L〉.
Thus we have proved some properties that the Kauffman bracket should

satisfy; i.e., we have deduced these properties from the axioms. However, we
have not yet shown the main thing; i.e., the existence of such a polynomial.
Let us prove that it exists.

Theorem 6.1. There exists a unique function on link isotopy classes valued
in Z[a, a−1] satisfying relations (6.1)–(6.3) and invariant under Ω2,Ω3.

Proof. Consider an unoriented diagram L̄ of a link L that has n crossings. Let
us enumerate all crossings of L̄ by integers from 1 to n.

As before, we can smooth each crossing of the diagram in one of two ways,

A : → or B : → .

Definition 6.1. By a state of a crossing we mean one of the two possible
ways of smoothing for it. By a state of the diagram L we mean the n states
of crossings, one smoothing for each vertex.

Thus, the diagram L̄ has 2n possible states. Choose a state s of the diagram
L̄. Obviously, these smoothings turn L̄ into a set of non-intersecting curves
on the plane.

Let α(s) and β(s) be the numbers of crossings in states A and B, re-
spectively. Let γ(s) be the number of circles of the diagram L̄ in the state
s.

If we “smooth” all crossings of the diagram L̄ by means of (6.1), and then
apply the relations (6.2) and (6.3) for calculating the bracket polynomials for
the obtained diagrams, we get

〈L̄〉 =
∑

s

aα(s)−β(s)(−a2 − a−2)γ(s)−1, (6.4)

where the sum is taken over all states s of the diagram L̄.
Thus we have shown the uniqueness of the polynomial satisfying (6.1)–

(6.3).
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+1 –1

FIGURE 6.2: Local write numbers

It remains to show now that the formula (6.4) shows not only the unique-
ness of 〈L̄〉, but its existence too.

Actually, we can just define the polynomial 〈L̄〉 as in (6.4).
Being defined by (6.4), the bracket polynomial evidently satisfies the con-

ditions (6.2) and (6.3).
The invariance of the constructed polynomial under Ω2,Ω3 can be deduced

straightforwardly from the definition. The theorem is proved.

6.2 Kauffman’s form of Jones polynomial and skein re-
lations

Thus, we have well–defined the bracket polynomial (Kauffman’s bracket).
This polynomial is defined on unoriented link diagrams and is Ω2– and Ω3–
invariant. It turns out that it can be transformed into an invariant polynomial
of oriented links; i.e., a function on oriented link diagrams invariant under all
Reidemeister moves.

Consider an oriented diagram of a link L. Let us define an integer number
w(L) as follows. With each crossing of L we associate +1 or −1 as shown in
Fig. 6.2. This number is called the local writhe number. Taking the sum of
these numbers at all vertices, we get the writhe number w(L).

It is easy to see that this number is invariant under Ω2,Ω3, but not in-
variant under Ω1: under this move the writhe number is changed by ±1. This
circumstance allows us to normalise the bracket. Thus, we can define the
polynomial invariant of links like this:

X(L) = (−a)−3w(L)〈|L|〉, (6.5)

where L is an oriented link diagram, and |L| is the non–oriented diagram
obtained from L by “forgetting” the orientation.

Definition 6.2. Let us call the invariant polynomial X according to (6.5) the
Kauffman polynomial.

It turns out that the Kauffman polynomial satisfies a certain skein relation.
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Actually, let L+ = , L− = and L0 = be a Conway triple. Without
loss of generality, we can assume that w(L+) = 1, w(L−) = −1, w(L0) =

0. Consider the non–oriented diagrams K+ = | | = ,K− = | | =
,KA = | | = , and KB = , that is KB is the diagram where the

corresponding vertex of L+ is smoothed in the way B. From (6.1) and (6.5)
we conclude that

X( ) = (−a)−3(a〈KA〉+ a−1〈KB〉) = −a−2〈KA〉 − a−4〈KB〉 (6.6)

and, analogously,

X( ) = −a2〈KA〉 − a4〈KB〉 (6.7)

X( ) = 〈KA〉. (6.8)

In order to eliminate KB from (6.6) and (6.7) let us multiply (6.6) by a4

and (6.7) by (−a)−4 and take their sum. Thus, we get

a4X( )− a−4X( ) = (a−2 − a2)X( ). (6.9)

This is the desired skein relation for the Kauffman polynomial. Now, it
is evident that for each link, the value of the Kauffman polynomial contains
only even degrees of a.

After the change of variables q = a−4, we obtain another invariant poly-
nomial called the Jones polynomial, originally invented by Jones [Jon1]. Ob-
viously, it satisfies the following skein relation:

q−1V ( )− qV ( ) = (q
1
2 − q− 1

2 )V ( ). (6.10)

Exercise 6.1. Prove that the Jones polynomial never equals zero.

By definition, the value of the Jones polynomial on the n–component un-
link is equal to (−q 1

2 − q− 1
2 )n−1

The Jones polynomial allows us to distinguish some mirror knots. For
example, we can prove that the right trefoil knot is not isotopic to the left
trefoil knot. Namely, from (6.10) we have:

V ( ) = q2 · V (©) + q(q
1
2 − q− 1

2 )V ( ) =

(here the Conway relation is applied to the upper left crossing)

q2 + (q
3
2 − q 1

2 )V ( ).

Taking into account

V ( ) = q2(−q− 1
2 − q 1

2 ) + q(q
1
2 − q− 1

2 ) = −q 5
2 − q 1

2 ,
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we see that

V ( ) = q2 + q(q
1
2 − q− 1

2 )(−q 5
2 − q 1

2 ) = −q4 + q3 + q.

Analogously, V ( ) = −q−4 + q−3 + q−1.

Thus, 6= .
Later, we shall present the perfect Jones proof of the invariance for a

stronger two–variable polynomial, called the Jones polynomial in two vari-
ables.

6.3 Kauffman’s two–variable polynomial

The Kauffman approach also allows us to construct a strong two–variable
polynomial. The stronger one does not, however, satisfy any skein relation.

To construct it, one should consider a more complicated relation than
that for the usual Kauffman polynomial. Namely, we first take four diagrams

L = , L′ = , LA = , LB = of unoriented links that differ from
each other only inside a small circle.

Then we construct the polynomial K(z, a) satisfying the following axioms:

D(L)−D(L′) = z(D(LA)−D(LB)); (6.11)

D(©) =

(
1 +

a− a−1

z

)
; (6.12)

D(X#P ) = aD(X), D(X#Q) = a−1D(X), (6.13)

where
P = and Q =

are the two loops.
The polynomial D (like Kauffman’s bracket) is invariant under Ω2,Ω3.
As in the case of the one–variable Kauffman polynomial, we normalise this

function by using w(L), namely for an oriented diagram L of a link, we set
Y (L) = a−w(|L|)D(|L|), where |L| is the unoriented diagram obtained from L
by forgetting the orientation.

The obtained polynomial is called the two–variable Kauffman polynomial.

After this, one can show the existence, uniqueness and invariance under
Reidemeister moves of the polynomial defined axiomatically as above.

For uniqueness, the proof is pretty simple. First we define its values on
unlinks.
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Later, in order to define the value of the polynomial somehow, we use
induction on the number of classical crossings. The induction basis is trivial.
The induction step is made by using the relation (6.11): we can switch all
crossing types and express the desired value by the value on the unlink and
links with smaller number of crossings.

The existence proof can be found in Kauffman’s original book [Kau4].
Just recently, by using the Kauffman approach of statistical sums, B. Bol-

lobás, L. Pebody, and D.Weinreich [BPW] found a beautiful explicit formula
for calculating the HOMFLY-PT polynomial. This formula is even easier than
that for the Kauffman polynomial in two variables.





Chapter 7

Properties of Jones polynomials.

Khovanov’s complex

7.1 Simplest properties

In this chapter we shall describe some properties of Jones polynomials and
ways that this polynomial can be applied for solving some problems in knot
theory.

After this, we shall formulate three celebrated conjectures concerning link
diagrams which are related to properties of the Jones polynomial. Finally, we
shall present a very sophisticated generalisation of the Jones polynomial, the
Khovanov complex.

First, let us prove some properties of the Jones polynomial and deduce
some corollaries from them.

Theorem 7.1. 1. The value of the Jones polynomial V (L) is invariant
under orientation change for the link diagram.

2. The values of the Jones polynomial on mirror knots differ according to
the variable change q → q−1.

Proof. The first statement is evident; it is left for the reader as a sim-
ple exercise (use induction on the number of crossings). The proof of the
second statement also involves induction on the number of crossings. The
induction basis is evident. Let us prove the induction step. To do it, let

L+ = , L− = , L0 = be a Conway triple and L′
+, L

′
−, L

′
0 be the

three diagrams obtained from the first ones by switching all crossings. Obvi-
ously, {L′

−, L
′
+, L

′
0} is also a Conway triple.

By the induction hypothesis, we can assume that V (L0) is obtained from
V (L′

0) by the change of variables q → q−1. Let us now apply the relation
(6.10). We get:

V (L+) = q2V (L−) + q(q
1
2 − q− 1

2 )V (L0),

V (L′
+) = q−2V (L′

−)−q−1(q
1
2−q− 1

2 )V (L′
0) = q−2V (L′

−)+q
−1(q−

1
2−q 1

2 )V (L′
0).

85
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FIGURE 7.1: Two non-isotopic links with the same Jones polynomial

Now we can see that if the statement of the theorem holds for L0 and L−,
then it holds for L+ as well. This statement holds for L0 by the induction
conjecture. Thus, if it holds for some diagram, then it holds for any diagram
with the same shadow.

Since the claim of the theorem is true for each unlink (hence, for each
diagram of the unlink with arbitrary shadow), we can conclude that it is true
for each diagram with any given shadow. Taking into account that unlinks
can have arbitrary shadows, we obtain the desired result.

Theorem 7.2. For arbitrary oriented links K1 and K2 the following holds:

V (K1#K2) = V (K1) · V (K2).

Proof. We shall prove this fact for the Kauffman polynomial.
It suffices to note that the Kauffman bracket is multiplicative with respect

to the connected sum operation and w(L) is additive.
We just note that the Kauffman bracket is multiplicative with respect to

the connected sum operation (it follows from the definition of the bracket
(6.4)) and w(L) is additive with respect to the connected sum.

Remark 7.1. This property is proved for any arbitrary connected sum of
two links.

Analogously, one can prove the following.

Theorem 7.3. For arbitrary oriented knots K1 and K2 the following equality
holds

V (K1 ⊔K2) = −(q−
1
2 + q

1
2 )V (K1) · V (K2).

Example 7.1. Consider the two links shown in Fig. 7.1. According to Remark
7.1, the Jones polynomials for these links coincide. However, these links are
not isotopic since their components are not so.

This example shows that the Jones polynomial does not always distinguish



Properties of Jones polynomials. Khovanov’s complex 87

l l

U U

FIGURE 7.2: Left diagram L; right diagram L′

between different links. The reason is that the connected sum is not well de-
fined. It turns out that the Jones polynomial is not a complete knot invariant.
To show this, let us do the following.

Let L be a link diagram on the plane P . Suppose there exists a domain
U ⊂ P that is symmetric with respect to a line l in such a way that ∂U is a
rectangle whose sides are parallel to coordinate axes. Suppose U intersects the
edges of L only transversely at four points: two of theme lie on the upper side
of the rectangle and the other two are on the lower sides. Suppose that these
points are symmetric with respect to l. Let L′ be the diagram that coincides
with L outside U , and with reflection of L at l inside U ; see Fig.7.2.

Lemma 7.1. In this case V (L) = V (L′).

Proof. Reflecting the parts of the diagram at l, we do not change the signs
ε = ±1 of the crossings. Thus w(L) = w(L′). We only have to show that
the Kauffman bracket does not change either. With each state of L, we can
naturally associate a state of L′. So, it remains to see that after smoothing
all crossings of L and L′ (according to corresponding states), the number of
circles is the same. The latter is evident.

Example 7.2. It can be shown that the knots shown in Fig. 7.2 are not
isotopic. Thus, the Jones polynomial is not a complete knot invariant.

Remark 7.2. Now it is an open problem whether the Jones polynomial dis-
tinguishes the unknot; i.e., is it true that V (K) = 1 implies the triviality of K,
see the list of unsolved problems in Appendix D. This problem is equivalent to
the faithfulness problem of the Burau representation for 4–strand braids (this
was proved by Bigelow [Big2]). This problem will be formulated later.
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The question of whether the Jones polynomial detects the n–component
unlink in the class of n–component links was solved negatively; a series of
examples are constructed by Elahou, Kauffman, and Thistletwaite in [EKT].

As we see, it is impossible to define whether a knot is prime, having only
the information about the Jones polynomial of this knot.

Hence the Jones polynomial satisfies skein relations with only integer or
half–integer powers of q; the Jones polynomial is indeed a polynomial in q±

1
2 .

Furthermore, the following theorem holds.

Theorem 7.4. (a) If an oriented link L has an odd number of components
(e.g. it is a knot) then V (L) contains only integer degrees of q.

(b) If the number of components of L is even, then V (L) contains only

summands like q
(2k−1)

2 , k ∈ Z.

Proof. First, let us note (this follows directly from the definition) that the
Jones polynomial evaluated at the m–component unlink is equal to

(−q− 1
2 − q 1

2 )m−1.

Consequently, the claim of the Theorem is true for unlinks.
Then, we can calculate the values of the Jones polynomial for arbitrary

links by using the skein relation (6.10) for the Jones polynomial, knowing its
values for unlinks.

We shall use induction on the number of crossings. The induction basis
is evident. Suppose the induction hypothesis is true for less than n crossings.
Let L be a diagram with n crossings. We can transform it to a diagram of
the unlink by using the skein relation (6.10). Hence the statement is trivial
for the unlink, but we have to check whether it remains true while switching
crossing types.

Thus, given three diagrams L+, L−, L0 (the first two having n vertices, the
last one having n− 1 vertices), the claim of the theorem is true for L0 and for
one of L+, L−. Without loss of generality, assume that this is L−.

To complete the proof, we only have to see that:
1) The number of link components of L+ and L− coincide and have the

same parity;
2) The number of link components of L+ and L0 have different parity.

Exercise 7.1. Prove analogously that the value of the Conway polynomial on
odd–component links (e.g. on knots) contains only terms of even degree and
that on even–component links contains only monomials of odd degree.
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7.2 Tait’s first conjecture and Kauffman–Murasugi’s
theorem

About 100 years ago, the famous English physicist and knot tabulator P.G.
Tait formulated three very interesting conjectures. They had been unsolved
for many years. Two of them were solved positively; the third one was solved
negatively.

Remark 7.3. All these conjectures are formulated for links with connected
shadow.

Definition 7.1. The length of a (Laurent) polynomial P is the difference
between its leading degree and the lowest degree.

Notation: Span(P).

Tait’s first conjecture (1898) states the following. If a link L with connected
shadow has an alternating n–crossing diagram L̄ without “splitting” points
(i.e. points that split the diagram into two parts), then there is no diagram of
L with less than n crossings.

This problem was solved independently by Murasugi [Mur1, Mur2], Kauff-
man, and Thistletwaite in 1987.

Theorem 7.5 (The Kauffman–Murasugi theorem). The length of the Jones
polynomial for a link with connected shadow is less than n or equal to n .
The equality holds only for alternating diagrams without splitting points and
connected sums of them.

In Chapter 16, we shall give a proof of the Kauffman–Murasugi theorem
based on the notion of the atom, and give some generalisations of it.

The first Tait conjecture follows immediately from the Kauffman–Murasugi
theorem: if we assume the contrary (i.e. diagrams L,L′ represent the same
link, L is alternating with n crossings and without splitting points and L′ has
strictly less than n crossings), we obtain a contradiction when comparing the
lengths of polynomials: spanV (L) = n > spanV (L′).

7.3 Menasco–Thistletwaite theorem and the classifica-
tion of alternating links

The Murasugi theorem was a great step in the classification of alternating
links. The classification problem for alternating (prime) links is reduced to
the case of links with the same number of vertices.

The final step was made by William Menasco and Morwen Thistletwaite,
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A ∀⇐⇒

FIGURE 7.3: The flype move

[MT], when they proved the second Tait conjecture. This conjecture (known
as the Tait flyping conjecture) was stated a very long ago and solved only in
1993.

In the present section, we consider diagrams up to infinity change.
In fact, Menasco and Thistletwaite proved the following theorem.

Theorem 7.6. Any two diagrams of the same alternating knot can be obtained
from each other by using a sequence of flypes; i.e. moves shown in Fig. 7.3.

Obviously, the Kauffman–Murasugi theorem together with the Menasco-
Thistletwaite theorem gives a solution for the alternating link classification
problem. The algorithm is the following. First, one can consider prime alter-
nating diagrams not having splitting points. Now, consider two alternating
link diagrams L,L′ without splitting points. Let us see whether they have the
same number of crossings. If not, they are not isotopic. If yes, suppose the
number of crossings equals n. Then, try to apply all possible flype moves to
L in order to obtain L′. We shall start within finite type because the number
of link diagrams with n crossings is finite.

For more details, we refer the reader to the original work [MT], where
he can find beautiful rigorous proofs based on some inductions and three–
dimensional imagination.

7.4 The third Tait conjecture

Any knot whose minimal diagram (with respect to the number of crossings)
is odd is not amphicheiral.

The conjecture runs as follows.
If a knot has a minimal alternating diagram (without break points) then

its Jones polynomial cannot be symmetric with respect to q
1
2 → q

1
2 . Thus,

it is not amphicheiral. So, the counterexample should not be an alternating
knot.

This conjecture was disproved by Thistletwaite in 1998, see [HTW1].
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FIGURE 7.4: Prime knots with less than eight crossings

7.5 A knot table

Above we give a table of “prime knots diagrams” with less than or equal to
seven crossings (up to mirror symmetry). It turns out that the Jones polyno-
mial distinguishes all these diagrams, so, we can construct the simplest table
of prime knots. See Fig. 7.4.

7.6 Khovanov’s categorification of the Jones polynomial

We are now going to present a very interesting generalisation of the Jones
polynomial of one variable, due to Khovanov, see [Kho1, Kho2]. Our descrip-
tion is close to that of the article [BN5] by Bar–Natan. In this article, Bar–
Natan gives a clear explanation of Khovanov’s theory, calculates various ex-
amples and shows that the homologies of the Khovanov complex constitute a
strictly stronger invariant than the Jones polynomial itself.

In [BN6] an interesting construction was suggested. This construction de-
scribes a topological Khovanov complex, a formal chain complex, in which lin-
ear combinations of labeled sets of circles in the plane play the role of chains,
where linear combinations of cobordisms are differentials. For invariance, some
relations originating from the topology of two-dimensional complexes are im-
posed on such cobordism complexes. The general (algebraic) Khovanov com-
plex is obtained from the geometrical one by “substitution” of concrete graded
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spaces for sets of circles, and concrete maps for elementary cobordisms; and it
also requires that the relations originating from the relations on cobordisms
hold.

Note also the paper [Kho5] where Khovanov constructed a homology the-
ory for coloured links, connected with the Jones polynomial for cables, by
using the cobordism theory and combinatorial analysis of the representation
of the Lie algebra sl2.

A counterpart of Khovanov homology called odd Khovanov homology was
proposed by P.Ozsváth, Z.Szabó and J.Rasmussen [ORS].

Khovanov proposed the following idea: to generalise the notion of Kauff-
man’s bracket using some formal complices and their cohomologies.

First, we give a slight modification of the Jones polynomial and Kauffman
bracket due to Khovanov. The (unnormalised) Jones polynomial is the graded
Euler characteristic of the Khovanov complex [Kho1]. The version of the Jones
polynomial used here differs slightly from that proposed below. They become
the same after a suitable variable change.

The axioms for the Kauffman bracket will be the following:

1. The Kauffman bracket of the empty set (zero–component link) equals
1.

2. 〈L ⊔©〉 = (q + q−1)〈L〉.

3. For any three diagrams L = , LA = , LB = of unoriented
links, we have

〈L〉 = 〈LA〉 − q〈LB〉.

Denote the state A of a vertex to be the 0–smoothing, and the state B to
be the 1–smoothing. If the vertices are numbered then each way of smoothing
for all crossings of the diagram is thought to be a vertex of the n–dimensional
cube {0, 1}X , where X is the set of vertices of the diagram.

Let the diagram L have n+ positive crossings and n− negative crossings;
denote the sum n+ + n− by n (that is the total number of crossings).

Denote the unnormalised Jones polynomial by

Ĵ(L) = (−1)n−qn++2n−〈L〉.
Let the Jones polynomial (denoted now by J , according to [BN5]) be defined
as follows:

J(L) =
Ĵ(L)

q + q−1
.

Thus,

J(L) = (−1)n−qn+−2n−
∑

s

−qβ(s)(q + q−1)γ(s)−1.
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This normalised polynomial J differs from the Jones–Kauffman polynomial
by a simple variable change: a =

√
(−q−1). Namely,

(−a)−3(n+−n−)
∑

s

aα(s)−β(s)(−a2 − a−2)γ(s)−1

= (−1)na−3(n+−n−)
∑

s

a−2β(s)+n · (q + q−1)γ(s)−1

= (−1)na4n−−2n+

∑

s

(−q)β(s)(q + q−1)γ(s)−1

= (−1)n−qn+−2n−
∑

s

(−q)β(s)(q + q−1)γ(s)−1.

Khovanov’s categorification idea is to replace polynomials by graded vector
spaces with some “graded dimension”. This makes the Jones polynomial a
homological object. On the other hand, the graded dimension allows us to
consider the invariant to be constructed as a polynomial in two variables.

We shall construct a “Khovanov bracket” (unnormalised complex that
plays the same role for the Khovanov complex as the Kauffman bracket for
the Jones polynomial). This will be denoted by double square brackets.

Let us start with the basic definitions and introduce the notation (which
will differ from that introduced above!)

Let a linear space M (or a free module M over a ring R) have a preferred
quantum grading q. Then one has the following decomposition M =

⊕
iMi,

where Mi is the homogeneous component of grading i. By the graded dimen-
sion of the space M we mean the polynomial qdimM =

∑
i q

idimMi.
For such complexes there are naturally defined operations of the height shift

C 7→ C[k] and the grading shift C 7→ C{l} defined according to the following
rules: (C[k])i,j = Ci−k,j ; (C{l})i,j = Ci,j−l. In the first case, together with
chains, all differentials are shifted accordingly (i.e. the differential ∂i, which
was acting from Ci,∗ to Ci+1,∗, will now act in the same way from Ci−k,∗ to
Ci+1−k,∗). By the graded Euler characteristic of the complex Ci,j we mean the
alternating sum of the graded dimensions of the chain spaces, or, which is
the same, the graded dimension of the homology groups. For chain spaces, we
have:

χq(Ci,j) =
∑

i

(−1)iqdim Ci =
∑

i,j

(−1)iqjdim Ci,j.

For such complexes, for every bigraded dimension (i, j) there is the
(co)homology group Hij(C) which is defined as the quotient module of the
corresponding module of cycles by the submodule of boundaries.

Definition 7.2. Two graded (respectively, bigraded) complexes C and C′
are called quasiisotopic, if there exist two bigrading preserving maps f : C →
C′, g : C′ → C together with a map u decreasing the height by one and
preserving the second grading if such exists, such that f ◦ g = IdC′ , and
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g ◦ f − IdC = d ◦ u + u ◦ d. Here, IdC : C → C, IdC′ : C′ → C′ denote the
corresponding identity maps.

Homology groups of quasiisomorphic complexes are isomorphic.
Let L, n and n± be defined as before. Let X be the set of all crossings of

L. Let V be the graded vector space generated by two basis elements v± of
degrees ±1, respectively. Thus, qdimV = q + q−1.

Definition 7.3. By bifurcation cube we understand the cube {0, 1}X where
each vertex is assigned the number of circles (as in the state cube), and each
edge indicates which circles bifurcate when passing from a state to an adjacent
one. The height of a state (a vertex of the cube) is the number ofB-smoothings.

We orient the edges of the cube as the sum of coordinates increases (i.e.
from an A-smoothing to a B-smoothing).

With every vertex α of the bifurcation cube {0, 1}X we associate the graded
vector space Vα(L) = V ⊗k{r}, where k (formerly γ) is the number of circles
in the smoothing of L corresponding to α and r is the height |α| = ∑i αi of
α (so that qdimVα(L) is the polynomial that appears at the vertex α in the
cube). Now, let the r–th chain group [[L]]r be the direct sum of all vector
spaces at height r, that is ⊕α : |α|=rVα(L).

Let us forget for a moment that [[L]] is not endowed with a differential,
and hence, is not a complex. Set C := [[L]][−n−]{n+ − 2n−}.

Remark 7.4. It is easy to show that for a complex C the graded dimension
χq(C) equals the alternating sum of the graded dimensions of its chain groups.
This is quite analogous to the case of the usual Euler characteristics.

Thus, we can calculate the graded Euler characteristic of C (taking into
account only its graded chains); the differential will be introduced later.

Theorem 7.7. The graded Euler characteristic of C(L) is the unnormalised
Jones polynomial Ĵ of L.

Proof. This theorem is almost trivial. One should just take the alternating
sum of graded dimensions of chain groups and mention that qdim(V ⊕n) =
n qdim(V ). The remaining part follows straightforwardly.

Now, let us prove that the Khovanov complex is indeed a complex. So,
let us introduce the differentials for it. First, we set all [[L]]r to be the direct
sums of the vector spaces appearing in the vertices of the cube with precisely
r coordinates equal to 1.

The edges of the cube {0, 1}X can be labelled by sequences in {0, 1, ∗}
of length n having precisely one ∗. This means that the edge connects two
vertices, obtained from this sequence by replacing ∗ with one or zero.

Definition 7.4. The height |ξ| of the edge ξ is defined to be the height of its
tail (the end having lower height).
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Thus, if the maps for the edges are called dξ, then we get dr =∑
{|ξ|=r}(−1)ξdξ.

Definition 7.5. The cube with partial differentials dξ going along edges in the
coordinate increasing direction is called commutative, if each two-dimensional
face of this cube is a commutative diagram and anticommutative, if each two-
dimensional face is an anticommutative diagram.

Now, we have to explain the sign (−1)ξ and to define the edge maps dξ.
Indeed, in order to get a “good” differential operator d, such that d ◦ d = 0,
it suffices to show that all square faces of the cube anticommute.

This can be done in the following way. First, we make all faces commu-
tative, and then we multiply each dξ by (−1)ξ = (−1)

∑
i<j

ξi , where j is the
position of ∗ in ξ.
Exercise 7.2. Show that such coefficients really make any commutative cube
skew–commutative.

Thus, we should find maps that can make our cube commutative.
Each edge represents some switch of the state for our diagram at some

vertex. So, this means either dividing one cycle into two cycles, or joining
two cycles together. In these cases, we shall use the comultiplication ∆ and
multiplication m maps defined as follows.

The map m:

{
v+ ⊗ v− 7→ v−, v+ ⊗ v+ 7→ v+,

v− ⊗ v+ 7→ v−, v− ⊗ v− 7→ 0
(7.1)

The map ∆ :

{
v+ 7→ v+ ⊗ v− + v− ⊗ v+

v− 7→ v− ⊗ v−.
(7.2)

Because of the degree shifts, our maps m and ∆ are chosen to have degree
(−1).

Now, the only thing to check is that the faces of our cube for dξ (without
±1 coefficients) commute. This follows from a routine verification.

The most interesting fact here is the invariance of all homologies of the
Khovanov complex under all Reidemeister moves. Let us speak about this in
more detail.

For a link diagram L, denote by Kh(L) the expression

∑

r

trqdimHr(L).

Remark 7.5. When we wish to emphasise the field F, we write KhF(L).

Theorem 7.8 (the main theorem). The graded dimensions of the homology
groups Hr(L) are links invariants, hence Kh(L) is a link invariant polynomial
(of the variables t, q) that gives the unnormalised Jones’ polynomial being
evaluated at t = −1.
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Proof. We shall restrict ourselves only to three versions of the Reidemeister
moves (one of Ω1, one of Ω2, and one of Ω3). The other cases can be reduced
to those we are going to consider.

In the case of the Kauffman bracket and the Jones polynomial, the invari-
ance can be proved by reducing the Kauffman bracket of the “complicated
case” of the move by using the rule (〈L〉 = 〈LA〉 − q〈LB〉). Here we will do
almost the same, but since we deal with complices and homologies rather than
with polynomials, we must interpret it in another language. Namely, we are
going to use the following “cancellation principle”.

Let C be a chain complex and let C′ ⊂ C be a subchain complex of C. Then
the following two statements hold.

Lemma 7.2 (Cancellation principle). 1. If C′ is acyclic then H(C) =
H(C/C′).

2. If C/C′ is acyclic (has no homology) then H(C) = H(C′).
Both statements follow straightforwardly from the following exact se-

quence:

· · · → Hr(C′)→ Hr(C)→ Hr(C/C′)→ . . .

associated with the short exact sequence

0→ C′ → C → C/C′ → 0.

Now, let us prove the invariance of Kh(·) under the three Reidemeister
moves.

Invariance under Ω1.

Consider the three diagrams , , and .
While computing H(P ), we encounter the complex

C = [[ ]] =
(
[[ ]]

m→ [[ ]]{1}
)
.

This means that the total n–dimensional cube for is divided into two
(n− 1)-dimensional cubes, corresponding to the two smoothed diagrams (one
of them is shifted); the differentials between these two cubes are all represented
via m by definition.

As we can easily see, all chains in where the small circle ◦ is v+, “kill”
all cycles in according to our differential, because v+ plays the role of
the unit element in V with respect to the multiplication m. Thus, the only

homologies we can have lie in [[ ]] when the small circle is marked by v−. It is
easy to see, that after the necessary normalisation, these homologies precisely

coincide with those of [[ ]].

The case of the other curl can be considered analogously.

In the case of Ω2, we shall consider the only case. In this case, the [[ ]] will
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be represented in the terms of brackets of , , , and differentials
between them:

C =
[[ ]]{1} → [[ ]]{2}
↑ m ↑

[[ ]]
∆→ [[ ]]{1}

Thus, we have four cubes of codimension two and we know what the differ-
entials in these small cubes look like: we may catch the cohomology elements
in terms of these differentials. So, we only have to check whether they really
represent cohomologies in the big cube.

The lower–left part of the diagram contains the diagram (more pre-
cisely, all states corresponding to this local state).

Observation 1. It is easy to see that the members of this state cannot be
cohomologies of the complex: their differentials have non-trivial projection to

{1}.
Observation 2. All members corresponding to [[ {1}]] are not boundaries

of members corresponding to [[ ]]: the differential of each member from

[[ ]] also has an impact on [[ ]]{1}.
Observation 3. The complex [[ ]]{1}v+

m→ [[ ]]{2} is acyclic.
Observation 4. Each boundary element x in [[ ]]{2} coming from an

element z ∈ [[ ]]{1} has a unique compensating element in y ∈ [[ ]]{1}
such that ∂y = ∂z = x. This follows from observation 3. Thus, there exists a
y in this complex such that ∂y = x.

Taking into account observations 2 and 4 we conclude that all cohomolo-

gies containing elements from are in one–to–one correspondence

with homologies of the complex C[[ ]].
It is easy to check that the complex C has no other homologies (this follows

from observations 1 and 3; the proof is left for the reader).
This results in the invariants of homologies up to height and degree shifts.

Taking into account the normalisation constants, we obtain the invariance of
the Khovanov complex under the second Reidemeister move Ω2.

The invariance proof for the other cases of Ω2 is quite analogous to the
case considered above. The direct calculation via Ω2 does not work, thus we
have to use the cancellation method described above.

In the case of the third Reidemeister move Ω3 the situation is more difficult
than the similar one for the case of the Kauffman polynomial.

In this case we have the following local pictures; see Fig. 7.5.
Let us recall the invariance proof for the Jones one–variable polynomial

under Ω3. First, we smooth one crossing and then we see that this invariance
follows from the invariance under Ω2. We are going to do something similar:
we consider our three–dimensional cubes and take their top layers that differ
by a move Ω2 (bottom layers of these cubes coincide).
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FIGURE 7.5: Behaviour of Khovanov’s complex under Ω3

If we consider the situation that occurs while performing the move Ω2, we
have the following complex.

The initial complex C looks like

[[ ]]{1} m−→ [[ ]]{2}
∆ ↑ ↑
[[ ]] −→ [[ ]]{1}

.

This complex contains the subcomplex C′ that looks as follows

C′ =
[[ ]]v+{1} −→ [[ ]]{2}

↑ m ↑
0 −→ 0

The acyclicity of the complex C′ is obvious.
After factorising the complex C by C′, we obtain the complex

[[ ]]{1}/v+=0
m−→ 0

∆ ↑ ↑
[[ ]] −→ [[ ]]{1}

.

Now, if we consider the special case of the top layer shown in Fig. 7.5, we see
that the complex C′ contains a subcomplex

C′′′ =
β −→ 0

∆ ↑
τ=d∗0∆

−1

ց ↑
α

d∗0−→ τβ,

which is acyclic because ∆ is an isomorphic map.
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FIGURE 7.6: Invariance under Ω3

Remark 7.6. Here the arrow τ is not a differential. In the sequel, the diagonal
arrow like β = τβ means that we identify two elements of the cube (arrows do
not represent differentials).

After this, we see that

(C/C′)/C′′′ =
β −→ 0
↑ ց ↑
0 −→ γ.

By the cancellation principle, we can perform this operation (factorising
by C′ and C′′′ defined for the top layers of the 3–cube) for the two cubes
shown in Fig. 7.5 (only to the top layers of them). The resulting cubes are
shown in Fig. 7.6.

Now, these two complices really are isomorphic via the map Y which keeps
the bottom layers shown in Fig. 7.6. in their place and transposes the top layers
by mapping the pair (β1, γ1) to the pair β2, γ2.

The fact that Y is really an isomorphism of spaces is obvious. To show that
it is really an isomorphism of complices, we need to know that it commutes
with the edge maps. In this case, only the vertical edges require a proof. The
proof of this fact, namely that τ1 ◦ d1∗01 = d2∗01 and d1∗10 = τ2 ◦ d2∗10, is left
to the reader as an exercise.

Definition 7.6. Let us call by the height h(Kh(K)) of the Khovanov poly-
nomial of a link K the difference between the leading and lowest non-zero
quantum gradings of non-zero terms of Khovanov polynomial of K.

The height of the Khovanov polynomial justifies the estimates coming from
the span of the Kauffman bracket polynomial. The latter is responsible for
non-cancellability of the leading and lowest terms in the decomposition (6.4);
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FIGURE 7.7: Khovanov’s Q–homologies are stronger than the Jones poly-
nomial

at the same time chains of the Khovanov complex are in natural one-to-one
correspondence with monomials of the bracket multiplied by (−a2 − a−2).

By construction it is clear that

h(Kh(K))− 2 >
span〈K〉

2
.

As we have said before, the Khovanov polynomial (with rational homolo-
gies) is strictly stronger than the Jones polynomial. The example of two knots
for which the Jones polynomial coincides and Khovanov’s homologies do not,
is shown in Fig. 7.7.

Exercise 7.3. Perform the calculation check for this example.

7.6.1 The two phenomenological conjectures

Obviously, the Khovanov complex (respectively, invariant polynomial) can
be considered over an arbitrary field. We are interested in the two cases: Q
and Z2.

Notation: KhQ,KhZ2

Below we give the two phenomenological conjectures from [BN5]. They
belong to Bar–Natan, Khovanov, and Garoufalidis.

Conjecture 7.1. For any prime knot L there exist an even s = s(L) and a
polynomial Kh′(L) in t±1, qpm1 with only non-negative coefficients such that

KhQ(L) = qs−1(1 + q2 + (1 + tq4)Kh′(L))

KhZ2(L) = qs−1(1 + q2 + (1 + tq2)Kh′(L)).

Conjecture 7.2. For the case of a prime alternating knot L, the number s(L)
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equals the signature of L, and the polynomial Kh′(L) contains only powers of
(tq2).

These two conjectures were checked by Bar–Natan for knots with a rea-
sonably small number of crossings (seven for Q and eleven for Z2).

It is easy to see that for the case of alternating prime knots, these two
conjectures imply that the Khovanov polynomial is defined by the Jones poly-
nomial.

A further phenomenological conjecture is presented in Garoufalidis’ work
[Garo]. All further information concerning these conjectures can be found in
Bar–Natan’s homepage [BNh].

The conjecture concerning alternating diagrams was solved positively by
E.S. Lee, see [Lee1].

It is worth mentioning that Khovanov’s homologies are functorial. This
magnificent result is due to Magnus Jacobssen, see [Jac].

We also recommend to read the paper by O.Ya. Viro [Vir1] where a new
“simple” approach to Khovanov’s homologies is proposed.

7.6.2 Spanning tree for Khovanov complex

We shall describe a slightly different approach to calculating (more pre-
cisely, to estimating) the Khovanov homology, thanks to which some properties
of the Khovanov homology became clearer.

Let us formulate the lemma from the theory of algebraic complexes, we
shall follow S.Wehrli [Weh].

Lemma 7.3. Let C0 and C1 be graded complexes and Ci = Ai ⊕ Bi, where
the complexes Bi have zero homology. Let w : C0 → C1 be a map of chains
preserving the grading, and let wAA : A0 → A1 be a “part” of the map w; i.e.
the composition of the map w with the evident projection and embedding. Let
A be a cone of the map wAA, C be a cone of the map w, and B be contractible
complex of type B0 ⊕B1[1]. Then the complexes C and A⊕B have the same
homology.

The proof of this theorem is purely algebraic, it does not concern the
“internal” structure of differentials in the complexes Ai and Bi. The lemma
is a key point in the proof of Theorem 7.9 about the spanning tree for the
Khovanov complex.

The main idea of constructing the spanning tree leading to the proof of the
theorem is the same as the Thistlethwaite idea which he used for constructing
the spanning tree of the Kauffman bracket polynomial: It is necessary to take
the bifurcation cube and split it into small subcubes corresponding to states
from the set V1 of the states with one circle.After that we have to consider the
Khovanov homology for each of these subcubes; i.e. the copies of the homology
groups of the unknot and apply Lemma 7.3 to them repeatedly. We should
apply this lemma at each splitting of the cube into two parts.
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Let us describe this construction in more detail. We shall consider a non-
normalised Khovanov complex of a link In what follows we should take the
“common normalizing factor” out; i.e. shift the height and the grading.

Let K be a link diagram. Let us consider its non-normalised bifurca-
tion cube [[K]] with the differential ∂. Enumerate all crossings of K and we
shall split the cube [[K]] successively into cubes according to Thistlethwaite’s
scheme. Namely, in the first step we investigate whether the first crossing is
splitting (we call a crossing splitting, if under deleting the corresponding ver-
tex from the diagram it becomes not connected) and, if it is not splitting,
we pass to considering two cubes obtained from [[K]] by fixing the first co-
ordinate. These two cubes represent non-normalised Khovanov complexes for
the diagrams K0 and K1 obtained from K by smoothings of type A and B.
The Khovanov complex (unnormalised) for Ki has some set of homologies;
if we consider K0 and K1 as non-separated complexes but compound parts
of the Khovanov complex corresponding to K, we get some new differentials
corresponding to passing from K0 to K1. Lemma 7.3 asserts that the initial
(non-normalised) Khovanov complex for the diagram K has the same homol-
ogy as the complex made only from homology of the complexes K0 and K1

(and as well as some acyclic part).
Further, we apply the second step: we consider the complexes K0 and

K1 (as consistent parts of the new complex the homology of which coincides
with the Khovanov homology of the link K) and investigate whether the
corresponding diagrams split in the second crossing. If some of them (say,
K0) do not split, then we reconstruct the complex K0 and get the complex of
type (K00 → K01)⊕ 〈acyclic part〉.

We continue the process until we reach a diagram with all crossings
smoothed . Each of these diagrams represents the unknot; therefore, we con-
clude that the Khovanov homology can be calculated with the help of a com-
plex consisting of the Khovanov homology of the unknot. In terms of formula
it looks like the following.

Theorem 7.9. The non-normalised Khovanov complex of a link diagram K
is isomorphic to some complex whose chain group looks like

⊕

s∈V1

A[β(s) + w(Ks)]{β(s) + 2w(Ks)}, (7.3)

where A is the homology group of the unknot.

Later on, we shall use also the phraseWehrli’s complex, by bearing in mind
the complex which is quasiisotopic to the Khovanov complex, the existence of
the latter is given by Theorem 7.9.

7.6.3 The Khovanov polynomial and Frobenius extensions

The Khovanov theory of knots described earlier in this chapter is not
unique when considering what one can get with the help of the Kauffman



Properties of Jones polynomials. Khovanov’s complex 103

model and the (anti)commutative state cube. The present section is devoted
to a generalisation of the Khovanov theory which uses Frobenius extensions.
Frobenius extensions

Let R, A be commutative rings, and let ι : R → A be an embedding
of the commutative rings such that ι(1) = 1. The restriction functor tak-
ing A-modules to R-modules has right and left adjoint functors: the induc-
tion functor Ind(M) = A ⊗R M and the coinduction functor CoInd(M) =
HomR(A,M). One says that ι is a Frobenius mapping, if the induction func-
tor coincides with the coinduction functor. Equivalently: the embedding ι is
Frobenius if the restriction functor has a 3-sided dual functor. In this case one
says also that the ring A is a Frobenius extension over R by means of ι.

The following proposition takes place.

Proposition 7.1 ([Kad]). The embedding ι is Frobenius if there exist a map-
ping A-bimodules ∆: A → A⊗RA and a mapping R-modules ε : A → R such
that ∆ is a coassociative and commutative multiplication, herewith (ε⊗Id)∆ =
Id.

A Frobenius extension with a choice ε and ∆ is denoted by F =
(R,A, ε,∆) and called a Frobenius system, [Kad].

Frobenius extensions are convenient for constructing the Khovanov homol-
ogy theory for the following reasons. In the module A defined over the ring
R there are two natural operations: multiplication and comultiplication, the
operation ∆.

We are going to use these operations for constructing the Khovanov homol-
ogy theory for links. Meanwhile we (for evident reasons) restrict ourselves only
to the case of commutative rings; moreover, we forget the operator ε (this op-
erator is used for defining invariants of cobordisms and proving functoriality).
In other aspects we follow the paper [Kho2] by Khovanov.
Khovanov construction for Frobenius extensions

As it was described earlier in this chapter the standard Khovanov theory
is constructed over some arbitrary ring R (for example, the ring Z or the field
Q, or the field Zp); herewith the homology of the unknot is a graded two-
dimensional module A over this ring, generated by vectors v+ and v− having
gradings +1 and −1, respectively. Two maps are defined on these vectors: the
multiplication m and comultiplication ∆. If one shifts the gradings of vectors
(this requires a slight change (renormalization) in the construction of the
homology theory), then one can set deg v+ = 0, deg v− = 2. Then the element
v+ can be considered as a unit (let us denote it by 1, and denote v− byX), and
the multiplication and comultiplication defined earlier turn the module A into
a Hopf algebra over R, in which the multiplication is defined by rules X2 = 0,
and the comultiplication looks like ∆(1) = 1⊗X +X ⊗ 1, ∆(X) = X ⊗X .

In [Kho2] Khovanov solved the following problem: How can one find a
condition for a couple of linear spaces (A,R) to get a link homology theory,
where R is the basic coefficient ring and A (some Hopf algebra over R) is
the homology of the unknot (the main building bricks)? That means that we
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consider the state cube, with each vertex associated with a tensor power of A
(over R), with exponent equal to the number of circles in the given state, and
define partial differentials by means of multiplication and comultiplication,
and then add signs on edges and normalise the whole construction by grading
shifts.

Khovanov showed that the invariance under the first Reidemeister move
requires that A is two-dimensional as an R-module and gave necessary and
sufficient conditions for the existence of such a link homology theory.

In the same paper [Kho2], it is shown that any such theory can be obtained
by some operations (base change, twisting and duality) from the following
solution:

1. R = Z[h, t],

2. A = R[X ]/(X2 − hX − t),

3. deg X = 2, deg h = 2, deg t = 4,

4. ∆(1) = 1⊗X +X ⊗ 1− h1⊗ 1,

5. ∆(X) = X ⊗X + t1⊗ 1.

As we see, the multiplication in the algebra A preserves the grading, and
the comultiplication raises it by two.

We omit normalisations regulating these gradings.
We call this construction the universal (R,A)-construction. The corre-

sponding homology of a (classical oriented) linkK will be denoted by KhU (K).
Khovanov proved that all other cases followed from the universal (R,A)-

construction. First, he investigates Frobenius extensions for the invariance of
the obtained homology theory under the first classical Reidemeister move Ω1.
This leads it to two-dimensional A as an R-module.

Later, Khovanov considers the universal topological construction by Bar-
Natan [BN6], and constructs a functor from the topological category of Bar-
Natan to the category of Frobenius extensions of rank two. The constructed
functor is neither injective nor surjective, but it enjoys all nice properties
needed for the invariance under the Reidemeister moves.

Thus Khovanov shows that any rank two Frobenius extension as above
defines an extraordinary link homology theory. He shows also that any such
theory without loss of information can be reduced to the universal theory
described above by some algebraic operations.

We shall not go into the details of Khovanov’s and Bar-Natan’s construc-
tions. We shall just consider the universal (R,A)-construction.

Also, note that Khovanov also studied functoriality of his new homology
theory, for example, its “good behaviour” under cobordisms (projective func-
toriality). To this end, besides multiplication and comultiplication operations,
he also defined the unit and counit map and their transformations; we shall
not touch on this subject.
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7.6.4 Minimal diagrams of links

In the classification and tabulation of knots the important step is to
describe diagrams having a minimal number of crossings. One of the main
achievements in the development of knot theory is the Kauffman–Murasugi–
Thistlethwaite theorem (Theorem 7.5) and the classification of alternating
links by Menasco and Thistlethwaite [MT] following from this theorem.

In this section we shall prove theorems establishing the minimality of vir-
tual and classical diagrams, see also [JS, Man17]. The inequality span 〈K〉 6
4n+2(χ− 2) for a virtual diagram K with n classical crossings and the atom
with the Euler characteristic χ allowed one to prove the minimality in those
cases, when the Euler characteristic could not be increased. If the inequal-
ity turns into the equality, then to decrease the number of crossings we have
to increase the Euler characteristic of the atom or, the same, to decrease its
genus. It turns out that by using Khovanov homology one can get estimates
on the atom genus, at the same time in some cases one can see that this
genus cannot be decreased. In this case the previous arguments together with
non-reducibility of the genus lead to the minimality of the diagram.

We shall first mention the spanning tree theorem for Khovanov ho-
mology, proved independently by S.Wehrli [Weh] and A.Champanerkar and
J.Kofman [ChKo].

More precisely, in [Weh] it is shown that the Khovanov homology is isomor-
phic to the homology of a certain complex. Let V1(K) be the set of single-circle
states of the virtual diagram K. From this a generalisation of Theorem 7.9
follows.

Lemma 7.4. The non-zero Khovanov homology Kh(K) can have the bigrading
only of the form (C1+β−w,C2+β− 2w± 1), where w belongs to some finite
set of integers, β belongs to the set of values β(s) over all states s ∈ V1(K),
and C1, C2 are constants.

An important particular case of this lemma is the statement of the
Khovanov homology thickness (thickness was first introduced by Shu-
makovitch [Shu2, Shu3]).

Consider a link diagram K and its Khovanov homology over a certain
non-graded ring R. Denote by tmax and tmin the maximal and minimal values
of 2x − y over all pairs x, y such that the homology group of K with the
bigrading (x, y) is non-trivial.

Definition 7.7. The thickness (width) TR(K) of the Khovanov complex is
(tmax − tmin)/2 + 1.

Remark 7.7. This quantity is an integer for all links.

Later on, by a diagonal we call the set of pairs of integer numbers (x, y) for
which the number 2x− y is constant. Among diagonals there are the extreme
left and the extreme right, at which the number 2x−y is minimal and maximal,
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respectively. Thus, the thickness measures the number of diagonals between
two extreme diagonals.

Definition 7.8. By thickness (width) T (K) of the link diagram K we mean
the maximum of all TR(K) over all rings R without additional grading.

From Lemma 7.4 and the definition of atom (see Definition 16.1), we get
the following lemma.

Lemma 7.5. For any diagram K (with a connected atom) of a link we have:
T (K) 6 g(K) + 2, where g(K) is the genus of the atom corresponding to K.

Definition 7.9. Let us call a link diagramK 2-complete, if T (K) = g(K)+2.

Indeed, for an estimate of the number of diagonals of the Wehrli complex
(see Theorem 7.9) it is necessary for us to estimate the range of numbers β(s)
over all states s ∈ V1(L). It is easy to see that in the case of alternating link
diagrams all these numbers equal each other (this leads to the presence of two
diagonals tmax and tmin such that tmax = tmin + 2), in the case of atoms with
genus one the numbers β(s) can equal x, x+ 1, x+ 2 for some x; in the case
of atoms with the Euler characteristic χ they can take values in an interval
from some number x to x+ (2− χ).

Now we have the following

Theorem 7.10. Let T (K) = g+2, span 〈K〉 = s. Then the number of cross-
ings of any connected diagram equivalent to K cannot be smaller than s/4+g.

In particular, if a diagram with n crossings and the atom with genus g is
1-complete and 2-complete, then it is minimal.

The last assertion means that all diagrams for which two properties of
“natural non-reducibility” hold (in the decomposition of the Kauffman bracket
polynomial the leading and lowest terms are not equal to zero and in the
Wehrli complex each of the two extreme diagonals has at least one non-trivial
element of the Khovanov homology) are minimal.



Chapter 8

Lee-Rasmussen invariant, slice knots,

and the genus conjecture

The aim of the present chapter is to discuss one of the first striking applications
of the Khovanov homology, the Rasmussen invariant.

In this chapter we follow closely the paper [Ras2].
We shall first define the Lee homology, which has the same pattern as the

Khovanov homology (however, with a different differential), and leads to just
two non-trivial generators for the case of a knot (and 2k generators for the
case of an k-component link). The Lee theory is not bigraded but rather graded
with respect to homological grading and filtered with respect to the quantum
grading.

Then the story starts, and the Khovanov homology can be considered as
the starting term of the spectral sequence (see [McC]) which converges to the
Lee homology. The fact that it converges is purely abstract and the filtration
of the two (or 2k in the case of a link) surviving terms is the crux of the
matter.

These two filtrations differ by 2 and their average is the value of the Ras-
mussen invariant of the knot K, s(K). In general, the calculation of the Ras-
mussen invariant is a very complicated task; in some cases, however, it can be
calculated by hand.

One of the nicest properties of the Rasmussen invariant is its nice behaviour
under cobordisms. Here we have to make a digression about two categories of
sliceness.

The slice genus estimate for virtual knots is an interesting question. The
Lee-Rasmussen theory which is used to estimate the slice genus deals with a
TQFT with a division by 0; hence, one requires Khovanov homology theory
with coefficients in Z rather than in Z2.

There is one important class of virtual links where the whole contents
of this chapter generalises straighforwardly even virtual links or virtual links
with orientable atoms. In fact, the only thing one needs to construct the Lee-
Rasmussen is the source-sink structure of the atom.

Thus, one can deal with cobordisms where each slice admits a source-sink
structure (“atomic cobordisms”) and then it is in fact the case that the “even”
slice genus of an “even” virtual knot can not be larger than the slice genus of
an arbitrary knot.

107
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When we do not have the source-sink structure, we can not apply the
Lee–Rasmussen theory directly.

There are the following ways to tackle this problem.

1. To use our Khovanov homology theory (refer to Chapter 7) and con-
struct the corresponding Lee–Rasmussen complex. This is done by Dye,
Kaestner, and Kauffman in [DKK].

2. Use satellites of knots and links or 2-coverings of knots and links in a
way similar to that in Chapter 22.

This is not yet found in literature.

3. An interesting recent approach with “doubled Khovanov homology” due
to William Rushworth; we are not going to discuss it here.

Note that for odd virtual knots (and even for simpler objects, the free
knots) there is an elementary approach to handle the sliceness problem (cobor-
disms of genus 0), see papers [Man25, FeMa1, FeMa2].

Assume we have a knot K ∈ S3 and we want it to be the boundary of a
surface Σ ⊂ B4 : ∂B4 = S3, ∂Σ = Σ ∩ S3 = K. We want to deal with the
four-ball genus (slice genus) g∗(K) of the K as the minimal genus of such a
surface spanning the knot, but here we have a caveat. First, we observe that it
is not allowed to consider the problem just in the continuous category. Indeed,
for each knot K, we can take the cone over it from the center of B3. As K is
homeomorphic to a circle, the cone over it C(K) is always homeomorphic to
a ball. Thus, in the continuous category the problem is trivial.

In the sequel, by g∗ we mean the slice genus in the smooth category.
The main theorem we are going to prove here is the following

Theorem 8.1. [Ras2] |s(K)| ≤ 2g∗(K).

There is, however, a beautiful theorem due to Freedman [Fre] saying that

Theorem 8.2. If a knot K has trivial Alexander polynomial, then it is slice
in the locally flat category.

We shall not prove Theorem 8.2; we just mention that is closely related to
some Casson handle techniques which appeared in M.Freedman’s proof of the
Poincaré conjecture in dimension 4 in the continuous category: a closed simply
connected 4-manifold with trivial second homology group is homeomorphic to
S4.

Theorems 8.1 and 8.2 gave rise to various examples of knots which are slice
in continuous category but not in the smooth category: to find such knots, it
suffices just to be able to compute Rasmussen’s invariant and the Alexander
polynomial; both tasks are combinatorial.

In fact, Rasmussen proved more in his paper.

Theorem 8.3. The map s induces a homomorphism from Conc(S3) to Z
where Conc(S3) denotes the concordance group of knots in S3.
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For alternating knots, s(K) does not provide any new information about
the genus g∗(K):

Theorem 8.4. If K is an alternating knot, then s(K) is equal to the classical
knot signature σ(K).

There is, however a class of knots for which s(K) gives a sharp information.
We say that a knot is positive if it admits a planar diagram with all positive
crossings.

Theorem 8.5. If K is a positive knot then s(K) = 2g∗ = 2gK, where g(K)
is the ordinary genus of K.

As a corollary, we get a Khovanov homology proof of the following results
which was first proved by P. Kronheimer and T. Mrowka [KrMr1] using gauge
theory:

Corollary 8.1. (The formerly Milnor conjecture) The slice genus of the (p, q)-

torus knot is equal to (p−1)(q−1)
2 .

The theorems above all hold with 2τ(K) in place of s(K) (where τ(K) is
the invariant defined via Floer homology). Indeed, the equality s(K) = 2τ(K)
holds in many cases.

Based on these observations, Rasmussen formulated the following

Corollary 8.2. For any knot K ⊂ S3, s(K) = 2τ(K).

8.1 Khovanov homology and Lee homology

Given a link diagram L with crossings labeled by integers from 1 to k, we
form the cube of possible resolutions of L. As before, with each vertex v of the
cube [0, 1]k we associate the planar diagram Dv obtained by resolving the i-th
crossing of L according to the i-th coordinate of v. Then Dv is a collection of
circles. Let e be an edge of the cube; the coordinates of its two ends differ by
one component, say, l-th. We call the end which has a 0 in this component the
initial end, and denote it by ve(0). The other end will be called the terminal
end and denoted by ve(1). We assign to e the cobordism Se : Dve(0) → Dve(1),
which is a product cobordism except in a neighbourhood of the l-th crossing
where it is the saddle cobordism between the 0-resolution and the 1-resolution.
We are now going to construct the Lee complex in analogy to the Khovanov
complex (see Chapter 7). We associate a 1+1-dimensional TQFTA to the cube
of resolutions. In other words, one replaces each vertex v with a group A(Dv)
and each edge e with a map A(Sc) : A(Dve(0)) → A(Dve(1)). The underlying
groups of the Khovanov complex CKh(L) are the direct sum of groups A(Dv)
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for all vertices v, and the differential on the summand A(Dv) is a sum of the
maps of edges A(Sc) for all edges e which have v as their initial end. As usual,
we have

d(x) =

c0(v)∑

i=1

(−1)s(ei)A(Sei).

The cobordisms Sc come in two forms: two circles can merge into one or
one circle can split into two circles; the corresponding maps m : V⊗V → V
and ∆ : V → V ⊗V for Khovanov homology theory are given in the Chapter 7.

Once these maps m and ∆ satisfy certain conditions, the differential of the
corresponding chain complex is well defined and its homology groups (after a
certain normalisation) are invariant under Reidemeister moves.

However, if we want to deal not only with invariants of knots, but also with
cobordisms, we shall need to define two other maps ι and ǫ. Corresponding to
the addition of a 0-handle (the birth of a circle in a diagram), there is a map
ι : Q→ V , and corresponding to the addition of a two handle (the death of a
circle) there is a map ε : V → Q. These maps are given by

ε(v−) = 1, ε(v+) = 0, ι(1) = v+.

The map A is especially nice because it is a graded TQFT. Recall that the
grading is defined on V by setting p(v±) = ±1 and extended to the tensor
product accordingly. We know that if v is a homogeneous element of V ⊗n,
then p(Sc(v)) = p(v) − 1. The quantum grading q on Khovanov homology
is defined by normalising q(v) = p(v) + gr(v) + n+ − n−, where n± are the
number o the positive crossings and the number of negative crossings of the
diagram L. Recall that gr(v) = |v| − n−, where v is the number of 1’s among
the coordinates of the crossing v.

8.1.1 Lee’s homology

In [Lee1], Lee considered a similar construction, but with another TQFT
A′ instead of A. The underlying vector spaces for these two TQFT’s are the
same, but the maps m′ : V ⊗ V → V and ∆′ : V → V ⊗ V induced by
cobordisms are slightly different. They are given by:

m′(v+⊗v+) = m′(v−⊗v−) = v+; m′(v+⊗v−) = m′(v−⊗v+) = v− (8.1)

and

∆′(v+) = v+ ⊗ v− + v− ⊗ v+; ∆′(v−) = v− ⊗ v− + v+ ⊗ v+. (8.2)

The maps ι and ε corresponding to the handles are the same as before.
We denote the resulting complex by CKh′(L) and its homology byKh′(L).
Using the obvious identification between the underlying groups of CKh(L)
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and CKh′(L), we can define a q-grading for the latter group as well. It is clear
from (8.1), (8.2) the grading does not behave quite well with respect to the
differential d′. Indeed, ∆′(v−) is not even homogeneous. It is easy to see,
however, that v ∈ CKh′(L) is a homogeneous element then the q-grading of
every monomial in d′(v) is greater than or equal to the q-grading of v. In other
words, the q-grading defines a filtration on the complex CKh′(L). This fact
leads to the following

Theorem 8.6. There is a spectral sequence with E2-term Kh(L) which con-
verges to Kh′(L). The E2 and higher terms of this spectral sequence are in-
variants of the link L.

The first part of the theorem is immediate from the above observation.
The filtration on CKh′ gives rise to a spectral sequence converging to Kh′.
The differential in its E1 term is the part of d′ which preserves (rather than
raises) the q-grading. Comparing the differentials for the Khovanov complex
and for the Lee complex, we see that the E1 term is the complex CKh.

The invariance of the Lee homology under Reidemeister moves is proved
along the same lines as that of the Khovanov homology. In [Lee1], Lee defines
maps ρ′i : CKh(L) → CKh′(L̄) which induce isomorphisms on homology.
Later we shall show that these maps induce isomorphisms on E2 terms of
spectral sequences, thus completing the proof of Theorem 8.6.

8.1.2 Calculation of Kh′

The Khomology group Kh′(L) is surprisingly simple [Lee1]. To see this, it
suffices only to introduce the new basis {a,b} for V , where a = v− +v+,b =
v− − v+.

In this basis, the maps m′ and ∆′ look as follows:

m′(a⊗ a) = 2a; m′(a⊗ b) = m′(b⊗ a) = 0; m′(b⊗ b) = −2b;

∆′(a) = a⊗ a; ∆′(b) = b⊗ b.

One can also easily check that

ǫ′(a) = ǫ′(b) = 1, ι(1) =
(a− b)

2
.

Using this basis, she proves

Theorem 8.7. [Lee1] For an l-component link L, the homology Kh(L′) has
rank 2l.

Proof. We shall now construct a bijection between the set of all orientations of
L and a set of generators of Kh′(L) which we refer to as canonical generators
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FIGURE 8.1: Local behaviour of the state so.

. This bijection can be described as follows. Given an orientation o of a link
diagram L, let Do be the corresponding oriented resolution. We shall label the
circles in Do with a and b according to the following rule. To each circle C we
assign a mod 2 invariant, which is the mod 2 number of circles in Do which
separate it from infinity. In other words we can draw a ray starting from a
point on this circle and count the number of intersections with other circles
modulo 2. To this number, we add 1 if C has the counterclockwise orientation,
and 0 if it has the clockwise orientation. Label C by a if the resulting invariant
is 0 and by b if it is 1. We denote the resulting state by so.

Exercise 8.1. Show that all canonical generators of a framed graph, which
admits a source–sink structure, are induced by labeling its components with 0
and 1. In particular, a unicursal framed graph has two generators.

The name “canonical generator” is justified by the following result, whose
proof will be given later.

Proposition 8.1. Suppose L and L̄ are related by the i-th Reidemeister move.
Then an orientation o on L induces an orientation ō of L̄, and ρ′i∗([so]) is a
nonzero multiple of [so]

We end this Section with an elementary but important observation.

Lemma 8.1. (Coherent orientations) Suppose there is a region in the state
diagram for so containing exactly two segments, as shown in Figure 8.1. Then
either the orientations of the two are the same and the labels are different
(like part a of the figure) or the orientations are different and the labels are
the same (like part b).

Proof. We consider three possible cases: either the two segments belong to
the same circle in Do, or they belong to two circles, one of which is contained
inside the other, or they belong to two circles, neither of which is contained
inside the other. In each case, it is easy to verify that the claim holds.

Corollary 8.3. If two circles in the state diagram for so share a crossing,
they have different labels.



Lee-Rasmussen invariant, slice knots, and the genus conjecture 113

8.2 The Rasmussen invariant: Definition and basic prop-
erties of the invariant

Let K be a knot in S3. By Theorems 8.6 and 8.7, we know that there is
a spectral sequence associated to K which converges to Q⊕Q. This spectral
sequence is a relatively complicated object, but we can extract some simpler
invariants of K from it. Let smax and smin (with smax ≥ smin) be the q-
gradings of the two surviving copies of Q which remain in the E∞ term of
the spectral sequence. Like all q-gradings for a knot, smax and smin are odd
integers. Since the isomorphism type of the spectral sequence is an invariant
of K, smax and smin are invariants

Before making this definition formal, we digress to establish some termi-
nology related to filtrations. Suppose C is a chain complex. A finite length
filtration of C is a sequence of subcomplexes

0 = Cn ⊂ Cn−1 ⊂ Cn−2 ⊂ · · · ⊂ Cm = C.

To such a filtration, we associate a grading defined as follows: x ∈ C has
grading i if and only if x ∈ Ci but x 6∈ Ci+1. If f : C → C′ is a map between
two filtered chain complexes, we say that f respects the filtration if f(Ci) ⊂ C′

i.
More generally, we say that f is a filtered map of degree k if f(Ci) ⊂ C′

i+k.
A filtration {Ci} on C induces a filtration {Si} onH∗(C) defined as follows:

a class [x] ∈ H∗(C) is in Si if and only if it has a representative which is an
element of Ci. If f : C → C′ is a filtered chain map of degree k, then it is easy
to see that the induced map f∗ : H∗(C)→ H∗(C′) is also filtered of degree k.

A finite length filtration {Ci} on C induces a spectral sequence, which
converges to the associated graded group of the induced filtration {Si}. In
other words, the group which survives at grading i in the spectral sequence is
naturally identified with the group Si/Si+1.

Let us denote by s the grading on Kh′(K) induced by the q-grading on
CKh′(K). Then the informal definition above is equivalent to

Definition 8.1. Set

smin(K) = min{s(x) |x ∈ Kh′(K), x 6= 0}
smax(K) = max{s(x) |x ∈ Kh′(K), x 6= 0}.

Since Kh of the unknot U has rank two and is supported in q-gradings ±1,
we have smax(U) = 1, smin(U) = −1.

Another proof that smax and smin are knot invariants could be given using

Proposition 8.2. The maps ρ′i∗ and (ρ′i∗)
−1 both respect the induced filtration

s on Kh′.

We shall give the proof in Section 8.5.
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8.2.1 The invariant s

Our first task in this section is to prove

Proposition 8.3.
smax(K) = smin(K) + 2

which justifies

Definition 8.2.

s(K) = smax(K)− 1 = smin(K) + 1

Since smax and smin are odd, s(K) is always an even integer.
Before proving the proposition, we need some preliminary results.

Lemma 8.2. Let n be the number of components of L. There is a direct sum
decomposition Kh′(L) ∼= Kh′o(L)⊕Kh′e(L), where Kh′o(L) is generated by all
states with q-grading conguent to 2 + n mod 4, and Kh′e(L) is generated by
all states with q-grading congruent to n mod 4. If o is an orientation on L,
then so+so is contained in one of the two summands, and so−so is contained
in the other.

Proof. Following Lee [Lee2], we write

m′ = m+Φm

∆′ = ∆+Φ∆

where m and ∆ preserve the q-grading and Φm and Φ∆ raise it by 4. This
proves the first statement.

For the second statement, let ι : CKh′(L)→ CKh′(L) be the map which
acts by the identity on CKh′e and by multiplication by −1 on CKh′o. We claim
that ι(so) = ±so. To see this, we define a new grading on V with respect to
which v− has grading 0 and v+ has grading 2. Let i : V → V be given by
i(v−) = v−, i(v+) = −v+, so that i(a) = b and i(b) = a. Then the induced
map i⊗n : V ⊗n → V ⊗n acts as the identity on elements whose new grading
is congruent to 0 mod 4 and as multiplication by −1 on elements whose new
grading is congruent to 2 mod 4. The new grading differs from the q-grading
on Do by an overall shift, so

ι(so) = ±i⊗n(so) = ±so

It follows that so + ι(so) = so ± so is contained in one summand, while so −
ι(so) = so ∓ so is contained in the other.

Corollary 8.4.
s(so) = s(so) = smin(K)

Corollary 8.5. smax(K) > smin(K).
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FIGURE 8.2: A short exact sequence for CKh′(K1#K2).

Proof. Since CKh′(K) decomposes as a direct sum, its affiliated spectral se-
quence decomposes too. The homology of each summand is Q, so each must
account for one of the surviving terms in the spectral sequence. The two sum-
mands are supported in different q-gradings, so the surviving terms must have
different q-gradings as well.

Lemma 8.3. For knots K1, K2, there is a short exact sequence

0→ Kh′(K1#K2)
p∗→ Kh′(K1)⊗Kh′(K2)

∂→ Kh′(K1#K2)→ 0

The maps p∗ and ∂ are filtered of degree −1.

Proof. Consider the diagram for K1#K2 shown in Figure 8.2. From it, we get
a short exact sequence

0 −−−−→ CKh′(D1){1} −−−−→ CKh′(D2)
p−−−−→ CKh′(D3) −−−−→ 0

where D1 and D2 are both diagrams for K1#K2, and D3 is a diagram
for the disjoint union K1

∐
K2. Since Kh′(K1#K2) has rank two and

Kh′(K1

∐
K2) ∼= Kh′(K1)⊗Kh′(K2) has rank four, the resulting long exact

sequence must split, giving the short exact sequence of the lemma. It is clear
that the maps p∗ and ∂ are filtered of some degree, which can be worked out
by considering (for example) the case K1 = K2 = U .

Proof. (of Proposition 8.3.) Consider the exact sequence of the previous lemma
with K1 = K and K2 the unknot. Denote the canonical generators of K by
sa and sb, according to their label near the connected sum point, and the
canonical generators of U by a and b. Without loss of generality, we may
assume that s(sa− sb) = smax(K). From Figure 8.2, we see that ∂((sa− sb)⊗
a) = sa. Since ∂ is a filtered map of degree −1, we conclude that

s((sa − sb)⊗ a) ≤ s(sa) + 1

smax(K)− 1 ≤ smin(K) + 1

Since we already know that smax(K) 6= smin(K), this gives the desired result.
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8.2.2 Properties of s

We check that s behaves nicely with respect to mirror image and connected
sum.

Proposition 8.4. Let K be the mirror image of K. Then we have

smax(K) = −smin(K)

smin(K) = −smax(K)

s(K) = −s(K)

Proof. Suppose that C is a filtered complex with filtration C = C0 ⊃ C1 ⊃
. . . ⊃ Cn = {0}. Then the dual complex C∗ has a filtration {0} = C∗

0 ⊂ C∗
−1 ⊂

. . . ⊂ C∗
−n = C∗, where C∗

−i = {x ∈ C∗ | 〈x, y〉 = 0, ∀y ∈ Ci}.
To prove the proposition, we observe that the filtered complex CKh′(K) is

isomorphic to (CKh′(K))∗. Indeed, it is easy to see from equations (8.1),(8.2)
that there is an isomorphism

r : (V,m′,∆′)→ (V ∗,∆′∗,m′∗)

which sends v± to v∗
∓. Then if s is a state of the diagramK, we define R(s) to

be state of K obtained by applying r all the labels of s. It is straightforward to
check that the map R : CKh′(K)→ (CKh′(K))∗ is the desired isomorphism.
(Compare with Section 7.3 of [Kho1], where it is shown that CKh(K) ∼=
(CKh(K))∗.)

We now appeal to the following general result, whose proof is left to the
reader:

Lemma 8.4. If C1 and C2 are dual filtered complexes over a field, then their
associated spectral sequences E1

n and E2
n are dual, in the sense that E1

n
∼=

(E2
n)

∗.

Thus if the two surviving generators in E1
∞ have filtration gradings smin

and smax, the surviving generators in E2
∞ will have gradings −smax and

−smin.

Proposition 8.5.
s(K1#K2) = s(K1) + s(K2)

Proof. We use the short exact sequence of Lemma 8.3. Denote the canonical
generators of Ki by sia and sib, according to their label near the connected sum
point. It is not difficult to see that Kh′(K1#K2) has a canonical generator so
which maps to sa ⊗ sb under p∗. Thus

s(so)− 1 ≤ s(s1a ⊗ s2b)

smin(K1#K2)− 1 ≤ smin(K1) + smin(K2)
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Applying the same argument toK1 andK2, and using the fact that smin(K) =
−smax(K), we see that

smax(K1#K2) + 1 ≥ smax(K1) + smax(K2)

smin(K1#K2) + 3 ≥ smin(K1) + smin(K2) + 4

Thus

smin(K1#K2) = smin(K1) + smin(K1) + 1

smax(K1#K2) = smax(K1) + smax(K1)− 1.

This proves the claim.

8.3 Behaviour under cobordisms

Let L0 and L1 be two links in R3. An oriented cobordism from L0 to L1 is
a smooth, oriented, compact, properly embedded surface S ⊂ R3 × [0, 1] with
S∩(R3×{i}) = Li. In this section, we define and study a map φS : Kh

′(L0)→
Kh′(L1) induced by such a cobordism. Our construction follows Section 6.3
of [Kho1], where Khovanov describes a similar map for the homology theory
Kh.

8.3.1 Elementary cobordisms

Following Khovanov, we decompose the cobordism S into a series of el-
ementary cobordisms, each represented by a single move from one planar
diagram to another. (See [CS] for a more detailed treatment of this material).
For i ∈ [0, 1], let

Li = S ∩ (R3 × {i})
Si = S ∩ (R3 × [0, i]).

After a small isotopy of S, we can assume that Li is a link in R3 for all but
finitely many values of i. The orientation on S restricts to an orientation on
Si, which in turn determines an orientation on Li. We denote this orientation
by oi. (Note that with this convention, o0 is the inverse of the orientation
induced on L0 by S).

Next, we fix a projection p : R3 → R2. After a further small isotopy of
S, we can assume that p defines a regular projection of Li for all but finitely
many values of i, and that this set of special values is disjoint from the first set
where L failed to be a link. The isotopy type of the oriented planar diagram Li

remains constant except when L passes through one of the two types of special
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FIGURE 8.3: Local pictures for Morse moves.

values, where it changes by some well-defined local move. Each of these moves
corresponds to an elementary cobordism, so we can write the whole cobordism
S as a composition of elementary cobordisms.

The necessary moves may be subdivided into two types: Reidemeister
moves and Morse moves. There is one Reidemeister-type move for each of
the ordinary Reidemeister moves, as well as one for each of their inverses.
These moves do not change the topology of the surface Si. The Morse moves
correspond to the addition of a 0, 1 or 2-handle to Si. They are illustrated in
Figure 8.3.

8.3.2 Induced maps

Given a cobordism S from L0 to L1, we want to assign to it an induced map
φS : Kh′(L0) → Kh′(L1) which respects the filtration on Kh′. In addition,
we would like this assignment to be functorial, in the sense that if S is the
composition of two cobordisms S1 and S2, φS is the composition of φS1 and
φS2 . Thus it suffices to consider the case when S is an elementary cobordism.

Suppose that S is an elementary cobordism corresponding to the i-th Rei-
demeister move or its inverse. Then we define φS to be ρ′i∗ or its inverse. By
Proposition 8.2, this is a filtered map of degree 0. If S is an elementary cobor-
dism corresponding to a Morse move, then we take φS to be the map induced
by ψ : CKh′(L0) → CKh′(L1), where ψ is the result of applying the TQFT
A′ to the corresponding map of cubes. In other words, if the move corresponds
to the addition of a 0-handle or a 2-handle, we apply ι′ or ǫ′, respectively, to
the summand at each vertex of the cube. If it corresponds to the addition of
a 1-handle, we apply either m′ or ∆′, depending on whether the move results
in a merge or a split at the vertex in question. It is easy to see that φS is a
filtered map of degree 1 for a 0– or 2–handle addition and degree −1 for a
1–handle.

In general, given a cobordism S, we decompose it as a union of elementary
cobordisms: S = S1 ∪ S2 . . . ∪ Sk and define the induced morphism φS :
Kh′(L0)→ Kh′(L1) to be the composition φSk

◦ . . . ◦ φS1 , which is a filtered
map of degree χ(S). We expect that the map φS will depend only on the
isotopy class of S rel ∂S (c.f [Jac], where an analogous result is proved for the
Khovanov homology), but since we do not need this fact, we will not pursue
it here.
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8.3.3 Canonical generators

The maps φS behave nicely with respect to canonical generators.

Proposition 8.6. Suppose S is an oriented cobordism from L0 to L1 which
is weakly connected, in the sense that every component of S has a boundary
component in L0. Then φS([so0 ]) is a nonzero multiple of [so1 ].

Remark: Some sort of connectedness hypothesis is clearly necessary for the
proposition to hold. For example, if we take S to be the union of a product
cobordism and a trivially embedded sphere, the induced map on Kh′ is the
zero map.

Proof. In fact, we will prove a slightly stronger statement. Suppose i is a reg-
ular value for the cobordism S, so that Li is a link. We divide the components
of Si into two sorts: those of the first type, which have a boundary component
in L0, and those of the second type, which do not. We say that an orientation o
on Si is permissible if it agrees with the orientation of S on components of the
first type. (Here and in what follows, we use oI to denote both a permissible
orientation on Si and the orientation it induces on Li). We claim that

φSi
([so0 ]) =

∑

I

aI [soI ]

where {oI} runs over the set of permissible orientations on Si and each coef-
ficient aI is nonzero. Note that the weak connectivity hypothesis implies that
there is only one permissible orientation on S1, so the proposition is implied
by the claim.

To prove the claim, it suffices to check that if it holds for Si, then it holds
for Si′ as well, where S′

i is the composition of Si with a single elementary
cobordism Se. If this cobordism corresponds to a Reidemeister type move,
this is a straightforward consequence of Proposition 8.1. Below, we check that
it holds for each of the Morse-type moves as well.
0-Handle Move: In this case, φSe

(soI ) = soI ⊗ 1
2 (a − b), where the second

factor in the tensor product refers to the labels on the newly created circle.
Si′ has a new component of the second type — namely, the disk bounded
by the new circle — and soI ⊗ a and soI ⊗ b are the canonical generators
corresponding to the two possible orientations on Si′ which agree with oI on
all components other than the new one.
1-Handle Move: Suppose that the orientation oI is actually the orientation
oi induced by Si. Then the two strands involved in the move have opposite
orientations, so by Lemma 8.1, they must have the same label. Since

m′(a ⊗ a) = 2a ∆′(a) = a⊗ a

m′(b⊗ b) = −2b ∆′(b) = b⊗ b

we see that φSe
(soi) is a nonzero multiple of soi′ .
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More generally, the orientation oI is either compatible with some orienta-
tion oe on Se, or it is not. In the former case, the two strands involved in the
move point in opposite directions and have the same label, and φSe

(soI ) is a
nonzero multiple of so′

I
where o′I is the orientation induced on Li′ by oe. In

the latter case, the two strands point in the same direction and have different
labels, so φSe

(soI ) = 0.
Now we consider what happens to the components of Si during the move.

If the move splits one component of Li into two components of Li′ , then the
number and type of components of Si remain constant. In this case, the set of
permissible orientations on Si is naturally identified with the set of permissible
orientations on Si′ . There is always an orientation on Se compatible with oI ,
and φSe

(soI ) is a nonzero multiple of so′
I
.

On the other hand, if the move merges two components of Li into one
component of Li′ , there are several possibilities to consider. If the merge in-
volves only a single component of Si, the situation is like the one above: there
is always an orientation on Se compatible with oI , and φSe

(soI ) is a nonzero
multiple of so′

I
. The same argument applies when Se merges two components

of Si, both of which are of the first type.
Finally, suppose the merge joins two components of Si, at least one of

which is of the second type. Then the set of permissible orientations on Si′ is
only half as large as the set of permissible orientations on Si. If oI extends
to a permissible orientation o′I on Si′ , φSe

(soI ) = so′
I
, while if it does not,

φSe
(soI ) = 0.

2-Handle Move: In this case, a permissible orientation oI on Si extends to a
unique permissible orientation o′I on Si′ . Since ǫ

′(a) = ǫ′(b) = 1, φSe
(soI ) =

so′
I
. To prove the claim, it suffices to show that two permissible orientations

on S′
i cannot induce the same orientation on Li′ . But if this were the case, Si

would have a closed component, contradicting the hypothesis that S is weakly
connected.

Corollary 8.6. If S is a connected cobordism between knots K0 and K1, then
φS is an isomorphism.

Proof. Fix an orientation o on S. Then {so0, so0} is a basis for Kh′(K1). Its
image under φS is {k1so1 , k2so1} (k1, k2 6= 0), which is a basis forKh′(K2).

8.3.4 The slice genus

We can now prove the first two theorems from the introduction.

Proof. (of Theorem 8.1.) SupposeK ⊂ S3 bounds an oriented surface of genus
g in B4. Then there is an orientable connected cobordism of Euler character-
istic −2g between K and the unknot U in R3× [0, 1]. Let x ∈ Kh′(K)−{0} be
a class for which s(x) is maximal. Then φS(x) is a nonzero element of Kh′(U).
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Now φS is a filtered map with filtered degree −2g, so

s(φS(x)) ≥ s(x)− 2g.

On the other hand, smax(U) = 1, so

s(φS(x)) ≤ 1.

It follows that s(x) ≤ 2g + 1, so smax(K) ≤ 2g + 1 and s(K) ≤ 2g. To show
that s(K) ≥ −2g, we apply the same argument to K (which bounds a surface
S of genus g) and use the fact that s(K) = −s(K).

Proof. (of Theorem 8.3.) If K1 and K2 are concordant, then K1#K2 is slice,
so

0 = s(K1#K2) = s(K1)− s(K2).

Thus s gives a well-defined map from Conc(S3) to Z. That this map is a
homomorphism is immediate from Propositions 8.4 and 8.5.

Corollary 8.7. Suppose K+ and K− are knots that differ by a single crossing
change — from a positive crossing in K+ to a negative one in K−. Then

s(K−) ≤ s(K+) ≤ s(K−) + 1

Proof. In [Liv], Livingston shows that this skein inequality holds for any knot
invariant satisfying the properties of Theorems 8.1 and 8.3.

8.4 Computations and relations with other invariants

Although the invariant s(K) is algorithmically computable from a diagram
ofK, it is impossible to compute by hand for all but the smallest knots. In this
section, we describe some techniques which enable us to efficiently compute s.

8.4.1 Using Kh

For many knots, it is a simple matter to compute s(K) from the ordi-
nary Khovanov homology Kh(K). Although Kh(K) is also hard to com-
pute by hand, there are already a number of computer programs avail-
able for this purpose, including Bar-Natan’s pioneering program [BNk]
and a more recent, faster program written by Shumakovitch [Shu1], see
also [KnotScape, KnotPlot].

In [BNk], Bar-Natan made the following observation (cf. Conjecture 7.1),
based on his computations of Kh for knots with 10 and fewer crossings.
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Conjecture 8.1. (Bar-Natan) The graded Poincare polynomial PKh(K) of
Kh(K) has the form

PKh(K) = qs(K)(q + q−1) + (1 + tq4)QKh(K)

where QKh(K) is a polynomial with all positive coefficients.

In [Lee2], Lee showed that this conjecture holds whenever her spectral se-
quence for Kh′ converges after the E2 term. In this case, it is easy to see that
the invariant s(K) is equal to the exponent s(K) which appears in Bar-Natan’s
conjecture.

To see how widely applicable this condition is, we introduce the notion of
the homological width of a knot.

Definition 8.3. If K is a knot, let

µ(K) = {a− 2b | qatb be a monomial in PKh(K)}.

The width W (K) (cf. Definition 7.8) is one more than the difference between
the maximum and minimum elements of µ(K).

In other words, W (K) is the number of diagonals in the convex hull of the
support of Kh(K).

Proposition 8.7. If W (K) ≤ 3, then the spectral sequence for Kh′(K) con-
verges after the E2 term, and Rasmussen’s s(K) is the same as Bar-Natan’s.

Proof. SupposeW (K) has width ≤ 3. Then if x is an element of Kh′(K) with
q-grading a and homological grading b, the minimum possible q-grading of an
element with homological grading b−1 is a−6. Since the differential dn on the
En term of the spectral sequence lowers the q-grading by 4(n − 1), dn must
be trivial for all n ≥ 3.

Theorem 8.4 follows from this fact, since Lee has shown [Lee1] that if K is
an alternating knot, then it has width two and Bar-Natan’s s is equal to the
knot signature σ(K).

The proposition also applies to many non-alternating knots. Indeed, using
Shumakovitch’s tables and a computer, it is straightforward to check that
there are only four knots with 13 or fewer crossings whose width is greater
than three. Inspecting Kh of these four exceptions, one sees that in each case,
the spectral sequence must converge after the E2 term. Thus for all knots with
13 or fewer crossings, the value of s(K) agrees with the value of Bar-Natan’s
s tabulated in [BNk] and [Shu1]. Below, we list those knots of 11 crossings or
fewer for which s(K) 6= σ(K). There are 22 such knots, and |s(K)| > |σ(K)|
(and thus provides a better bound on the slice genus) for precisely half of
them.
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K s(K) σ(K) K s(K) σ(K) K s(K) σ(K)

942 0 2 11n9 6 4 11n70 2 4
10132 −2 0 11n12 2 0 11n77 8 6
10136 0 2 11n19 −2 −4 11n79 0 2
10139 8 6 11n20 0 −2 11n92 0 −2
10145 −4 −2 11n24 0 2 11n96 0 2
10152 −8 −6 11n31 4 2 11n138 0 2
10154 6 4 11n38 0 2 11n183 6 4
10161 −6 −4

Knots with 10 or fewer crossings are labeled according to their numbering
in Rolfsen, while those with 11 crossings use the Knotscape [KnotScape] num-
bering. The values of the signature are taken from [BNk]. All of the knots in
the table have a homological width of 3, which raises the following question: if
K has homological width 2 (i.e. is H-thin in the terminology of [Kho3]), must
s(K) = σ(K)?

8.4.2 Positive knots

If K is a positive knot, s(K) can be computed directly from the definition.
To see this, consider a canonical generator so for a positive diagram of K.
Since each crossing of K is positive, its oriented resolution is the 0-resolution.
Thus the state so lives in the extreme corner of the cube of resolutions: it
has homological grading 0, and there are no generators in CKh′(K) with
homological grading −1. It follows that the only class homologous to so is so
itself, so

smin(K) = s([so]) = q(so)

To compute q(so), we change back to the basis {v−,v+}. In the expansion
of so with respect to this basis, there is a unique state with minimal q-grading,
namely, the state in which every circle of the oriented resolution is labeled with
a v−. If the positive diagram of K has n crossings, and its oriented resolution
has k circles, then

q(so) = p(so) + gr(so) + n+ − n−

= −k + 0 + n− 0

so
s(K) = −k + n+ 1

On the other hand, Seifert’s algorithm gives a Seifert surface S for K with
Euler characteristic k − n, so

2g(K) ≤ 2g(S) = n− k + 1 = s(K) ≤ 2g∗(K)

Since g∗(K) ≤ g(K), the inequalities above must all be equalities. This com-
pletes the proof of Theorem 8.5.
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FIGURE 8.4: The Reidemeister I move and the map ρ′1.

8.5 Reidemeister moves

In this section, we prove the results involving Reidemeister moves which
were stated earlier.

Proof. (of Theorem 8.6.) The proof that the desired spectral sequence exists
was sketched before. To prove its invariance, we use the following basic lemma,
whose proof may be found in [McC], Proposition 3.2.

Lemma 8.5. Suppose F : C1 → C2 is a map of filtered complexes which
respects the filtrations. Then F induces maps of spectral sequences Fn : E

1
n →

E2
n, and if Fn is an isomorphism, Fm is an isomorphism for all m ≥ n.
In Section 4 of [Lee2], Lee proves the invariance of Kh′ by checking its

invariance under the three Reidemeister moves. For each move, she exhibits a
chain map between the complexes associated to the link diagram before and
after the move. To prove the theorem, it suffices to check that these maps
respect the q-filtration, and that they induce isomorphisms on the E2 terms.
The latter claim is straightforward, since in each case the induced maps on
the E1 terms are identical to the maps used in Section 5 of [Kho1] to prove
invariance of Kh. Below, we sketch the proof of invariance for each move and
explain why the maps in question respect the filtrations. For full details, we
refer the reader to [Kho1] and [Lee2].
Reidemeister I Move: Let L̃ be the diagram L with an additional left-hand curl
added in. Then CKh′(L̃) can be decomposed as a direct sum X1⊕X2, where
X2 is acyclic and X1 is isomorphic to CKh′(L) via the map ρ′1 : CKh

′(L)→
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X1 illustrated in Figure 8.4. In terms of the basis {v±}, we have

ρ′1(v−) = v− ⊗ v− − v+ ⊗ v+

ρ′1(v+) = v+ ⊗ v− − v− ⊗ v+

The corresponding map ρ1 in [Kho1] is given by

ρ1(v−) = v− ⊗ v−

ρ1(v+) = v+ ⊗ v− − v− ⊗ v+

so ρ′1 is filtration non-decreasing, and its induced map on E1 terms is ρ1.
Remark: There is another version of the first Reidemeister move, correspond-
ing to the addition of a right-hand curl. Although it is not difficult to define
an appropriate map ρ′1′ for this move directly, for the sake of brevity we adopt
the solution of [BNk] and [Lee2] and define it to be the composition of maps
induced by an appropriate Reidemeister II move followed by a Reidemeister I
move.
Reidemeister II Move: Let L and L̃ be as shown in Figure 8.5. In this case,
CKh′(L̃) can be decomposed as a direct sum X1⊕X2⊕X3, where X2 and X3

are acyclic and there is an isomorphism ρ′2 : CKh′(L) → X1, which is given
by

ρ′2(z) = (−1)gr(z)(z + ι(d′01→11(z)))

The maps ι and d′01→11 are shown in the figure. The isomorphism ρ2 in [Kho1]
has the same form, but with d01→11 in place of d′01→11. Since d− d′ is strictly
filtration increasing, it follows that ρ′2 is filtration non-decreasing, and its
induced map on E1 terms is ρ2.
Reidemeister III Move: Let L and L̃ be as shown in Figure 8.6. Then there
are direct sum decompositions

CKh′(L) ∼= X1 ⊕X2 ⊕X3

CKh′(L̃) ∼= X̃1 ⊕ X̃2 ⊕ X̃3

where X2, X3, X̃2, and X̃3 are acyclic and there is an isomorphism ρ′3 : X1 →
X̃1. To describe X1 and X̃1, we first define maps

β′ : CKh′(L100)→ CKh′(L010))

β̃′ : CKh′(L̃010))→ CKh′(L̃100)

by

β′ = ι ◦ d′100→110

β̃′ = ι ◦ d′010→110

Then

X1 = {x+ β′(x) + y |x ∈ CKh′(L(∗100)), y ∈ CKh′(L(∗1))}
X̃1 = {x+ β̃′(x) + y |x ∈ CKh′(L̃(∗010)), y ∈ CKh′(L̃(∗1))}
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FIGURE 8.5: The Reidemeister II move and the maps ι and d′01→11.

FIGURE 8.6: The Reidemeister III move. The relevant components of the
differentials (d′100→110 and d′010→110) are marked in bold.
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and
ρ′3(x+ β′(x) + y) = x+ β̃′(x) + y.

The isomorphism ρ3 in [Kho1] is defined similarly, except that it uses d instead
of d′ to define maps β and β′. Since d′ does not increase the q-grading, we
clearly have q(β′(x)) ≥ q(x). From this, it follows that ρ′3 does not decrease
the q-grading. Since d − d′ strictly increases the q-grading, the map induced
on E1 terms by ρ′3 is equal to ρ3. To finish the proof, we apply Lemma 8.5
three times: first to the inclusions X1 →֒ CKh′(L) and X̃1 →֒ CKh′(L̃), and
then to the map ρ′3.

Proof. (of Proposition 8.1.) We check the claim directly for each Reidemeister
move:
Reidemeister I Move: In this case, it is easy to see that ρ′1(so) = sõ.
Reidemeister II Move: Suppose that the two strands in L point in the same
direction. Then by Lemma 8.1, they have different labels, so d′01→11(so) = 0.
The oriented resolution of L̃ is contained in CKh′(L̃(∗01)) ∼= CKh′(L), so
ρ′2(so) = (−1)0(sõ) = sõ.

Now suppose the two strands point in different directions, so that they
have the same label. Let us assume for the moment that this label is a. Then
we define sĩj ∈ Kh′(L̃ij) to be the state which is identical to so outside the
area where the move takes place and has all components inside the area of the
move labeled with an a. Then a direct computation shows that either

ρ′2(so) = s0̃1 +
1

2
(s1̃0 − sõ)

= −1

2
(sõ + d′(s0̃0))

if the two strands belong to the same component, or

ρ′2(so) = s0̃1 + (s1̃0 − sõ)

= −(sõ + d′(s0̃0))

if they belong to different components. This proves the claim in the case where
both strands are labeled with an a. We leave it to the reader to check that a
similar argument applies when they are both labeled with a b.
Reidemeister III Move: Here there are three cases to consider. First, suppose
that the two overlying strands in L are oriented as shown in Figure 8.7a. Then
so ∈ CKh′(L1), and it is easy to see that ρ′3(so) = sõ.

Next, suppose that the three strands are oriented as shown in Figure 8.7b.
Then so ∈ CKh′(L100) and sõ ∈ CKh′(L̃010). Clearly β

′(so) = β̃′(sõ) = 0, so
so ∈ X1 and sõ ∈ X̃1. Again, it follows that ρ

′
3(so) = sõ.

Finally, suppose the strands are oriented as shown in Figure 8.7c. In this
case, the oriented resolution of L is in L010, and the oriented resolution of
L̃ is in L̃100. Inside the region under consideration, so looks like the state of
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FIGURE 8.7: Possible orientations for L and their respective canonical gen-
erators.

Figure 8.7c (perhaps with a’s and b’s inversed.) Our first step is to exhibit
some t ∈ X1 which is homologous to so. As before, we denote by sijk the unique
state of Lijk which is the same as so outside the area of the Reidemeister move
and has all its components inside this area labeled by a’s.

Assume for the moment that all three strands shown in L000 belong to
different components. In this case, we can take

t = so − 2s100 − s010 − 2s001 = so − d′(s000).

Indeed, β′(−2s100) = so − s010 and s001 ∈ CKh′(L1), so t ∈ X1. Then

ρ′3(t) = −2s0̃10 − 2β̃′(s0̃10)− 2s0̃01
= −2s0̃10 − 2s1̃00 + 2sõ − 2s0̃01
= 2sõ − d′(s0̃00)

which proves the claim.
We leave it to the reader to check that a similar argument applies to each

of the four other ways in which the segments outside the area of the move can
be connected, as well as when the roles of a and b are inversed. In each case,
it is not difficult to verify that ρ′3∗([s0]) is one of ±[sõ],±2[sõ], or ± 1

2 [sõ].

Proof. (of Proposition 8.2.) In the case of ρ′1∗ and ρ′2∗, the claim is immediate,
since these maps are induced by filtered chain maps. For the others, we use
the following

Lemma 8.6. Suppose f : C1 → C2 is a map of filtered chain complexes with
the property that the induced map of spectral sequences f2 : E

2
1 → E2

2 is an
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isomorphism. Then f−1
∗ is a filtered map with respect to the induced filtrations

on H∗(C1) and H∗(C2).

Proof. Since f2 is an isomorphism, f∞ (the induced map on the limiting term)
is as well. It follows that f∗ is an isomorphism. Suppose f−1

∗ does not respect
the filtration. Then there must be some x ∈ H∗(C1) whose filtration is strictly
increased by f∗. But this contradicts the fact that f∞ is an isomorphism.

The remaining cases now follow easily from the results used in the proof
of Theorem 8.6. Indeed, ρ′1 and ρ′2 both induce isomorphisms of E2 terms,
and ρ′3∗ = ι1∗ ◦ ψ∗ ◦ ι−1

2∗ , where ι1, ι2, and ψ all induce isomorphisms of E2

terms.





Part II

Theory of braids
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Chapter 9

Braids, links and representations of

braid groups

9.1 Four definitions of the braid group

In the previous chapters, we considered only one way of encoding links,
namely, link planar diagrams.1 In the present chapter, we are going to give an
introduction to the theory of braids. On one hand, this theory gives us another
point of view to knot theory. On the other hand, the theory of braids has some
nice intrinsically interesting properties which are worth studying. Namely,
the braid groups can be defined in many ways that lead to connections with
different theories. Below, we are going to give some definitions of the braid
groups and to discuss some of their properties.

9.1.1 Geometrical definition

Consider the lines {y = 0, z = 1} and {y = 0, z = 0} in R3 and choose m
points on each of these lines having abscissas 1, . . .m.

Definition 9.1. An m–strand braid is a set of m non-intersecting smooth
paths connecting the chosen points on the first line with the points on the
second line (in arbitrary order), such that the projection of each of these
paths to Oz represents a diffeomorphism.

These smooth paths are called strands of the braid.

An example of a braid is shown in Fig. 9.1.
It is natural to consider braids up to isotopy in R3.

Definition 9.2. Two braids B0 and B1 are equal if they are isotopic; i.e., if
there exists a continuous family of braids Bt, {t ∈ {0, 1}} of braids starting at
B0 and finishing at B1.

Definition 9.3. The set of all m–strand braids generates a group. The oper-
ation in this group is just juxtaposing one braid under the other and rescaling
the z–coordinate.

1Later, we shall also use the d–diagrams mentioned in the Introduction

133
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FIGURE 9.1: A braid

FIGURE 9.2: Unity. Operations in the braid group

The unit element or the unity of this group is the braid represented by
all vertical parallel strands. The inverse element for a given braid is just its
mirror image; see Fig. 9.2.

Exercise 9.1. Check that the group structure on the set of braids is well
defined.

Definition 9.4. The Artin m–strand braid group2 is the group of braids with
the operation defined above.

Notation: Br(m).

One can consider only braids whose strands connect points with equal
abscissas.

Definition 9.5. These braids are said to be pure. Pure braids form a subgroup
of the braid group.

Notation: PB(m).

2In fact, there are other braid groups called Brieskorn braid groups. They are closely
connected with Coxeter–Dynkin diagrams and symmetries. For more details see [Bri1, Bri2]
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9.1.2 Topological definition

Definition 9.6. Given a topological space X , the unordered m–configuration
space for X is the space (endowed with the natural topology) of all unordered
sets of m pairwise different points of X .

Notation: B(X,m).
Analogously, one can define the m–ordered configuration space.
Notation: F (X,m).

Now, let X = R2 = C1.

Definition 9.7. The m–strand braid group is defined to be isomorphic to the
fundamental group π1(B(X,m)).

Definition 9.8. The group π1(F (X,m)) is called the pure m–strand braid
group.

9.1.3 Algebro–geometrical definition

Consider the set of all polynomials of degree m in one complex variable z
with leading coefficient equal to one.

Obviously, this set (together with its intrinsic topological structure) is
isomorphic to Cn: its coefficients can be considered as its complex coordinates.

Now, delete the space Σm of all polynomials that have multiple roots (at
least one). We obtain the set Cm\Σm.

Definition 9.9. The m–strand braid group is the group π1(C
m\Σm).

9.1.4 Algebraic definition

Definition 9.10. The m–strand braid group is the group given by the pre-
sentation with (m− 1) generators σ1, . . . , σm−1 and the following relations

σiσj = σjσi

for |i− j| ≥ 2 and

σiσi+1σi = σi+1σiσi+1

for 1 ≤ i ≤ m− 2.
These relations are called Artin’s relations.

Definition 9.11. Words in the alphabet of σ’s and σ−1’s will be referred to
as braid words.

9.1.5 Equivalence of the four definitions

Theorem 9.1. The four definitions of the braid group Br(m) given above are
equivalent.
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t

FIGURE 9.3: A braid in 3–space

Proof. The easiest part of the proof is to establish the equivalence of the
topological and algebro–geometric definitions. Indeed, it is obvious that the
two spaces, the space of polynomials of degree m without multiple roots with
leading coefficient one and the unordered m–configuration space for C1, are
homeomorphic. Thus, their fundamental groups are isomorphic.

Let us now show the equivalence of the geometrical and topological defini-
tions. As we know, the fundamental group does not depend on the choice of
the base point in the connected space. Thus, the base point A of the unordered
m–configuration space can be chosen as the set of integer points (1, 2, . . . ,m).
Consider the space R3 as the product C1 × R1.

With each closed loop, outgoing from A and lying in B(C1,m), let us asso-
ciate a set of lines in R3 as follows. Each of these (curvilinear) lines represents
the motion of a point on the complex line C1 with respect to the time t, where
t is the real coordinate; see Fig. 9.3.

Thus, with each topological braid we have uniquely associated a geometric
braid. Obviously, with two homotopic (equal) topological braids we associate
the same geometric braids.

So, it remains to show the equivalence of geometric and algebraic notions.
In order to do this, let us introduce the notion of the planar braid diagram,
analogous to the planar link diagram.

To see what this is, let us project a braid on the plane Oxz.
In the general case we obtain a diagram that can be described as follows.

Definition 9.12. A braid planar diagram (for the case ofm strands) is a graph
lying inside the rectangle [1,m]× [0, 1] endowed with the following structure
and having the following properties:
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FIGURE 9.4: Generators of the braid group

1. Points (i, 0) and (i, 1), i = 1, . . . ,m, are vertices of valency one; the other
points of type (x, 0) and (x, 1) are not graph vertices.

2. All other graph vertices (crossings) have valency four; opposite edges at
such vertices make angles π.

3. Unicursal curves; i.e., lines consisting of edges of the graph, passing from
an edge to the opposite one, go from vertices with ordinate one and come
to vertices with ordinate zero; they must be descending.

4. Each vertex of valency four is endowed with an over– and undercrossing
structure.

Analogously to the planar isotopy of link diagrams, one defines the planar
isotopy of braid diagrams.

Obviously, all isotopy classes of geometrical braids can be represented by
their planar diagrams. Moreover, after a small perturbation, all crossings of
the braid can be set to have different ordinates.

It is easy to see that each element of the geometrical braid group can be
decomposed into a product of the following generators σi’s: the element σi for
i = 1, . . . ,m− 1 consists of m − 2 segments connecting (k, 1) and (k, 0), k 6=
i, k 6= i+ 1, and two segments (i, 0)− (i + 1, 1), (i + 1, 0)− (i, 1), where the
latter goes over the first one; see Fig. 9.4.

Different braid diagrams can generate the same braid. Thus we obtain
some relations in σ1, . . . , σm.

Let us suppose that we have two equal geometrical braids B1 and B2. Let
us represent the process of their isotopy in terms of their planar diagrams.
Each interval of this isotopy either does not change the disposition of their
vertex ordinates, or in this interval at least two crossings have (in a moment)
the same ordinate; in the latter case the diagram becomes irregular.

We are interested in those moments where the algebraic description of our
braid changes. We see that there are only three possible cases (all others can
be reduced to these ones). In the first case (see Fig. 9.5.a) just one couple
of crossings has the same ordinate. In the second case (see Fig. 9.5.b), two
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· · · ←→ · · ·a
←→ ←→

b

←→ ←→ ←→c

FIGURE 9.5: Intuitive expression of braid diagram isotopies

strands are tangent. In the third case (Fig. 9.5.c) we have a triple intersection
point.

It is easy to see that the first case gives us the relation σiσj = σjσi, |i−j| ≥
2 (this relation is called far commutativity) or an equivalent relation σ±1

i σ±1
j =

σ±1
j σ±1

i , |i− j| ≥ 2, in the second case we get aa−1 = 1 (or a−1a = 1), and in
the third case we obtain one of the following three relations:

σiσi+1σi = σi+1σiσi+1,

σiσi+1σ
−1
i = σ−1

i+1σiσi+1, σ−1
i σi+1σi = σi+1σiσ

−1
i+1.

Obviously, each of the latter two relations can be reduced from the first
one. This simple observation is left to the reader as an exercise. This completes
the proof of the theorem.

In them–strand braid group one can naturally define the subgroup PB(m)
of pure braids.

Exercise 9.2. Show that PB(m) is a normal subgroup in Br(m), and the
quotient group Br(m)/PB(m) is isomorphic to the permutation group S(m).

9.1.6 The stable braid group

For natural numbers m < n, there exists the natural embedding Br(m) ⊂
Br(n): a braid from Br(m) can be treated as a braid from Br(n) where the
last (n−m) strands are vertical and unlinked (separated) with the others.

Definition 9.13. The stable braid group Br is the limit of groups Br(n) as
n→∞ with respect to these embeddings.
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i j

FIGURE 9.6: Generator bij of the pure braid group

The group Br has a presentation with generators σ1, σ2, . . . , and the fol-
lowing relations σiσj = σjσi for |i − j| ≥ 2, σiσi+1σi = σi+1σiσi+1.

9.1.7 Pure braids

With each braid one can associate its permutation: this permutation takes
an element k to m if the strand starting with the k–th upper point ends at
the m–th lower point.

Definition 9.14. A braid is said to be pure (cf. Subsection 9.8) if its permu-
tation is identical. Obviously, pure braids generate a subgroup PBn ⊂ Bn.

There are other interpretations of PBn. For instance, instead of the con-
figuration space of unordered points of R2, one can consider the configuration
space of ordered points.

The fundamental group of this space is obviously isomorphic to PBn.
An interesting problem is to find an explicit finite presentation of the pure

braid group on n strands.
Here we shall present some concrete generators (according to [Art2]). A

presentation of this group can be found in e.g. [Maka].
Pure n–strand braids correspond to loops in the space of ordered point

sets on the plane. They generate a finite–index subgroup in the braid group.
There exists an algebraic Reidemeister–Schreier method that allows us to

construct a presentation of a finite–index subgroup having a presentation of
a finitely defined group, see e.g [CF].

Here we give some generators of the pure braid group [Art1].
The following theorem holds.

Theorem 9.2. The group PB(m) is generated by braids

bij , 1 ≤ i < j ≤ n (9.1)

(see Fig. 9.6).

To prove the theorem, we shall use induction on the number n of strands.
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σ1σ2σ2σ1 = b12b13

FIGURE 9.7: Decomposing a pure braid

For n = 2 the statement is obvious: each 2–strand pure braid is some power
of the braid b12 = σ2

1 .
Assume that the statement is proved for some n. Consider some pure

(n+ 1)–strand braid dn+1. If we delete the first strand of it, we obtain some
pure n–strand braid an. Now we can write dn+1 = (dn+1an

−1)an. By the
induction hypothesis, the braid an can be decomposed in generators (9.1). The
last n strands of dn+1an

−1 are unlinked. Let us straighten them; i.e., make
them vertical. In this case, the first strand is braided around them. Now, it is
easy to see that this braid can be represented as a product of b1j , b

−1
1j . This can

be done as follows: every time when the first strand goes under some strand,
it must be pulled back under all strands until the left margin, and after that
returned to the previous place under all strands; see Fig. 9.7.

Thus, the product dn+1 can be decomposed in bij , b
−1
ij .

9.1.7.1 Pure braid groups and mapping classes

Now, let us give another description of the pure braid group (see, e.g.,
[PS]).

Denote by Hn the group of isotopy classes of homeomorphisms of the n–
punctured disc on itself, identical on the boundary. It turns out that the pure
braid group is closely connected with Hn. First, let us consider H0.

Theorem 9.3 (Alexander’s theorem on homeomorphism). The group H0 is
isomorphic to the unity group; i.e., each homeomorphism of the disc that is
identical on the boundary is homotopic to the identity map; moreover, such a
homotopy can be found among those identical on the boundary.

Proof. Consider the disc |z| ≤ 1 in the complex space C1. Let h0 be the
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FIGURE 9.8: Thickened braid

identity map and h1 be an arbitrary homeomorphism of the disc onto itself
that is identical on the boundary. According to a known theorem, h1 has a
fixed point inside the circle. Without loss of generality, let us assume that
this point coincides with the centre of the circle. Now, let us construct our
homotopy. For t ∈ (0, 1), let us construct the homeomorphism ht as follows:
ht is identical inside the ring t ≤ |z| ≤ 1. Inside the disc |z| ≤ t we decree
ht(z) = t(h1(

z
t )). Obviously, ht is a homotopy that satisfies the condition of

the theorem.

Let us consider now the group Hn. Let g ∈ Hn be a homeomorphism of
the n–punctured disc that is identical on the boundary of the punctured disc;
i.e., on the boundary of the disc and on the boundaries of the holes. This
homeomorphism can be extended to the homeomorphism of the entire disc,
since g can be extended from the boundary of any hole to the hole itself (this
can be done, say, by mapping the interior of the hole identically). Denote the
obtained homeomorphism by h1.

According to the previous theorem, there exists an isotopy ht, connecting
h1 with h0 = id. Fix the points x1, . . . , xn inside the holes. For each i =
1, . . . , n the set (t, ht(xi)), 0 ≤ t ≤ 1 is an arc connecting the points on the
upper and lower base of the cylinder I × D, where I is the interval of time
and D is the disc. In Fig. 9.8 the spurs of fixed points are shown.

Thus we have obtained a pure braid. This braid “knows” a lot about h,
but not all. Actually, during the isotopy one can watch the moving of the fixed
point of the circle. The circle turns around and its spur represents a cylinder.
To describe h up to isotopy, it is sufficient to consider all cylinders and to
mark the spurs of fixed points on their boundaries. The pure braid with this
additional information is called a thickened braid.

Obviously, to each homeomorphism of the disc with n punctures that is
identical on the boundary there corresponds some thickened braid.
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FIGURE 9.9: Dehn twisting

The inverse statement is true as well. Let us show that with each thickened
braid one can associate such a homeomorphism.

Without loss of generality, assume that the thickened braid does not leave
the cylinder. The bases of the cylinder are discs with n circular holes.

Let us lower the circle with holes in such a way that the points of the inte-
rior boundary move vertically downwards parallel to the axis of the cylinder,
and the disc always stays planar. The boundaries of these holes move down-
wards and twist following the point of the strand. When the circle reaches the
lower base, we obtain the required homeomorphism.

Let M2 be an orientable 2–manifold (with or without boundary) and γ
be a closed curve lying inside M2. Consider a small neighbourhood U of the
curve γ that is homeomorphic to S1 × [0, 1]. Let γ1 and γ2 be the boundaries
of this neighbourhood.

Definition 9.15. The Dehn twisting of a 2–surface M2 along a curve γ is
the homeomorphism of M2 onto itself, which is constant outside U that is
represented by a full–turn twist of the curve γ2 with curve γ1 fixed inside U .
It is shown in Fig. 9.9 how the Dehn twisting acts on curves connecting a
point from γ1 with a point from γ2. In this figure, we show the image of the
straight line connecting two circles.

A typical example of Dehn’s twisting is the homeomorphism of a torus
generated by twisting along the meridian; see Fig. 9.10.

Remark 9.1. The group of thickened braids is an extension of the pure braid
group PBn. Moreover, it is easy to check that Hn is the direct sum of PBn

and Zn (each group Z corresponds to twistings along boundaries of holes).

Remark 9.2. Actually, the braid group can be considered as the mapping
class group of the punctured disc. Namely, we consider all homeomorphisms
of the punctured disc Pn onto itself which are identical on the boundary and
then factorise these homeomorphismsms by homeomorphisms isotopic to the
identity.

This approach is discussed in the book [Bir1]. This allows us to construct
various representations of braid groups, and to solve some problems.

To clarify the situation completely, we have to prove the following theorem.
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FIGURE 9.10: Twisting a torus along the meridian

FIGURE 9.11: Twisting curve for the generator bij

Theorem 9.4. The group Hn is generated by twistings along a finite number
of closed curves in the circle.

Proof. As it was proved before, the group Hn is isomorphic to the group
of thickened braids. Suppose the homeomorphism h ∈ Hn corresponds to
thickened braid α′

n which is the sum αn + α, where αn ∈ PBn, and a ∈ Zn.
The pure braid αn can be represented in generators bij that correspond to
twisting along curves going once around points i and j; see Fig. 9.11.

The thickened braid α is generated by the full–turn Dehn twisting along
the curve going around the point a.

Summarising the facts described above, we obtain the claim of the theorem.
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FIGURE 9.12: A braid closure

9.2 Links as braid closures

With each braid diagram, one can associate a planar knot (or link) diagram
as follows.

Definition 9.16. The closure of a braid b is the link Cl(b) obtained from b
by connecting the lower ends of the braid with the upper ends; see Fig. 9.12.

Obviously, isotopic braids generate isotopic links.

Remark 9.3. Closures of braids are usually taken to be oriented: all strands
of the braid are oriented from the top to the bottom.

Some links generate knots; the others generate links. In order to calculate
the number of components of the corresponding link, one should take into
account the following simple observation. In fact, there exists a simple natural
epimorphism from the braid group onto the permutation group Σ : Br(n) →
Sn, defined by σi → si, where si are natural generators of the permutation
group.

Consider a braid B. Obviously, for all numbers p belonging to the same
orbit of the natural permutation action (of Σ(B)) on the set 1, . . . , n, all upper
vertices with abscissas (p, 0) belong to the same link component.

Consequently, we obtain the following proposition.

Proposition 9.1. The number of link components of the link of the closure
Cl(B) equals the number of orbits of action for Σ(B).

Exercise 9.3. Construct braids whose closures represent both trefoils and the
figure eight knot.
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FIGURE 9.13: Representing the connected sum of braids

Obviously, non–isotopic braids might generate isotopic links. We will touch
on this question later.

An interesting question is to define the minimal number of strands of a
braid whose closure represents the given link isotopy class L. Denote this
number by Braid(L).

An interesting theorem on this theme belongs to Birman and Menasco.

Theorem 9.5. For any knots K1 and K2, the following equation holds:

Braid(K1#K2) = Braid(K1) +Braid(K2)− 1.

In Fig. 9.13 we show that if the knot K1 can be represented by an n–strand
braid, and K2 can be represented by an m–strand braid, then K1#K2 can be
represented by an (n+m− 1)–strand braid. This proves the inequality “≤”.

A systematic study of links via braid closures (including Markov’s
and Alexander’s theorems, which will be discussed later) was done
in the series of works by Birman [Bir3] and Birman and Menasco
[BM1],[BM2],[BM3],[BM4],[BM5].

9.3 Braids and the Jones polynomial

First, let us formulate the celebrated Alexander and Markov theorems that
we will use in this section.
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FIGURE 9.14: Markov’s moves

Theorem 9.6 (Alexander’s theorem, proof will be given later). For each link
L, there exists a braid B such that Cl(B) = L.

Theorem 9.7 (Markov’s theorem, proof will be given later). The closures of
two braids β1 and β2 represent isotopic links if and only if β1 can be trans-
formed to β2 by using a sequence of two transformations (Markov’s moves),
shown in Fig. 9.14 (on the right, both types of the additional crossing are
admissible).

The main idea for constructing the Jones two–variable polynomial is the
following. One can consider some functions looking like representations of
braid groups and investigate their properties. It turns out that some of these
functions (so–called Ocneanu’s trace) have a good behaviour under Markov’s
moves. This idea was given to Jones by Joan Birman and led to the beautiful
discovery of the Jones polynomial.

First, let us note that if we add the relations σ2
i = 1 to the standard

presentation of the braid group Bn, we obtain the permutation group Sn.

Definition 9.17. The Hecke algebra H(q, n) is the algebra generated by the
following presentation:

〈g1, . . . , gn−1|g2i = (q − 1)gi + q,

i = 1, . . . , n− 1, gigi+1gi = gi+1gigi+1, i = 1, 2, . . . , n− 2,

gigj = gjgi, |i− j| ≥ 2〉. (9.2)

Remark 9.4. Jones uses different (inverse) notation for the braid generators;

namely, σi = and σ−1
i = .

Let us now formulate the theorem on Ocneanu’s trace.

Theorem 9.8 (Ocneanu, [HOMFLY]). For each z ∈ C there exists a linear
trace tr (that can be treated as a function in z, q) on H(q, n) uniquely defined
by the following axioms:
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1.
tr(ab) = tr(ba);

2.
tr(1) = 1;

3.
tr(xgn) = ztr(x)

for any
x ∈ H(q, n).

Below, we present the proof of Jones [Jon1]. This proof differs slightly
from the original Ocneanu proof and leads to the construction of the Jones
polynomial.

Proof. The main idea of the proof is the following. If we add the new relations
g2i = e to the braid group (with generators gi instead of σi), we get exactly
the permutation group. This group is finite and quite pleasant to work with.

Namely, all elements of the permutation group with generators
p1, . . . , pn−1, where pi permutes the i–th and (i + 1)–th elements, have a
unique representation of the form:

{(pi1pi1−1 . . . pi1−k1)(pi2 . . . pi2−k2) . . . (pij . . . pij−kj
)}

for some
1 ≤ i1 < i2 < · · · < ij ≤ n− 1.

But, in the Hecke algebra we have another quadratic relation instead of g2i = 1:

g2i = (q − 1)gi + q. (9.3)

It turns out that this one is not worse than that of the symmetric group.
Namely, each braid can be reduced to “basic” braids with some coefficients,
for which we can easily define the Ocneanu trace.

This set of “basic” braids consists of just the same words as in the permu-
tation group

{(gi1gi1−1 . . . gi1−k1)(gi2 . . . gi2−k2) . . . (gip . . . gip−kp
)} (9.4)

for

1 ≤ i1 < i2 < · · · < ip ≤ n− 1.

It is sufficient to prove that for any word W of type (9.4) and for any
generator gi, the words Wgi and Wg−1

i can be represented as linear com-
binations of words of type (9.4). Actually, taking into account the relation
g2i = (q − 1)gi + q, it is sufficient to consider only the first case.

Now, suppose W is decomposed as a product W1 · · ·Wk, where the gi’s in
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eachWj have decreasing order, and the first letters of theWi’s have increasing
order (according to (9.4)). After this, the additional generator gi can be “taken
through” Wk. Then we take it through Wk−1, . . . until the procedure stops.

For the sake of simplicity suppose the word Wk looks like

(gi1gi1−1 . . . gi1−k1).

Then in the case i = i1 − k1 − 1, the new generator is just added to the word
Wk, so there is nothing to prove.

If i > i1, then the word Wgi is already of type (9.4) because gi can be
treated as a new word Wk+1.

If i < i1− k1− 1, then we commute gi with the word Wk and do not make
any further changes with Wk: we shall work only with W1 . . .Wk−1gi.

In the case when i = i1 − k1, the situation is again simple: at the end we
obtain g2i which can be transformed into a linear combination of gi and e. So,
the whole word will be (q−1)W +qW1 . . .Wk−1W

′
k, where underW

′
k we mean

gi1 . . . gi1−k1+1 (if k1=0, this word is empty).
In the case when i1 − k1 + 1 ≤ i ≤ i1, we have the following situation: we

commute gi with the last elements of Wk while possible, and then obtain the
following subword in Wk: gigi−1gi, which equals gi−1gigi−1. Now, all letters
in Wk before these subwords commute with gi−1. So, we can take gi−1 to the
left.

Thus, we have obtained a linear combination of words W1 . . .Wk−1gi′Wk

andW1 . . .Wk−1giW
′
k for some i′. In all these cases i′ is smaller than the index

of the first letter in Wk.
The next step is just as the previous one: we take gi′ through Wk−1. Then

we perform the same withWk−2 and so on. The only thing we have to mention
here is that the letter on the left side has an index always smaller than the
initial letter of the last passed word Wj .

Thus we see that the dimension of H(q, n) equals n! (the number of per-
mutations). The proof of the fact that the algebra does not collapse at all is
well established. It can be found, e.g. in [Bou].

The construction above shows that for (n+1)–strand braids it is sufficient
to consider only those generators containing the generator gn once. Now, we
are ready to define Ocneanu’s trace explicitly (by using the induction method
on the number of strands) by means of the following initial formulae:

tr(1) = 1

and
tr(xgny) = z · tr(xy)

for all x, y ∈ H(q, n).
The main problem is to prove the property tr(ab) = tr(ba). By induction

(on n), let us suppose that it is true for x, y ∈ H(q, n).
Now, the only case that does not follow immediately from the definition

is tr(gnxgny) = tr(xgnygn). Namely, when we wish to show that for some
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element A ∈ H(n+ 1) for any B ∈ H(n+ 1) we have tr(AB) = tr(BA) it is
sufficient to check it only for B = gn and for B ∈ Hn. The latter follows from
the definition.

It suffices to prove this for the case when one multiplicator is gn and the
other one lies in Hn−1. Obvously, it is sufficient to consider the following three
cases:

1. x, y ∈ Hn−1;

2. one of x, y lies in Hn−1, the other equals agn−1b;

3. x = agn−1b, y = cgn−1d, where a, b, c, d ∈ Hn−1.

The first case is trivial because the generator gn commutes with all ele-
ments from Hn−1.

In the second case (we only consider the case when y ∈ Hn−1, so y com-
mutes with gn; the case x ∈ Hn−1 is completely analogous to the first one)
we have:

tr(gnagn−1bgny)

= tr(agngn−1gnby) = tr(agn−1gngn−1by)

= z · tr(ag2n−1by)

= (q − 1)z · tr(agn−1by) + qz · tr(aby)
and

tr(agn−1bgnygn)

= tr(agn−1bg
2
ny) = (q − 1)tr(agnbgn−1y) + qtr(agn−1by)

= z(q − 1)tr(agn−1by) + qz · tr(aby).
Finally, in the third case we have

tr(gnagn−1bgncgn−1d)

= tr(agngn−1gnbcgn−1d) = tr(agn−1gngn−1bcgn−1d)

= z · tr(ag2n−1bcgn−1d) =

= z(q − 1)tr(agn−1bcgn−1d) + zq · tr(abcgn−1d) =
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z(q − 1)tr(agn−1bcgn−1d) + z2q · tr(abcd)
and

tr(agn−1bgncgn−1dgn)

= tr(agn−1bcgngn−1gnd) = tr(agn−1bcgn−1gngn−1d)

= z · tr(agn−1bcg
2
n−1d) =

= z(q − 1)tr(agn−1bcgn−1d) + zq · tr(agn−1bcd) =

= z(q − 1)tr(agn−1bcgn−1d) + z2q · tr(abcd).
Thus, we have completed the induction step and defined correctly the

Ocneanu trace.
This completes the proof of the theorem.

It follows directly from the proof that properties 1,2, and 3 allow us to
calculate the trace for any given element of H(q, n). Actually, first we trans-
form this element to a combination of some “basic” braids. Then we use the
formula tr(xgny) = ztr(xy) and reduce our problem to the case of braids with
a smaller number of strands. Then we just apply the induction method on the
number of strands.

Exercise 9.4. Let us calculate tr(g1g2g3g2). We have:

tr(g1g2g3g2)

= z · tr(g1g22) = z(q − 1)tr(g1g2) + zq · tr(g1)

= z3(q − 1) + z2q.

Let us consider oriented links as braid closures. In order to construct a link
invariant, one should check the behaviour of some function defined on braids
under the two Markov moves.

The function tr is perfectly invariant under the first Markov move (conju-
gation). Besides, it behaves quite well under the second move. The only thing
to do now is the normalisation.

Let us normalise all gi’s in such a way that both types of the second Markov
move affect the Ocneanu trace in the same way. To do this, let us introduce a
variable Θ such that tr(Θgi) = tr((Θgi)

−1).
Simple calculations give us
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Θ2 =
( z−(q−1)

q )

z
=
z − q + 1

qz
.

Let us make a variable change. Namely, let λ = Θ2.
Now we are ready to define the invariant polynomial.

Definition 9.18. The Jones two–variable polynomial XL(q, λ) of an oriented
link L is defined by

XL(q, λ) =

(
− 1− λq√

λ(1− q)

)n−1

(
√
λ)etr(π(a)),

where α ∈ Bn is any braid whose closure is L, e is the exponent sum of α as
a word on the σi’s and π the presentation of Bn to Hn : π(σi) = gi.

Notation. To denote the value of a polynomial on a link L, we put L in
the lower index of the letter, denoting the polynomial. We do it for the sake of
convenience because we are going to consider polynomials in some variables
that will be put in brackets.

The invariance of X under conjugation is obvious (because of invariance
of trace) and the invariance of X under the second Markov move follows
straightforwardly from the properties of tr.

Theorem 9.9. For any Conway triple, the Jones two–variable polynomial
satisfies the following skein relation:

1√
λq
·X −

√
λqX =

q − 1√
q
X .

Proof. Indeed, consider three diagrams that differ at one crossing: has σi,

has σ−1
i and has no crossing at all.

So, X =
√
λtr(gi)M,X = 1√

λ
tr(g−1

i )M,X = M , where M is

common for all three diagrams.
Then, writing down the Hecke algebra relation gi = (q − 1) + qg−1

i , we
obtain the desired result.

Let us prove now that the HOMFLY-PT polynomial satisfies a certain
skein relation. Indeed, let t =

√
λ
√
q, x = (

√
q − 1√

q ). Denote XL(q, λ) by

PL(t, x). This is the famous HOMFLY-PT polynomial [HOMFLY].

Theorem 9.10. The following skein relation holds:

t−1P − tP = xP .

The proof is quite analogous to that described above.
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9.4 Representations of the braid groups

9.4.1 The Burau representation

The most natural way to seek a representation of the braid group is the
following. One considers the braid groupBn (≡ Br(n)) and tries to represent it
by matrices n×n. More precisely, one takes σi to some block–diagonal matrix
with one 2 × 2 block lying in two rows (i, i + 1) and two columns (i, i + 1)
and all the other (1 × 1) unit submatrices lying on the diagonal. Obviously
this implies the commutation between images of σi, σj when |i − j| ≥ 2. If
one takes all σi having the same (2 × 2)–block (in different positions), then
we shall only have to check the relation σ1σ2σ1 = σ2σ1σ2 for 3× 3–matrices.
Thus we can easily obtain the representation where the block matrix looks
like

(
1− t t
1 0

)
.

This representation is called the Burau representation of the braid group. It
was proposed by Burau, [Bura].

The faithfulness of this representation has been an open problem for a long
time. In [Bir1], Joan Birman proved that it was faithful for the case of three
strands.

In [Moo91], Moody found the first example of a kernel element for this
representation.

To date, the problem is solved positively for n ≤ 3 and negatively for n ≥ 5;
see, e.g. [Big1]. The case n = 4 still remains open. In [Big2], Stephen Bigelow
shows that this problem is equivalent to the question of whether the Jones
polynomial detects the unknot; i.e. Bigelow proved the following theorem.

Theorem 9.11. [Big2] The Jones polynomial in one variable detects the un-
knot if and only if the Burau representation is faithful for n = 4.

Besides this, Bigelow thinks that faithfulness of the Burau representation
in this case seems to be beyond the reach of any known computer algorithm.

Here we shall demonstrate the proof for the case n = 3 and give a coun-
terexample for n = 5, following Bigelow [Big1, Big2].

First, let us consider the following description of the braid group and the
Burau representation. Denote byDn the unit complex discD with n punctures
x1, . . . , xn on the real line. The set of all automorphisms of Dn considered up
to isotopy is precisely the braid group Bn. Let d0 (the base point) be −i.

Now, the Burau representation can be treated as follows. The group π1(Dn)
is a free group with n generators. For each loop γ ∈ π1(Dn) one can consider
the number of full turns in γ in the counterclockwise direction, or, equivalently,
the number of generators in any word representing γ. Thus, there exists a
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homomorphism h : Bn → Z. So, one can construct a cover B̃n → Bn with
the action of Z on it. This group has a generator 〈q〉. Let us consider the
groupH1(B̃n). According to the arguments above, this group admits a module
structure over Z[q, q−1]. Let d̃0 be a preimage of d0 under h.

The Burau representation is just obtained from module homomorphisms.
More precisely, let β̄ be a homomorphism representing the braid β ∈ Bn. The
induced action of β̄ on π1(Dn) satisfies h ◦ β̄ = h. Thus, there exists a unique

lift β̂ of β̄ such that the following diagram is commutative:

(D̃n, d̃0)
β̂→ (D̃n, d̃0)

↓ ↓
(Dn, d0)

β̄→ (Dn, d0).
.

Furthermore, β̂ commutes with the action of q. Thus, β̂ induces a Z[q±1]–

module homomorphism denoted by β̂∗. Thus, we can define the Burau repre-
sentation just as

Burau(β) = β̂∗.

It is not difficult to check that this definition of the Burau representation
coincides with the initial one.

Now let us prove that this representation is faithful in the case of three
strands. First, let us introduce the notation of [Big2].

Definition 9.19. A fork is an embedded tree F in D with four vertices
d0, pi, pj, z such that:

1. the only puncture points of F are pi, pj ;

2. F meets ∂Dn only at d0;

3. all three edges of F have z as a vertex.

Definition 9.20. The edge of F containing d0 is called the handle of F . The
union of the other two edges forms one edge; let us call it the tine edge of F
and denote it by T (F ). Let us orient T (F ) in such a way that the handle of
F lies to the right of T (F ).

Definition 9.21. A noodle is an embedded oriented edge N in Dn such that

1. N goes from d0 to another point on ∂Dn;

2. N meets ∂Dn only at endpoints;

3. a component of Dn\N contains precisely one puncture point.
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FIGURE 9.15: (a) A fork; (b) a noodle.

Let F and N be a fork and a noodle, respectively. Let us define a pairing
〈N,F 〉 in Z[q±1] as follows. Without loss of generality, let us assume that T (F )
intersects N transversely. Let z1, . . . , zk be the intersection points between
T (F ) and N (with no order chosen). For each i = 1, . . . , k, let γi be the arc in
Dn which goes from d0 to zi along F and then goes back to d0 along N . Let
ai be the integer such that h(γi) = ai. Let εi be the sign of the intersection
between N and F at zi. Let

〈N,F 〉 =
k∑

i=1

εiq
ai . (9.5)

One can easily check that this pairing is independent of the preliminary
isotopy (which allows us to assume the transversality of T (F ) andN). Besides,
this follows from the basic lemma.

The faithfulness proof follows from the two lemmas.

Lemma 9.1 (The basic lemma). Let β : Dn → Dn represent an element
of the kernel of the Burau representation. Then 〈N,F 〉 = 〈N, β(F )〉 for any
noodle N and fork F .

Lemma 9.2 (The key lemma). In the case n = 3, the equality 〈N,F 〉 = 0
holds if and only if T (F ) is isotopic to an arc which is disjoint from N .

Let us now deduce the faithfulness for the case of three strands from these
two lemmas. Suppose β lies in the kernel of the Burau representation. We
shall show that β represents the trivial braid.

Let N be a noodle. Take N to be a horizontal line through Dn such that
the puncture points p1 and p2 lie above N and p3 lies below N . Let F be a
fork such that T (F ) is a straight line from p1 to p2 which does not intersect
N . Then 〈N,F 〉 = 0. By the basic lemma we have 〈N, β(F )〉 = 0. By the key
lemma, β(T (F )) is isotopic to an arc which is disjoint from N . By applying
isotopy to β, we can assume that β(T (F )) = T (F ).
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Analogously, one can prove that each of the three edges of the triangle
connecting p1, p2, p3 is fixed by β. The only possibility for β to be non–trivial
is to represent some whole twists of D, but one can easily check that this is
not the case. Thus, the Burau representation is faithful for the case of three
strands.

For those who are interested in details, we give the proofs of these two
lemmas.

Proof of the basic lemma. The main idea is the following. We transform the
definition (9.5) in such a way that it works with loops rather than with forks.
Then the invariance for loops follows straightforwardly because our transfor-
mation lies in the kernel.

We can assume that the tine edges of both T and β(T ) intersect N trans-
versely.

Let F̃ be the lift of F to D̃n with respect to h, containing d̃0. Let T̃ (F )
be the corresponding lift of T (F ). Then T̃ (F ) intersects qaÑ transversely for
any a ∈ Z. Let (qaÑ , T̃ (F )) denote the algebraic intersection number of these
two arcs. Then the following definition of pairing is equal to (9.5):

〈N,F 〉 =
∑

a∈Z

(qaÑ , T̃ (F ))qa. (9.6)

Suppose now that T (F ) goes from pi to pj . Let ν(pi) and ν(pj) be small
disjoint regular neighbourhoods of pi and pj , respectively. Let γ be a subarc
of T (F ) which starts in ν(pi) and ends in ν(pj). Let δi be a loop in ν(pi) with
base point γ(0) which goes counterclockwise around pi. Denote by T2(F ) the
following loop:

T2(F ) = γδjγ
−1δi

−1.

Let T̃2(F ) be the lift of T2(F ) which is equal to (1 − q)T̃ (F ) outside a
small neigbourhood of the punctures. Then the following definition (9.7) is
equivalent to (9.5) and (9.6).

〈N,F 〉 = 1

1− q
∑

a∈Z

(qaÑ , T̃2(F ))q
a. (9.7)

Because β lies in the kernel of the Burau representation, the loops T̃2(F )
and T̃2(β(F )) represent the same element of the homology group H1(D̃n).
Thus, they have the same algebraic intersection number with any lift qaÑ of
N . Thus, the claim of the lemma follows from (9.7).

Proof of the key lemma. The main idea is to find a fork whose tine edge in-
tersects N at the minimal number of points and to show that if this number
is not zero then 〈N,F 〉 cannot be equal to zero.

First, let us recall that by definition (9.5): 〈N,F 〉 =∑k
i=1 εiq

ai .
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FIGURE 9.16: A tine edge and a noodle in D3

By applying a homeomorphism to our picture, we can take N to be a hori-
zontal straight line through D3 with two punctures above it and one puncture
point below it (the fork will therefore be twisted). Here we slightly change
our convention that the punctures lie on the real line by a small deformation
of Dn ⊂ D. Let D+

n , D
−
n denote the upper and lower components of Dn\N ,

respectively. Let us relabel puncture points in such a way that D+
n contains

p1, p2 and D−
n contains p3. Now, let us consider the intersection of T (F ) with

D−
n . It consists of a disjoint collection of arcs having both endpoints on N

(possibly, one arc can have p3 as an endpoint). An arc T (F ) ∩D−
n which has

both endpoints on N must enclose p3; otherwise one could remove it together
with some intersection points. Thus T (F ) ∩ D−

n must consist of a collection
of parallel arcs enclosing p3, and, possibly, one arc with p3 as an endpoint.

Similarly, each arc in T (F ) ∩ D+
n either encloses one of p1, p2 or has an

endpoint at p1 or p2. There can be no arc in T (F ) ∩D+
n which encloses both

points; otherwise the outermost such arc together with the outermost arc of
the lower part will form a closed loop.

Now, we are going to calculate carefully the intersection number and see
that all summands evaluated at q = −1 have the same sign.

Indeed, let zi and zj be two points of intersection between T (F ) and N
which are joined by an arc in T (F ) ∩ D+

n or T (F ) ∩ D−
n . This arc, together

with a subarc of N , encloses a puncture point. Thus, aj = ai ± 1. Besides,
the two signs of intersection are opposite: εj = −εi. So, εj(−1)aj = εi(−1)ai .
Arguing as above, we prove that all summands for 〈N,F 〉 evaluated at q = −1
have the same sign. Thus, 〈N,F 〉 is not equal to zero.
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9.4.2 A counterexample

In fact, the proof of faithfulness does not work in the case of n > 3. Roughly
speaking, the problem is that the key lemma uses the intrinsic properties of
the three–strand braid groups.

The idea of the example is the following. Each curve α with endpoints at
punctures generates an automorphism τ̃α of H1(Dn). This automorphism is
generated by Dehn’s half–turn twist about α (permutating the endpoints).

A direct calculation shows that if 〈α, β〉 = 0 then τ̃(α) and τ̃ (β) commute.
To show that the Burau representation is not faithful it suffices to provide

an example of oriented embedded arcs α, β ∈ Dn with endpoints at punctures
such that 〈α, β〉 = 0, but the corresponding braids τα and τβ do not commute.

For n ≥ 6, the simplest known example is the following. We set φ1 =
σ2
1σ

−1
2 σ−2

5 σ4 and φ2 = σ−1
1 σ2σ5σ

−1
4 . Take γ to be the simplest arc connecting

x3 with x4 (so that the corresponding braid is σ3).
After this, a straightforward check shows that for α = φ1(γ), β = φ2(γ) so

that the corresponding braids are τα = φ1σ3φ
−1
1 and τβ = φ2σ3φ

−1
2 , and we

have 〈α, β〉 = 0.
It follows from a straightforward check that 〈α, β〉 = 0. So, the braid

τατβτ
−1
α τ−1

β belongs to the kernel of the Burau representation. To prove that
this braid is not trivial, one can use an algorithm for braid recognition, say,
one of those described later in the book.

This element has length 44 in the standard generators of the group Br(6).
In fact, an example of a kernel element for the Burau representation for five
strands can be constructed by using similar (but a bit more complicated)
techniques. This element has length 120.

9.5 The Krammer–Bigelow representation

While developing the idea that the Burau representation comes from some
covering, Bigelow proposed a more sophisticated covering that leads to another
representation. Bigelow proved its faithfulness by using the techniques of forks
and noodles. We begin with the formal definition according to Krammer’s work
[Kra1, Kra2]. After that, we shall describe the main features of Bigelow’s work
[Big1].

9.5.1 Krammer’s explicit formulae

Let n be a natural number and let R be a commutative ring with the
unit element. Suppose that q, t ∈ R are two invertible elements of this ring.

Let V be the linear space over R of dimension n(n−1)
2 generated by elements

xi,j , 1 ≤ i < j ≤ n.
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Let us define the action of the braid group Br(n) on the space V according
to the following rule:

σk(xi,j) =





xi,j k < i− 1 or k > j;
xi−1,j + (1− q)xi,j k = i − 1;

tq(q − 1)xi,i+1 + qxi+1,j k = i < j − 1;
tq2xi,j k = i = j − 1;

xi,j + tqk−i(q − 1)2xk,k+1 i < k < j − 1;
xi,j−1 + tqj−i(q − 1)xj−1,j i < k = j − 1;

(1 − q)xi,j + qxi,j+1 k = j;

(9.8)

where σk, k = 1, . . . , (n− 1), are generators of the braid group.
It can be clearly checked that these formulae give us a representation of

the braid group.
Denote the Krammer–Bigelow representation space of the braid group

Br(n) by Ln. Because the basis of Ln is a part of the basis for Ln+1, we
have Ln ⊂ Ln+1.

Formula (9.8) implies that Ln is an invariant space under the action of the
representation (9.8) of Br(n+ 1) in Ln+1.

While passing from matrices of the representation for Br(n) to those for
Br(n+1), the upper–left block stabilises. Thus, one may speak of the infinite–
dimensional linear representation of the stable braid group.

We shall not give the (algebraic) proof of the faithfulness because it in-
volves a lot of sophisticated constructions. For the details, see the original
work by Krammer [Kra2].

9.5.2 Bigelow’s construction and main ideas of the proof

Here we shall describe Bigelow’s results following [Big1,PP,Tur2]. There he
constructs a more sophisticated covering than that corresponding to the Burau
representation. This covering gives a faithful representation that coincides
with Krammer’s.

In fact, the Bigelow representation deals with the braid group itself
as the mapping class group rather than with any presentation of it. One
should point out the work of Lawrence [Law] where he extended the idea of
the Burau representation via coverings for the configuration spaces in Dn, and
was able to obtain all of the so–called Temperley–Lieb representations. Just
the representations of Lawrence were shown to be faithful (by Krammer and
by Bigelow).

The Bigelow proof of the faithfulness is based on the ideas used in the
proof of faithfulness of the Burau representation for three strands. Namely,
we have the following three steps.

1. The basic lemma.

2. The key lemma.
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3. Deducing the faithfulness from these lemmas.

Below, we shall modify the scalar product for curves defined above by
using a more sophisticated bundle over a four–dimensional space together with
action on its 2–homologies. As we have proved above, the basic lemma (new
version) works for all n even for the Burau representation. For the remaining
two steps we shall use the modified covering and scalar product.

Let D,Dn be as above, the punctured points are −1 < x1 · · · < xn < 1
which we shall puncture.

Let C be the space of all unordered pairs of points in Dn. This space is
obtained from Dn×Dn\diagonal by the identification {x, y} = {y, x} for any
distinct points x, y ∈ Dn. It is clear that C is a connected non–compact four–
dimensional manifold with boundary. It is endowed with a natural orientation
induced by the counterclockwise orientation of Dn. Let d = −i and let d′ =
−ie επi

2 for small positive ε. We take c0 = {d, d′} as the base point of C.
A closed curve α : [0, 1] → C can be written in the form {α1(s), α2(s)},

where s ∈ [0, 1] and α1, α2 are arcs in Dn such that {α1(0), α2(0)} =
{α1(1), α2(1)}. In this case, the arcs α1, α2 are either both loops or can be
composed with each other. Thus, they form a closed oriented 1–manifold α in
Dn. Let a(α) ∈ Z be the total winding number of this manifold α around all
the punctures of Dn.

Consider the map s : [0, 1]→ S1 given by s 7→ α1(s)−α2(s))
|α1(s)−α2(s)| and the natural

projection S1 → RP 1. Thus, we obtain a loop in RP 1. The corresponding ele-
ment of H1(RP

1) is denoted by b(α). The formula α→ qa(α)tb(α) thus defines
a homomorphism φ from H1(C) to the free commutative group generated by
q, t. Let R = Z[q±1, t±1] be the group ring of this group.

Let C̃ → C be the regular covering corresponding to the kernel of φ. The
generators q, t act on C̃ as commuting covering transformations. The homology
group H2(C̃,Z) thus becomes an R–module.

Any homeomorphism h ofDn onto itself induces a homeomorphism C → C
by h({x, y}) = {h(x), h(y)} (we preserve the notation h).

It is easy to check that h(c0) = c0 and the action of h on the homolo-
gies H1(c) commutes with φ. Thus, the homeomorphism h : C → C can
be lifted uniquely to a map C̃ → C̃ that fixes the fibre over c0 pointwise
and commutes with the covering transformation. Consider the representation
Bn → Aut(H2(C̃)) mapping the isotopy class of h to the R–linear automor-
phism h̃∗ of H2(C).

Theorem 9.12 ([Big1]). The representation Bn → Aut(H2(C̃)) is faithful
for all n ≥ 1.

The proof of this fact uses the techniques of noodles and forks.
We kindly ask the reader to be patient while reading all definitions.
For arcs α, β : [0, 1]→ Dn such that for all s ∈ [0, 1] α(s) 6= β(s) denote by

{α, β} the arc in C given by {α, β}(s) = {α(s), β(s)}. We fix a point c̃0 ∈ C̃
lying over c0 ∈ C.
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We should be slightly more precise about the notion of a noodle. Namely,
by a noodle we mean an embedded arc N ⊂ Dn with endpoints d and d′. For
any noodle N , the set ΣN = {{x, y} ∈ C|x, y ∈ N, x 6= y} is a surface in
C containing c0. This surface is homeomorphic to a triangle with one edge
removed. We orient N from d to d′ and orient ΣN as follows: at a point
{x, y} = {y, x} ∈ ΣN such that x is closer to d than y along N , the orientation
of ΣN is the product of orientations of N at x and at y in this order.

Let Σ̃N be the lift of ΣN to C̃ containing the point c0. The orientation of
ΣN naturally induces an orientation for Σ̃N . Obviously, Σ̃N ∩ ∂C̃ = ∂Σ̃N

Having a fork F = T ∪H with endpoints d = d0, xi, xj and vertex z, we
can push it slightly (fixing xi and xj and moving d to d′) and obtain a parallel
copy F ′ with tine edges T ′ and handle H ′. Denote T ′ ∩ H ′ by z′. We can
assume that F ′ intersects F only in common vertices {xi, xj} and in one more
point H ∩ T ′ lying close to z and z′.

We shall use Σ̃N and Σ̃F to establish the duality between N and D. With-
out loss of generality we can assume that N intersects the tine edge T of F
transversely atm points z1, . . . , zm. We choose the parallel fork F ′ = T ′∪H ′ as
above in such a way that T ′ intersects N transversely in m points z′1, . . . , z

′
m,

where each pair zi, z
′
i is joined by a short arc in N that lies in the narrow

strip bounded by T ∪T ′ and meets no other zi, zj. Then, the surfaces ΣF ,ΣN

intersect transversely in m2 points {zi, z′j} for i, j = 1, . . . ,m. Thus, for any

a, b ∈ Z, the image qatbΣ̃N under the covering transformation meets Σ̃F trans-
versely.

Now, we are ready to define the pairing.

Definition 9.22. Consider the algebraic intersection number qatbΣ̃N ·Σ̃F ∈ Z
and set

〈N,F 〉 =
∑

a,b

∈ Z(qatbΣ̃N · Σ̃F )q
atb. (9.9)

Now, we shall highlight the main ideas of proof of the main theorem.

1. First, one should check the invariance of pairing under homotopy. This
follows from a routine verification.

2. It can be observed that the sign εi,j of the intersection point {i, j} is
given by the formula εi,j = −(−1)bi,i+bj,j+bi,i .

3. The key lemma

Lemma 9.3. If a homemorphism h of Dn onto itself is an element of
the kernel of Bn → Aut(H2(C̃)) then for any noodle N and any fork F ,
we have 〈N, h(F )〉 = 〈N,F 〉.

The proof follows from a routine verification by rewriting the definition
of the pairing.
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4. The basic lemma:

Lemma 9.4. 〈N,F 〉 = 0 if and only if the tine edge T can be isotoped
of N .

For the Burau representation we used the fact that we only have three
points and thus we obtained that for a minimal state all intersections
have the same sign for q = −1. Here we have another argument: two–
dimensionality.

So, suppose 〈N,F 〉 = 0. Assume that the intersection between N and
T cannot be removed and consider the minimal intersection. Let us
use the lexicographic ordering of monomials qatb > qctd if a > c or
a = c, b > d. The ordered pair {i, j} is maximal if qai,j tbi,j ≥ qak,ltbk,l

for any k, l ∈ {1, . . . ,m}.
Then the following statement holds.

5. If the pair (i, j) is maximal then bi,i = bj,j = bj,i.

Thus, all entries of the maximal monomial, say, qatb in (9.9) have the
same sign −(−1)b. Thus 〈N,F 〉 6= 0.

6. From the key lemma and the basic lemma we see that each element of
the kernel of the representation preserves the lines connecting punctures.
Thus, the only possibility for this kernel element is to be some power of
the half–turn Dehn twist. However, such a twist is a multiplication by
q2nt2.

So, we have constructed a faithful representation of the braid group with
polynomials in two variables as coefficients. It follows from classical number
theory theorems that there exists a pair of real numbers transforming this
representation to a faithful representation with real coefficients. Thus, all
braid groups are linear.





Chapter 10

Braids and links. Braid construction

algorithms

In the present chapter, we shall present two algorithms for constructing a
braid B by a given link L such that Cl(B) = L and thus prove Alexander’s
theorem.

10.1 Alexander’s theorem

Throughout the present section, we shall work only with oriented links.
For any given unoriented link, we choose an arbitrary orientation of it.

Exercise 10.1. Construct a braid whose closure represents the Borromean
rings.

The main statement of this chapter is Alexander’s theorem that each link
can be obtained as a braid closure. We shall give two proofs of this theorem:
the original one by Alexander and the one by Vogel that realises a faster
algorithm for constructing a corresponding braid.

Theorem 10.1. (Alexander’s theorem [Ale2]) Each link can be represented
as the closure of a braid.

Proof. We shall prove this theorem for the case of polygonal links.
Consider a diagram L of an oriented polygonal link and a point O on the

plane P of the diagram (this point should not belong to edges and should not
coincide with vertices of the diagram). We say that L is braided around O if
each edge of L is visible from O as counterclockwise–oriented.

Definition 10.1. For any L and O, let us call edges visible as
counterclockwise–oriented positive; the other ones will be negative.

If there exists a point O such that our link diagram is braided around O,
then the statement of Alexander’s theorem becomes quite clear: we just cut
the diagram along a ray coming from O and “straighten the diagram”; see
Fig. 10.1.

Thus, in order to prove the general case of the theorem, we shall reconstruct
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FIGURE 10.1: Constructing a braid by a braided link
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FIGURE 10.2: Alexander’s trick

our arbitrary link diagram in order to obtain a diagram braided around some
point O.

First, fix a point O. Now, we are going to use the Alexander trick as
follows. Consider a negative edge AB of our polygonal link and find some
point C on the projection plane P such that the triangle ABC contains O.
Then we replace AB by AC and CB. Both edges will evidently be positive;
see Fig. 10.2.

We shall use this operation till we get a diagram braided around O.
Let us describe this construction in more detail. In the case when the

negative edge AB contains no crossings, the Alexander trick can be easily
performed directly; see Fig. 10.2.a. Actually, one can divide the edge AB into
two parts (edges) and then push them over O.

The same can be done in the case when AB contains the only crossing
that is an overcrossing with respect to the other edge; see Fig. 10.2.b.

Finally, if AB contains the only crossing that is an undercrossing with
respect to the other edge, then we can push it under, as shown in Fig. 10.2.c.

Exercise 10.2. By using the Alexander trick, construct a braid whose closure
represents the connected sum of the two right trefoil knots.
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=⇒

FIGURE 10.3: Smoothing of crossings and Seifert circles

The method of proof for Alexander’s theorem described above certainly
gives us a concrete algorithm for constructing a braid from a link. However,
this algorithm is too slow. Below, we give a simpler algorithm for constructing
braids by links.

10.2 Vogel’s algorithm

Here we describe the algorithm proposed by Pierre Vogel [Vog1].
We start with a definition.

Definition 10.2. First we say that an oriented link diagram is braided if there
exists a point on the plane of the diagram around which the link diagram is
braided.

A braided link diagram can be easily represented as a closure of a braid.

Remark 10.1. Obviously, the property of a diagram to be braided does not
depend on the crossing structure. We may say that we shall work only with
shadows of links. In the sequel, we shall never use this structure.

Given an oriented closed diagram D of a link L, one can correctly define
the operation of crossing smoothing for it. To do it, we just “smooth” the
diagram at each vertex as shown in Fig. 10.3 and consider all Seifert circles
of it. Denote this smoothing by σ.

Definition 10.3. Let us say that all Seifert circles of some planar diagram
are nested if they all induce the same orientation of the plane and bound an
enclosed disc system.

Obviously, if all Seifert circles of some planar link diagram are nested, then
the corresponding diagram is braided. Moreover, in this case, the number of
strands of the braid coincides with the number of Seifert circles.

Let us fix some link diagram D and consider now the shadow of D. This
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Ω2−→

FIGURE 10.4: Reduction for a pair of unordered sides

shadow divides the sphere (one–point compactification of the plane) into 2–
cells, called sides. The interior side is that containing infinity.

Definition 10.4. A side S is unordered if it has two edges a, b that belong
to different Seifert circles A1, A2 and induce the same orientation of S, and
ordered otherwise.

In the first case we say that the edges A1, A2 generate the unordered side.
One can apply the move Ω2 to unordered sides, as shown in Fig. 10.4.

In this case, the set of sides becomes “more ordered”. More precisely, the
following proposition holds.

Proposition 10.1. If all edges of the side Σ belong to two Seifert circles then
this side is ordered.

Proof. Actually, consider the edges of this side. It is easy to see that all edges
belonging to the same Seifert circle have the same orientation. Consider two
adjacent edges belonging to different Seifert circles. They have different ori-
entations. Thus, any two edges of the given diagram belonging to different
Seifert circles must have different orientations. Hence, the side is ordered.

Proposition 10.2. If a diagram D of the link L has no unordered sides, then
it can be transformed to a braided diagram by using an infinity change.

Proof. Suppose the diagram D has no unordered sides. Consider some side
of the planar tiling generated by our link diagram. Any two adjacent edges
of this side either have the same orientation (in this case, they belong to
the same Seifert circle) or they have different orientations (and belong to
different Seifert circles). If we consider the points of adjacent edges belonging
to the same Seifert circle as the points of one “long” edge then we obtain some
polygonM (or a whole Seifert circle). The edge orientations of the edges ofM
are alternating. Thus, the number of such edges is even (or equal to one when
all edges belong to the same Seifert circle). Since this side is not unordered,
all edges of it belong to no more than two different Seifert circles. Thus we
conclude that each Seifert circle that defines some edge of the polygon M is
adjacent either to one Seifert circle or to two Seifert circles (lying on different
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−→Ω2

FIGURE 10.5: Eliminating an unordered side

sides ofM). Otherwise, there would be an unordered side with edges belonging
to three different Seifert circles.

The remaining part of the proof is left to the reader as a simple exercise.

The Vogel algorithm works as follows. First we eliminate all crossings by

the rule: → , → . Then, by using Ω2 we remove unordered sides.
Finally, if Seifert circles are not nested, we change the infinity.

Let us describe this algorithm in more detail.
First, let us smooth all crossings of the diagram. Thus we obtain several

Seifert circles. Denote the number of these circles by s. Some pairs of these
circles might generate unordered sides. Let us construct a graph whose vertices
are Seifert circles; two vertices should be connected by an edge if there exists
a side (ordered or not) that is incident to the two circles. Let us remove
from this graph a vertex, corresponding to some “interior” Seifert circle. We
obtain some graph Γ1. Let us change the notation for the remaining s − 1
circles and denote them by A1, A2, . . . , As−1, in such a way that Ai and Ai+1

contain edges that generate an unordered side. This means that our graph Γ1

is connected. It is easy to see that in the disconnected case we should apply
this algorithm to each connected component; it will work even faster.

We shall perform the following operation. Let us take the unordered side,
generated by A1 and A2, and perform Ω2 to it as described above. Instead of
circles A1 and A2, we shall get two Seifert circles; one of them lies inside the
other. Besides this, they do not generate an unordered side; see Fig. 10.5.

We have got two new circles; one of them lies inside the other. Denote the
exterior circle by A1 and the interior one by A2. Because “the former A2”
generated an unordered side together with A3 then the new circle A1 also
generates an unordered side together with A3 (the latter stays the same).

Let us now perform Ω2 on the circles A1 and A3 and change the notation
again: the exterior circle will be A1 and the interior one will be A3, and so
on. Finally (after s− 2 operations Ω2), we obtain one interior circle A1 that
makes no unordered sides. Now, we shall not touch A1, but perform the same
procedure with the pairs (A2, A3), (A2, A4), and so on. Then we do the same
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for A3, Ai, i > 3, and so forth. Thus, we have performed (s−1)(s−2)
2 second

Reidemeister moves and (possibly) one infinity change and obtained the set
of circles A1, A2, . . . , As−1, where each next circle lies inside all previous ones
and no two circles generate an unordered side.

Let us show that the remaining circle (that we “removed” in the very
beginning) does not make unordered sides either.

Actually, since this circle has some exterior edge it could generate an un-
ordered side only with A1, but this is not the case. After this, we should
change the infinity (if necessary). Thus, after C2

s−2 operations (for the con-
nected case; in the unconnected case we shall use even fewer operations) we
obtain a braided diagram.

So, we have proved the following.

Theorem 10.2. If the link diagram D has n crossings and s Seifert circles
then

1. The Vogel algorithm requires no more than C2
s−2 second Reidemeister

moves.

2. The total number of strands of the obtained braid equals s and the number
of crossings does not exceed n+ (s− 1)(s− 2).

Below, we perform the Vogel algorithm for the knot named 52 according
to the standard classification, given in the end of the book.

To do it, we perform the second Reidemeister move Ω2 twice and then the
infinity change; see Fig. 10.2. Thus, the two moves Ω2 would be sufficient.

Finally, we get a braided diagram, see the lower part of Fig. 10.2.
Thus we can now construct braids corresponding to given links even faster

than by using the Alexander trick.
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↓ change of ∞

↓ Ω2

↓ Ω2

−→
σ

−→
σ

−→
σ

−→
σ

FIGURE 10.6: Planar knot diagrams and Seifert circles





Chapter 11

Algorithms of braid recognition

Until now, several braid recognition algorithms have been constructed. The
first of them was contained in the original work of Artin [Art1] (and, in more
detail, [Art2]). However, the approach proposed by Artin was not very clearly
explained; both articles are quite difficult to read. There were other works on
braid recognition (by Birman [Bir1], Garside [Gars], Thurston [Thu], et al.)
Here we are going to describe a geometrically explicit algorithm (proving the
completeness of a slightly modified Artin invariant according to [GM], see also
[BZ]) and the algebraic algorithm by Dehornoy.

In [Gars], Garside proposed a method of normal forms; by using this
method, he solved not only the word problem for the braid groups, but the
conjugation problem as well; the conjugation problem is in fact more compli-
cated. Unfortunately, we do not present here any solution of the conjugation
problem. In this chapter, we shall also present a result by M. Berger con-
cerning the minimal braid–word in Br(3) representing the given braid isotopy
class.

11.1 The curve algorithm for braids recognition

Below, we shall give a proof of the completeness of one concrete invariant
for the braid group elements invented by Artin, see [GM].

11.1.1 Introduction

We are going to describe the construction of the above mentioned invariant
for the classical braid group Br(n) for arbitrary n.

The invariant to be constructed has a simple algebraic description as a
map (non-homeomorphic) from the braid group Br(n) to the n copies of the
free group in n generators.

Several generalisations of this invariant, such as the spherical and cylin-
drical braid group invariant, are also complete. They will be described later
in this chapter. The key point of such a completeness is that these invariants
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originate from several curves, and the braid can be uniquely restored from
these curves.

Moreover, this aprroach finally led to the algorithmic recognition of virtual
braids due to Oleg Chterental. We shall touch on virtual braids in Chapter 21.

11.1.2 Construction of the invariant

Let us begin with the definition of notions that we are going to use, and
let us introduce the notation.

Definition 11.1. By an admissible system of n curves we mean a family of n
non–intersecting non–self–intersecting curves in the upper half plane {y > 0}
of the plane Oxy such that each curve connects a point having ordinate zero
with a point having ordinate one and the abscissas of all curve ends are integers
from 1 to n. All points (i, 1), where i = 1, . . . , n, are called upper points, and
all points (i, 0), i = 1, . . . , n, are called lower points.

Definition 11.2. Two admissible systems of n curves A and A′ are equivalent
if there exists a homotopy between A and A′ in the class of curves with fixed
endpoints lying in the upper half plane such that no interior point of any curve
can coincide with any upper or lower point during the homotopy.

Analogously, the equivalence is defined for one curve (possibly, self–
intersecting) with fixed upper and lower points: during the homotopy in the
upper half plane no interior point of the curve can coincide with an upper or
lower point.

In the sequel, admissible systems will be considered up to equivalence.

Remark 11.1. Note that curves may intersect during the homotopy.

Remark 11.2. In the sequel, the number of strands of a braid equals n, unless
otherwise specified.

Let β be a braid diagram on the plane, connecting the set of lower points
{(1, 0), . . . , (n, 0)} with the set of upper points {(1, 1), . . . , (n, 1)}. Consider
the upper crossing C of the diagram β and push the lower branch along the
upper braid to the upper point of it as shown in Figure 11.1.

Naturally, this move spoils the braid diagram: the result, shown in Figure
11.1.b is not a braid diagram. The advantage of this “diagram” is that we
have a smaller number of crossings.

Now, let us do the same with the next crossing. Namely, let us push the
lower branch along the upper branch to the end. If the upper branch is de-
formed during the first move, we push the lower branch along the deformed
branch (see Fig. 11.2).

Reiterating this procedure for all crossings (until the lowest one), we get
an admissible system of curves. Denote its equivalence class by f(β).

Theorem 11.1. The function f is a braid invariant; i.e., for two diagrams
β, β′ of the same braid we have f(β) = f(β′).
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→

a b

FIGURE 11.1: Pushing the upper crossing

→

a b

FIGURE 11.2: Pushing the next crossing

Proof. Having two braid diagrams, we can write the corresponding braid–
words, and denote them by the same letters β, β′. We must prove that the
admissible system of curves is invariant under braid isotopies.

The invariance under the commutation relations σiσj = σjσi, |i−j| ≥ 2, is
obvious: the order of pushing two “far” branches does not change the result.

The invariants under σiσ
−1
i = e can be readily checked; see Fig. 11.3.

In the leftmost part of Fig. 11.3, the dotted line indicates the arbitrary
behaviour for the upper part of the braid diagram. The rightmost part of
Fig. 11.3 corresponds to the system of curves without σiσ

−1
i .

Finally, the invariance under the transformation σiσi+1σi → σi+1σiσi+1

is shown in Fig. 11.4. In the upper part (over the horizontal line) we demon-
strate the behaviour of f(Aσiσi+1σi), and in the lower part we show that of
f(Aσi+1σiσi+1) for an arbitrary braid A. In the middle–upper part, part of
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−→ ∼ ∼

FIGURE 11.3: Invariance of f under the second Reidemeister move

the curve is shown by a dotted line. By removing it, we get the upper–right
picture which is just the same as the lower–right picture.

The behaviour of the diagram in the upper part A of the braid diagram is
arbitrary. For the sake of simplicity it is pictured by three straight lines.

Thus we have proved that f(Aσiσi+1σi) = f(Aσi+1σiσi+1).
This completes the proof of the theorem.

Now, let us prove the following lemma.

Lemma 11.1. If for two braids a and b we have f(a) = f(b) then for each
braid c we obtain f(ac) = f(bc).

Proof. The claim f(ac) = f(bc) follows directly from the construction. In-
deed, we just need to attach the braid c to the admissible system of curves
corresponding to a (or b) and then to push the crossings of c.

In fact, a much stronger statement holds.

Theorem 11.2 (The main theorem). The function f is a complete invariant.

To prove this statement, we shall use some auxiliary definitions and lem-
mas.

In order to prove the main theorem, we should be able to restore the braid
from its admissible system of curves.
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→

→ ∼

FIGURE 11.4: Invariance of f under the third Reidemeister move
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In the sequel, we shall deal with braids whose end points are (i, 0, 0) and
(j, 1, 1) with all strands coming upwards with respect to the third projection
coordinates. They obviously correspond to standard braids with upper points
(j, 0, 1). This correspondence is obtained by moving neighbourhoods of upper
points along Oy.

Consider a braid b and consider the plane P = {y = z} in Oxyz. Let us
place b in a small neighbourhood of P in such a way that its strands connect
points (i, 0, 0) and (j, 1, 1), i, j = 1, . . . , n. Both projections of this braid on
Oxy and Oxz are braid diagrams. Denote the braid diagram on Oxy by β.

The next step now is to transform the projection on Oxy without changing
the braid isotopy type; we shall just deform the braid in a small neighbourhood
of a plane parallel to Oxy.

It turns out that one can change abscissas and ordinates of some intervals
of strands of b in such a way that the projection of the transformed braid on
Oxy constitutes an admissible system of curves for β.

Indeed, since the braid lies in a small neighbourhood of P , each crossing
on Oxy corresponds to a crossing on Oxz. Thus, the procedure of pushing a
branch along another branch in the plane parallel to Oxy deletes a crossing
on Oxy, preserving that on Oxz.

Thus, we have described the geometric meaning of the invariant f .

Definition 11.3. By an admissible parametrisation (in the sequel, all
parametrisations are thought to be smooth) of an admissible system of curves
we mean a set of parametrisations for all curves by parameters t1, . . . , tn such
that at the upper points all ti are equal to one, and at the lower points ti are
equal to zero.

Any admissible system A of n curves with admissible parametrisation T
generates a braid representative: each curve on the plane becomes a braid
strand when we consider its parametrisation as the third coordinate. The
corresponding braid has end points (i, 0, 0) and (j, 1, 1), where i, j = 1, . . . , n.
Denote it by g(A, T ).

Lemma 11.2. The result g(A, T ) does not depend on T .

Proof. Indeed, let us consider two admissible parametrisations T1 and T2 of
the same system A of curves. Let Ti, i ∈ [1, 2], be a continuous family of
admissible parametrisations between T1 and T2, say, defined by the formula
Ti = (i−1)T1+(2−i)T2. For each i ∈ [1, 2], the curves from Ti do not intersect
each other, and for each i ∈ [1, 2] the set of curves g(A, Ti) is a braid, thus
g(A, Ti) generates the desired braid isotopy.

Thus, the function g(A) ≡ g(A, T ) is well defined.
Now we are ready to prove the main theorem.
First, let us prove the following lemma.

Lemma 11.3. Let A,A′ be two equivalent admissible systems of n curves.
Then g(A) = g(A′).
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Proof. Let At, t ∈ [0, 1], be a homotopy from A to A′. For each t ∈ [0, 1],
At is a system of curves (possibly, not admissible). For each curve {ai,t, i =
1, . . . , n, t ∈ [0, 1]} choose points Xi,t and Yi,t, such that the interval from the
upper point (upper interval) of the curve toXi,t and the interval from the lower
point (lower interval) do not contain intersection points. Denote the remaining
part of the curve (middle interval) between Xi,t and Yi,t by Si,t. Now, let us
parametrise all curves for all t by parameters {si,t ∈ [0, 1], i = 1, . . . , n} in
the following way: for each t, the upper point of each curve has parameter
s = 1, and the lower point has parameter s = 0. Besides, we require that
for i < j and for each x ∈ Si,t, y ∈ Sj,t we have si,t(x) < sj,t(y). This is
possible because we can vary parametrisations of upper and lower intervals on
[0, 1]; for instance, we parametrise the middle interval of the j–th strand by a
parameter on [ j

n+2 ,
j+1
n+2 ].

It is obvious that for t = 0 and t = 1 these parametrisations are admissible
for A and A′. For each t ∈ [0, 1] the parametrisation s generates a braid
Bt in R3: we just take the parameter si,t for the strand ai,t as the third
coordinate. The strands do not intersect each other because parameters for
different middle intervals cannot be equal to each other.

Thus the system of braids Bt induces a braid isotopy between B0 and
B1.

So, the function g is well defined on equivalence classes of admissible sys-
tems of curves.

Now, to complete the proof of the main theorem, we need only to prove
the following lemma.

Lemma 11.4. For any braid b, we have g(f(b)) = b.

Proof. Indeed, let us place b in a small neighbourhood of the “inclined plane”
P in such a way that the ends of b are (i, 0, 0) and (j, 1, 1), i, j = 1, . . . , n.

Consider f(b) that lies in Oxy. It is an admissible system of curves for
b. So, there exists an admissible parametrisation that restores b from f(b).
By Lemma 11.2, each admissible parametrisation of f(b) generates b. So,
g(f(b)) = b.

11.1.3 Algebraic description of the invariant

The general situation in the construction of a complete invariant is the
following: one constructs a new object that is in one–to–one correspondence
with the described object. However, the new object might also be badly recog-
nisable.

Now, we shall describe our invariant algebraically. It turns out that the
final result is very easy to recognise. Namely, the problem is reduced to the
recognition problem of elements in a free group. So, there exists an injective
map from the braid group to the (n copies of) the free group with n generators
that is not homomorphic.
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Each braid β generates a permutation. This permutation can be uniquely
restored from any admissible system of curves corresponding to β. Indeed, for
an admissible system A of curves, the corresponding permutation maps i to j,
where j is the ordinate of the strand with the upper point (i, 1). Denote this
permutation by p(A). It is obvious that p(A) is invariant under equivalence of
A.

Let n be an integer. Consider the free product G of n groups Z with
generators a1, . . . , an. Denote by Ei the right residue classes in G by {ai};
i.e., g1, g2 ∈ G represent the same element of Ei if and only if g1 = akg2 for
some k.

Definition 11.4. An n–system is a set of elements e1 ∈ E1, . . . , en ∈ En.

Definition 11.5. An ordered n–system is an n–system together with a per-
mutation from Sn.

Proposition 11.1. There exists an injective map from equivalence classes of
admissible systems of curves to ordered n–systems.

Since the permutation for equivalent admissible systems of curves is the
same, we can fix the permutation s ∈ Sn and consider only equivalence classes
of admissible systems of curves with permutation s (i.e., with all lower points
fixed depending on the upper points in accordance with s). Thus we only have
to show that there exists an injective map from the set of admissible systems
of n curves with fixed lower points to n–systems.

To complete the proof of the proposition, it suffices to prove the following.

Lemma 11.5. Equivalence classes of curves with fixed points (i, 1) and (j, 0)
are in one–to–one correspondence with Ei.

Proof. Denote P\ ∪i=1,...,n (i, 1) by Pn. Obviously, π1(Pn) ∼= G. Consider a
small circle C centered at (i, 1) for some i with the lowest point X on it.
Let ρ be a curve with endpoints (i, 1) and (j, 0). Without loss of generality,
assume that ρ intersects C in a finite number of points. Let Q be the first
such point that one meets while walking along ρ from (i, 1) to (j, 0). Thus we
obtain a curve ρ′ coming from C to (j, 0). Now, let us construct an element of
π1(Pn, X). First it comes from X to Q along C clockwise. Then it goes along
ρ until (j, 0). After this, it goes along Ox to the point (i, 0). Then it goes
vertically upwards till the intersection with C in X . Denote the constructed
element by W (ρ).

If we deform ρ outside C, we obtain a continuous deformation of the loop,
thus W (ρ) stays the same as the element of the fundamental group. The
deformations of ρ inside C might change W (ρ) by multiplying it by ai on the
left side. So, we have constructed a map from equivalence classes of curves
with fixed points (i, 1) and (j, 0) to Ei.

The inverse map can be easily constructed as follows. LetW be an element
of π1(Pn, X). Consider a loop L representing W . Now consider the curve L′
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that first goes from (i, 1) to X vertically, then goes along L′, after this goes
vertically downwards until (i, 0) and finally, horizontally until (j, 0). Obviously,
W (L′) = W . It is easy to see that for different representatives L of W we
obtain the same L′. Besides, for L1 = aiL2, the curves L

′
1 and L′

2 are isotopic.
This completes the proof of the lemma.

Thus, for a fixed permutation s, admissible systems of curves can be
uniquely encoded by n–systems, which completes the proof of the theorem.

Now, we see that this invariant is a quite simple object: elements of Ei can
easily be compared.

Exercise 11.1. Implement a computer program realising this algorithm.

Let us describe the algebraic construction of the invariant f in more detail.
Let β be a word–braid, written as a product of generators β = σε1

i1
. . . σεk

ik
,

where each εj is either +1 or −1; 1 ≤ ij ≤ n − 1 and σ1, . . . , σn−1 are the
standard generators of the braid group Br(n).

We are going to construct the n–system step–by–step while writing the
word β. First, let us write n empty words (in the alphabet a1, . . . , an). Let
the first letter of β be σj . Then all words except for the word ej+1 should stay
the same (i.e., empty), and the word ej+1 becomes a−1

j . If the first crossing

is negative; i.e., σ−1
j then all words except ej stay the same and ej converts

to aj+1. While considering each next crossing, we do the following. Let the
crossing be σ±1

j . Let p and q be the numbers of strands coming from the
left side and from the right side respectively. If this crossing is positive; i.e.,
σj , then all words except eq stay the same, and eq becomes eqe

−1
p a−1

p ep. If
it is negative, then all crossings except ep stay the same, and ep becomes
epe

−1
q aqeq. After processing all the crossings, we get the desired n–system.

Example 11.1. For the trivial braid written as σ1σ2σ1σ
−1
2 σ−1

1 σ−1
2 the con-

struction operation works as follows:

(e, e, e)→ (e, a−1
1 , e)→ (e, a−1

1 , a−1
1 )→ (e, a−1

1 , b−1
1 a−1

1 )→
→ (e, e, b−1

1 a−1
1 )→ (e, e, b−1

1 )→ (e, e, e).

A priori these words may be non-trivial; they must only represent trivial
residue classes, say, (a1, a

2
2, a

−1
3 ).

However, it is not the case.

Proposition 11.2. For the trivial braid, the algebraic algorithm described
above gives trivial words.

Proof. Indeed, the algebraic number of occurencies of ai in the word ei equals
zero. This can be easily proved by induction on the number of crossings. In
the initial position all words are trivial. The induction step is obvious. Thus,
the final word ei equals a

p
i , where p = 0.
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From this approach, one can easily obtain the well known invariant (action)
as follows. Instead of a set of n words e1, . . . , en, one can consider the words
e1a1e

−1
1 , . . . , enane

−1
n . Since ei’s are defined up to a multiplication by ai’s on

the left, the obtained elements are well defined in the free groups. Besides,
these elements Ei = eiaie

−1
i are generators of the free group. This can be

checked by a step–by–step confirmation. Thus, for each braid b we obtain a set
Q(b) of generators for the braid group. So, the braid b defines a transformation
of the free group Z∗n. It is easy to see that for two braids, the transformation
corresponding to the product equals the composition of transformation. Thus,
one can speak about the action of the braid group on the free group. Since f
is a complete invariant, this action has an empty kernel.

Definition 11.6. This action is called the Hurwitz action of the braid group
Bn on the free group Z∗n.

11.2 LD–systems and the Dehornoy algorithm

Another algorithm for braid recognition is purely algebraic. It was pro-
posed by French mathematician Patrick Dehornoy [Deh3]. The algorithm to
be described is rather fast.

The idea to be used is very closed to that used in the distributive groupoid
(quandle). We take some set (of colours) and associate colours with arcs of
the braid from this set. Then we show how the braid can be reduced to the
trivial braid and if it can not be reduced, why it is not trivial (because of some
colour reasons). More precisely, for “good” colour systems (having structure
similar to that of groupoids), each braid defines an operator on this colour
system, and this operator can not be trivial for the case of a non-trivial braid.

Let us first remember that braids have a group structure. Thus, in order
to compare some two braids a and b it is sufficient to check whether the braid
ab−1 is trivial.

Let us start with the definition.
Given a braid written algebraically as a word W in the alphabet σ±1

i , i =
1, 2 . . . , n− 1.

Definition 11.7. We say that the wordW is a 1–positive braid if it is equiva-
lent to a wordW ′, where the letter σ1 occurs only in positive powers (and does
not occur in negative powers). Analogously, one defines a 1–negative braid.

If a braid can be written by a braid–wordW ′ without σ1 and σ−1
1 , we say

that this braid is 1–neutral.

Remark 11.3. Since any braid can be encoded by different braid words, one
cannot say a priori that the classes described above have no intersections.
Later, we shall prove that it is not the case.
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ba

c = a ∗ b
a

FIGURE 11.5: A relation
Theorem 11.3. Each 1–positive (respectively, 1–negative) braid is not trivial.

Remark 11.4. Actually, a much stronger statement holds: each braid repre-
sented by a braid–word containing σi

e but not σi
−e for some e = ±1 is not

trivial. We shall not prove this statement, see [Deh1, Deh3].

The first aim of this section is to show that these three sets are in fact
non-intersecting. We are going to present an algorithm that transforms each
braid word to an equivalent one that is either unity or positive or negative
(the set of 1–neutral braids is actually subdivided into more sets according to
the next strands starting from the second one).

To prove Theorem 11.3, we shall need some auxiliary definitions and lem-
mas.

Consider a positive braid–word β and all lower arcs of it.

Definition 11.8. By an lower arc we mean a part of the braid diagram going
from one overcrossing to the next one and passing only undercrossings. Lower
arcs correspond to arcs of the mirror image of (upper) arcs.

We wish to label the braid diagram by elements from M in the following
manner: we are going to associate with each arc some element of M in such a
way that:

1. all lower arcs outgoing from upper ends of the braid are marked by
variables which are allowed to have values in M ;

2. each “lower” label is uniquely defined by all “upper” labels over it;

3. the operator f expressing lower labels by upper labels is invariant under
isotopies of braids.

To set such a labeling, we have to consider the crossings of the diagram.
Suppose a crossing is incident to lower arcs a, b, and c. Let us write down the
following relation c = a ∗ b as shown in Fig. 11.5

Let us analyse the invariance of f under isotopies. Each elementary isotopy
is associated with one of the following formulae:

σiσ
−1
i = e, i = 1, . . . , n− 1,
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(move Ω3)

σiσi+1σi = σi+1σiσi+1, i = 1, . . . n− 2,

(far commutativity)

σiσj = σjσi, |i− j| ≥ 2, 1 ≤ i, j ≤ n− 1.

The relation σiσ
−1
i = e will be considered later (now we consider only

braid words with positive exponents of generators).
The function to be constructed is invariant under far commutativity by

construction.
The move Ω3 gives us the self–distributivity relation (in the case of a

quandle we needed right self–distributivity):

a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c). (11.1)

Definition 11.9. A set M with a left self-distributive operation ∗ is called
an LD–system or LD–set.

Remark 11.5. It is obvious that the operation ∗ is not sufficient to define
the operator f for arbitrary braid words: a letter σ−1

i spoils the situation.

In the sequel, we shall add two more operations ∨ and ∧ on M as follows.
Obviously, the map f is invariant under the commutation relation (trans-

posing σi and σj for |i− j| ≥ 2).
It remains to check the invariance of the map f under Ω3; i.e., under

transformation aiai+1ai → ai+1aiai+1. It is easy to see (Fig. 11.6) that the
invariance under Ω3 means the left distributivity operation.

Thus, having an LD–set M , we can label lower arcs of a positive braid–
word by elements ofM ; the set of elements at lower points is uniquely defined
by the set of elements at upper points.

Denote the latter by pi, 1 ≤ i ≤ n; the elements at lower points will be
denoted by qi. For instance, for the trivial braid, we have pi = qi.

For an LD–set one can define a partial order relation <. Namely, for each
a, c ∈ M a < c if ∃b ∈M : c = a ∗ b.

Definition 11.10. A partially ordered LD–set M is called ordered if < is
acyclic; i.e., there exists no sequence a1 < a2 < · · · < ak < a1.

Example 11.2. The sets R and Q admit some left–distributive (but not
acyclic) operations:

1. a ∗ b = max(a, b)

2. a ∗ b = (a+b)
2

3. a ∗ b = (a+ 1).
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(a*b)*(a*c) a*b a

a*c

a*b

a

a b c

←→

a*(b*c) a*b a

b*c

b

a

a b c

FIGURE 11.6: Invariance of the map f under Ω3

Let us now give an example of an acyclic LD–system. To do this, we have
to introduce more difficult structures, enclosing the LD–structure. Denote the
semigroup of non-negative braids (or positive braid monoid) by Br(n)+.

Remark 11.6. This monoid played the key role in Garside’s theory of normal
form.

Definition 11.11. Let (M,∧) be a set endowed with a binary operation. Let
us define the right action of the semigroup Br(n)+ on Mn = M × · · · ×M︸ ︷︷ ︸

n

inductively. First, for ~a = (a1, . . . , an) we set

(~a)ε = ~a, (~a)σiw = (a1 . . . , ai ∧ ai+1, ai, ai+2, . . . , an)w, (11.2)

where ε is the unity element.

Let us now try to colour all braid diagrams (not only positive). In order
to do this, we shall have to introduce two more operations. Let us change the
notation: denote ∗ by ∧ and introduce new operations ∨ and ◦. Then we can
colour the braid diagram as shown in Fig. 11.7.

As before, we can express the labels of lower points by the labels of upper
points; thus we define the operator f .

Lemma 11.6. Let (M,∧, ◦,∨) be a system with three binary operations. Then,
the operator f defined above is invariant under isotopies generated by the
second Reidemeister move if and only if the following relations hold in M :
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ba

a ∧ b a
a ◦ b b ∨ a

a b

FIGURE 11.7: Defining lower labels at a negative crossing

(a ∧ b) ◦ a a ∨ (b ∧ a)

a ∧ b a

a b

(a ◦ b) ∧ (b ∨ a) a ◦ b

a ◦ b b ∨ a

a b

FIGURE 11.8: Invariance under Ω2

∀x, y ∈M x ◦ y = y, x ∧ (x ∨ y) = x ∨ (x ∧ y) = y.

Proof. Follows straightforwardly from Fig. 11.8.

Definition 11.12. An LD–system M (with respect to wedge) endowed with
an extra operation ∨ is said to be an LD–quasigroup if the relation

x ∧ (x ∨ y) = x ∨ (x ∧ y) = y

holds for arbitrary x, y ∈M .

Remark 11.7. Unlike distributive groupoid (quandle), LD–quasigroups do
not require the idempotence relation.

Remark 11.8. The isotopy generated by Ω2 preserves f , by definition. Thus,
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if M is an LD–quasigroup, then the operator f is invariant under all braid
isotopies.

The following proposition can be checked straightforwardly.

Proposition 11.3. Let G be a group. Then the binary operations x ∧ y =
xyx−1, x ∨ y = x−1yx, x ◦ y = y, define the LD–quasigroup structure on G.

Thus, for a given group G we can use the system (G,∧,∨) (where x ◦ y =
y ∀x, y) for colouring braids. In particular, let FGn be the free group generated
by {x1, . . . , xn}. For an n–strand braid word b, let us define b̃ as the braid
word obtained from b by reversing the order of letters. Thus, σ1σ

−1
2 σ3σ

−1
1 7→

σ−1
1 σ3σ

−1
2 σ1.

For given elements x1, . . . , xn, define the elements y1, . . . , yn according
to the rule: (y1, . . . yn) = (x1, . . . xn)b̃. Let φ(b) be an automorphism of FGn,
mapping all xi’s to yi’s. Then φ is an homomorphism of the braid group Br(n)

inside Aut(FGn) because φ(b
−1) coincides with φ(b)

−1
by construction.

Denote by FG∞ the limit of embeddings FG1 ⊂ FG2 ⊂ FG3 ⊂ . . . . In
this way, we obtain an homomorphism φ : B∞ → Aut(FG∞).

Denote φ(σi) by αi.
By construction, we have:

αi(xk) =





xk k < i or k > i+ 1
xixi+1x

−1
i , k = i

xi, k = i+ 1.

Remark 11.9. This action coincides with the action of the generator σi on
the colours of arcs; see Fig. 11.7, cf. the definition of the Hurwitz action.

We have the operation sh on the generators: sh(xi) = xi+1. Now, let us
define the shift sh on FG∞, taking xi to xi+1 for each i. Let us define the ac-
tion of sh on Aut(FG∞) according to the following rule. For ϕ ∈ Aut(FG∞),
let sh(ϕ)(x1) = x1 and sh(ϕ)(xi+1) = sh(ϕ(xi)) for i ≥ 1.

Then the operation ∧ on Aut(FG∞) is defined by

ϕ ∧ ψ = ϕ ◦ sh(ψ) ◦ α1 ◦ sh(ϕ−1) (11.3)

and φ is the homomorphism from (B∞,∧) to (Aut(FG∞),∧). We are going
to prove that the operation defined by (11.3) is left self–distributive.

Note that α1 commutes with the image of the automorphism sh2. To
complete the proof of self–distributivity of the operation ∧, it remains to
prove the following.

Proposition 11.4. Let G be a group, a be a fixed element of G, and s be an
automorphism1 of G. Then the formula x ∧ y = xs(y)as(x−1) defines a left

1Later, this operation will play the role of shift in the free group.
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self–distributive operation if and only if the element a commutes with images
of the map s2 and the following relation holds

as(a)a = s(a)as(a). (11.4)

Moreover, in this case there is a homomorphism of LD-systems from B∞ to
G.

Proof. Since s is an endomorphism, we obtain

x ∧ (y ∧ z) = xs(y)s2(z)s(a)s2(y−1)as(x−1)

(x ∧ y) ∧ (x ∧ z) = xs(y)as2(z)s(a)s2(x−1)as2(x)s(a−1)s2(y−1)s(x−1).

If the operation ∧ is left self–distributive, then, taking x = y = z = 1, we
get s(a)a = as(a)as(a−1).

It is easy to check that the inverse statement holds as well.
Finally, formula (11.4) and the hypothesis that a commutes with s2(z) for

all z implies the fact that the map f defined by f(σi) = si−1(a) generates a
homomorphism from B∞ to G.

Thus, we have constructed a left self–distributive system on Aut(FG∞)
with operation ∧.

Theorem 11.4. This system (Aut(FG∞),∧) is acyclic.

The proof follows from two auxiliary lemmas on free reductions that appear
while calculating αi(x).

Let us denote the set of words in the alphabet {x±1
1 , x±1

2 , · · · } by W∞.
We say that a word from W∞ is free reduced if it does not contain the

following subwords: xix
−1
i and x−1

i xi. For each w ∈ W∞, let us denote by
red(w) the word obtained from w by means of consequent deleting of such
subwords. Thus, we can identify the free group FG∞ with the set of all free
reduced words; this set is endowed with the operation u · v = red(uv).

Definition 11.13. For a letter x from the alphabet {x±1
1 , x±1

2 , . . . }, denote
by E(x) the subset of FG∞, containing all reduced words whose final letter
is x.

Let us now investigate the image of the set E(x−1
1 ) with respect to the

action of α±1
i .

Lemma 11.7. Let φ be an arbitrary element from Aut(FG∞). Then the
automorphism sh(φ) maps the set E(x−1

1 ) to itself.
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Proof. Let f be an automorphism of W∞ mapping xi to some reduced word
φ(xi) for each i. Let w be an arbitrary element from E(x−1

1 ). Then w = ux−1
1 ,

where u is some reduced word that does not belong to E(x1). In this case we
have sh(f)(w) = sh(f)(u) · sh(f)(x−1

1 ); i.e., red(sh(f)(u)x−1
1 ).

Assume that the latter does not belong to E(x−1
1 ). This means that the

last letter x−1
1 is reduced with a letter x1 that occurs in sh(f)(u). But any

letter x1 in sh(f)(u) can originate only from some x1 in u. Thus, we should
have a decomposition u = u1x1u2 such that red(sh(f)(u2)) is the empty word;
i.e., sh(f)(u2) = 1. Since sh(f) is an automorphism of FG∞ then u2 = 1. This
means u2 ∈ E(x1). The contradiction to the initial hypothesis completes the
proof.

Lemma 11.8. The automorphism α1 maps E(x−1
1 ) to itself.

Proof. Let w be an element from E(x−1
1 ). By definition, w = ux−1

1 , where u is
some reduced element that does not belong to E(x1), and α1(w) is red(α1(w)).
More precisely,

α1(w) = red(α1(u)x1x
−1
2 x−1

1 ).

Suppose that the word in the right-hand side part does not belong to the set
E(x−1

1 ). This means that the final letter x−1
1 is reduced by some x1 in the end

of α1(u). This letter originates either from some x2, or from some x±1
1 in the

word α1(u).
In the first case, let us write down the letter x2 that takes part in this

reduction, and represent u as u1x2u2, where u2 is a reduced word whose
initial letter is not x−1

2 . Thence,

α1(w) = red(α1(u1)x1α1(u2)x1x
−1
2 x−1

1 ),

and the hypothesis can be reformulated as follows: red(α1(u2)x1x
−1
2 ) is the

empty word (because α1(u2) = x2x
−1
1 ).

Now, let α1 be an automorphism, and x2x
−1
1 be the image of x−1

2 x1 with
respect to α1. Thus, the only possible case is u = x−1

2 x1. But, in this we
assume the contradiction: u should not begin with x−1

2 .
In the second case, we analogously write u = u1x

e
1u2 for e = ±1. In this

case we obtain:

α1(w) = red(α1(u1)x1x
e
2x

−1
1 α1(u2)x1x

−1
2 x−1

1 ).

Now our hypothesis is that red(xe2x
−1
1 α1(u2)x1x

e
2) is the empty word.

In this case, we conclude that α1(u2) = x1x
1−e
2 x−1

1 . The latter word equals
α1(x

1−e
1 ). Thus, u2 should be equal to x1−e

1 . If e = +1 then the word u2 is
empty. If e = −1 then u2 = x21. In both cases, u2 belongs to E(x1) which is a
contradiction.

Lemma 11.9. Suppose that φ is an automorphism of FG∞, that can be ex-
pressed as a composition of images of sh and α1, whence the latter takes place
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at least once. Then φ(x1) belongs to E(x−1
1 ). In particular, the automorphism

φ is not identical.

Proof. The condition of the lemma is that φ has the following representation:

φ = sh(φ0) ◦ α1 ◦ sh(φ1) ◦ α1 ◦ · · · ◦ α1 ◦ sh(φp).
Then we have sh(φp)(x1) = x1 and hence α1(x1) = x1x2x

−1
1 ; i.e., α1(x1) ∈

E(x−1
1 ). In this case, each next map sh(φk) (as well as α1) takes E(x−1

1 ) to
E(x−1

1 ).

Let us now prove Theorem 11.4. We have to show that in Aut(FG∞)
equalities like

φ = (. . . (φ ∧ ψ1) ∧ . . . ) ∧ ψp)

cannot hold.
By using the definition of ∧, we get the representation of φ as

φ = φ ◦ some mess

Here “some mess” contains α1 and sh.
Thus, Id has a presentation by sh and α1 where the latter occurs at least

once. This is a contradiction to the last lemma.
Let us complete now the proof of Theorem 11.2. Let b be a 1–positive braid

word. Consider the automorphism φ(b). It satisfies the conditions of Lemma
11.9. Thus, it is not identical. Consequently, the braid b is not trivial.

We can also present the following “intuitive” proof.
Suppose we have an LD–quasigroup Q that is an acyclic LD–system with

the order operation <. Let us show that the existence of this quasigroup Q
results in the claim of Theorem 11.2. Consider the elements a1, a2, . . . , ak,
corresponding to lower arcs, corresponding to leftmost crossings, and the ele-
ments b1, b2, . . . on the right hand from the ai’s; see Fig. 11.9.

It is easy to see that ai+1 = ai ∧ bi > ai. Thus, ak > a1. Because the
operation < is acyclic, we have: ak 6= a1.

However, for the trivial braid, the elements of the set M , corresponding
to upper points coincide with those corresponding to lower points. Thus we
obtain a contradiction which completes the proof of the theorem.

One can easily prove the following corollaries.

Corollary 11.1. The braid that is inverse to the 1–positive braid is 1–
negative; the inverse to a 1–neutral braid is 1–neutral.

Corollary 11.2. Each braid B belongs to no more than one of the three types:
1–positive, 1–negative, 1–neutral.
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...

a0

a0

a1

a1

a2

a2

b2

b1

b0

FIGURE 11.9: 1–positive braid is not trivial

Proof. Suppose that B is simultaneously 1–positive and 1–negative. Then
there exists a 1–positive braid word B

′

representing the inverse braid for
B. Consequently, the unit braid BB

′

is 1–positive. Thus we obtain a contra-
diction.

The other cases can be proved analogously.

Corollary 11.3. The toric (p, q)–braid is not trivial.

As we know, no 1–positive or 1–negative braid–word can represent the
trivial braid.

All 1–neutral braid words can be divided into 2–positive, 2–negative, and
2–neutral braids with respect to occurencies of σ2 and σ−1

2 .
Analogously to Theorem 11.5, one can prove the following.

Proposition 11.5. Each 2–positive or 2–negative braid word represents a
non-trivial braid.

Analogously to 1– and 2–positive (negative, neutral) braid words one can
define k–positive (negative, neutral) braid words. Arguing as above, one proves
that the first two types of braids do not contain the trivial braid.

Thus, according to our classification, there is only one n–strand (n − 1)–
neutral braid. Namely, it is the trivial braid.

Now, we have to show that all braids can be classified in this manner. To
do this, we shall have to prove the following theorem.
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FIGURE 11.10: Handle

−→

FIGURE 11.11: Handle reduction

Theorem 11.5. Each braid is either 1–positive or 1–negative or 1–neutral.

Let us first discuss this theorem for a while.
Suppose we have some braid word representing an n–strand braid K and

we wish to use the relations
σiσj = σjσi for |i − j| ≥ 2, σiσi+1σi = σi+1σiσi+1 for removing either σ1

or σ1
−1.

Suppose that L is a subword of K looking like σi
pwσi

−p, where p = ±1,
and the word w contains only generators σ±1

j for j > i.

Definition 11.14. Such a word is called an i–handle.

Geometrically, a 1–handle is shown in Fig. 11.10.
For such a handle, one can perform a reduction; i.e., a move, pulling the

first strand over the nearest crossings as shown in Fig. 11.11.
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Proposition 11.6. In this case, the braid word σe
1vσ

−e
1 becomes the word v

′

that is obtained by replacing all occurrences of σ±1
2 in v with σ−e

2 σ±1
1 σe

2.

Proof. Actually, let us consider the handle reduction shown in Fig. 11.11. All
crossings lying on the right hand with respect to σ2 will stay the same. The
initial and the final crossings σ±1

1 will disappear. The crossings where the
strand goes over are changed by the rule described in the formulation of the
statement.

Let us now consider the braid word K and consequently reduce all handles
in it. If the process stops (i.e., we eliminate all handles) then the obtained braid
word has either 1–positive or 1–negative or 1–neutral form.

Let us demonstrate now that this approach does not always work.
Convention. For the sake of convenience, let us write small Latin let-

ters a, b, c, . . . instead of generators σ1, σ2, . . . and capital letters A,B,C, . . .
instead of σ−1

1 , σ−1
2 , . . . .

Example 11.3. Consider the word abcBA. It is a 1–handle. After applying
the handle reduction, we obtain the braid word B(abcBA)b that contains the
initial braid word (handle) as a subword. Thus, by applying handle reductions
many times, we shall always have this handle and increase the length of the
whole word.

The matter is that this 1–handle encapsulates a 2–handle; after reducing
the 1–handle, the 2–handle goes out and becomes a 1–handle.

For this braid word, one can first reduce the “interior” handle and then
the “exterior” one. Then we get a(bcB)A → (aCbcA) → CBabc; thus, we
conclude that this braid is 1–positive.

Fortunately, the existence of k–handles inside j handles (k > j) is the only
obstruction for reducing the braid word to another word without 1–handles.

Let us prove the following lemma.

Lemma 11.10. If a j–handle has no (j + 1)–handle inside (as a subword)
then after reducing this j–handle no new handle appears.

Proof. Without loss of generality, we can assume that j = 1. Let u = σ1
evσ1

−e

be a 1–handle, e = ±1. Since v contains no 2–handles, we see that v contains
either only positive exponents of σ2 or only negative.

The same can be said about exponents of σ1 in the word u
′

obtained from
u by means of the handle reduction.

Consequently, the word u
′

contains no handles.

Definition 11.15. A handle containing other handles as subwords is called
a nest.

Definition 11.16. An i–handle reduction not containing (i+ 1)–handles in-
side is called proper.
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Now, let us describe the algorithm.
First, we reduce all interior handles (which are not nests); then we reduce

the handles containing the handles that have already been reduced, and so
on. Finally, we obtain a braid word that is either 1–positive or 1–negative or
1–neutral.

In the first two cases, everything is clear. In the third case, we forget about
the first strand and repeat the same for all other strands.

Example 11.4. Consider the braid word ABacBCBaCbaa. Let us transform
it to an equivalent braid word without handles.

ABacBCBaCbaa

bABcBCBaCbaa

bbABcbABCbABCbaa

bbABcbABCbAcBCaa

bbABcbABCbcbABCa

bbABcbABCbcbbABC

Here we underline the subword representing the handle to be reduced.
The obtained word is 1–negative. Thus, the braid is not trivial.

Thus, we have obtained a simple and effective algorithm for braid recog-
nition.

Exercise 11.2. Write a computer program realizing this algorithm.

We have not yet proved that the Dehornoy algorithm stops within a finite
number of steps (the number of letters in the braid word grows and the thus
we cannot guarantee the finite time of work).

Exercise 11.3. Proof that the Dehornoy algorithm works directly in the case
of 3–strand braids.

Below, we sketch the proof of the fact that the Dehornoy algorithm stops
in a finite time. For a more detailed proof see [Deh3].

11.2.1 Why the Dehornoy algorithm stops

Definition 11.17. A braid word is called positive (resp., negative) if it con-
tains only σi’s (respectively, σ

−1
i ’s).

It turns out that while performing the handle reductions w0 → w1 →
w2 → . . . , each word wk can be represented by drawing a path in a special
finite labelled graph; starting from the word w = w0, only a finite number of
such words may occur.

Let us be more detailed.
We should give some definitions.

Definition 11.18. By a positive (negative) equivalence of two words we mean
a relation where only σi in positive powers (respectively, negative) occurs.
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1

∆4

σ1 σ2 σ3

σ1σ2 σ2σ1 σ1σ3 σ2σ3 σ3σ2

σ1σ2σ1 σ1σ2σ3

σ1σ3σ2

σ2σ1σ3

σ3σ2σ1 σ2σ3σ2

σ1σ2σ1σ3 σ1σ2σ3σ2
σ2σ1σ3σ2 σ3σ1σ2σ1 σ3σ2σ1σ3

σ1σ2σ1σ3σ2 σ1σ3σ2σ3σ1 σ3σ2σ1σ3σ2

FIGURE 11.12: The Cayley graph for ∆4

Example 11.5. σ1σ2σ1 → σ2σ1σ2 is a positive equivalence;
σ−1
1 σ−1

3 = σ−1
3 σ−1

1 is a negative equivalence;
σ1σ2σ

−1
1 = σ−1

2 σ1σ2 is neither a positive nor a negative equivalence.

Definition 11.19. By a word reversing we mean a simple equivalence
σ−1
i σj → σjσ

−1
i if |i − j| ≥ 2 or σ−1

i σj → σiσjσ
−1
i σ−1

j if |i − j| = 1 (right
reversing).

Analogously, one defines the left reversing.

It is easy to see that by reiterated left reversing, each braid word w can be
transformed to a form NLD

−1
R , where NL and DR are positive braid words.

They are called the left denominator and right denominator.
Analogously, right–reversing can transform each braid word to a form

D−1
L NR of the left denominator DL and right numerator NR.
It is obvious that for each braid word u, DL(u)NR(u) = NL(u)DR(u).

Definition 11.20. For a braid word w, the absolute value is DL(w)NR(w).
Notation: |w|.

Definition 11.21. For a positive braid X , the Cayley graph of X is the
following graph: its vertices are the trivial braid e, the braid X and positive
braids Y such that there exists a positive braid Z such that Y Z = X . Two
vertices P and Q are connected by an edge if there exists i such that P = Qσi
or P = Qσi. In this case, the edge is oriented from the “smaller” braid to the
“bigger” braid.

Example 11.6. Consider the positive braid ∆4 = σ1σ2σ1σ3σ2σ1. Then the
Cayley graph for this braid is shown in Fig. 11.12.
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Definition 11.22. Let u be a positive braid and let C(u) be the Cayley graph
for u. Then each path (with the first and the last points chosen arbitrarily) on
this graph can be expressed by generators of the braid group and their inverse
elements; thus, each path generates a word. Such paths are called traced words
for u.

Now, we are going to formulate some auxiliary lemmas from which we can
conclude that the Dehornoy algorithm stops within a finite type.

Lemma 11.11. Each proper reduction (without nested 2–handles) can be re-
duced to word–reversing, right equivalence, and left equivalence.

Lemma 11.12. For any braid word w, all words obtained from w by word
reversing (right and left) and positive and negative equivalence are traced for
|w|.

From these two lemmas we deduce the following lemma.

Lemma 11.13. Each word obtained from w by proper handle reductions is
traced for |w|.

Definition 11.23. Let w be a braid word. The height of w is the maximal
number of letters σi occurring in a word containing no σ−1

i and traced in the
Cayley graph of |w|.

Assume that w0 = w,w1, w2, . . . is a sequence of handle reductions from
w. The first point is that the number of σ1–handles on wi is not larger than
the number of σ1–handles in w.

Definition 11.24. The p–th critical prefix prefp(wk) is a braid represented
by the prefix of wk that ends with the first letter of the p–th σ1–handle of wk.

The point is now that for every p, the prefix is “not increasing” from wk

to wk+1 and actually “increasing” if this handle is reduced. More precisely,
the following lemma holds.

Lemma 11.14. Assume that the p–th σ1–handle is reduced from wk to wk+1.
Then there exists a braid word up,k traced in the Cayley graph of w from
prefp(wk) to prefp(wk+1) that contains one letter σe

1 and no letter σ−e
1 .

Now, it is not difficult to prove the following lemma.

Lemma 11.15. Assume that w is a braid word of length l and height h. Then
the number of handle reductions from w is bounded by lh.

This lemma shows that any braid word can be reduced to a 1–positive,
1–negative or 1–neutral word in finite time. Thus, the Dehornoy algorithm
stops in finite time.
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11.3 Minimal word problem for Br(3)

Among other problems arising in braid theory we would like to note the
problem of finding the minimal braid word representing braids from a given
class. This problem, of course, gives an algorithm for braid recognition since
only the trivial braid has the braid word of length 0.

Here we give an algorithm solving this problem for the case of three strands.
This algorithm is due to M. Berger, see [Ber].

For the braid group Br(3) there exists a natural automorphism that trans-
poses σ1 and σ2. Let T be a three–strand braid word; denote the braid obtained
from T by applying this isomorphism by T̂ .

The length of a braid word is simply the number of characters in this word.

Definition 11.25. ∆ = σ1σ2σ1 = σ2σ1σ2

Note that ∆ “almost commutes” with all braids. Namely, given a braid A,
we have A∆ = ∆Â.

Definition 11.26. A wrap is any of the four words

σ1σ2, σ2σ1, σ−1
1 σ−1

2 , σ−1
2 σ−1

1 .

The algorithm to be described consists of three steps.
The first step. Consider a braid word B0. Let us search for any occurrence

of ∆ or ∆−1 and take them to the left by using A∆ = ∆Â.
We proceed until B0 has been converted to a word having the form ∆nB1,

where B1 is free of ∆’s.
The second step clears away the wraps. Namely, finding a wrap in B1, we

replace it as follows:

σ1σ2 = ∆σ−1
1 ,

σ2σ1 = ∆σ−1
2 ,

σ−1
1 σ−1

2 = ∆−1σ1,

σ−1
2 σ−1

1 = ∆−1σ2.

Thus we obtain the form B = ∆pB2 or B = ∆pB̂2, where

B2 = σq1
1 σ

−r1
2 σq2

1 σ
−r2
2 . . . σqm

1 σ−rm
2 ,

where all qi’s and ri’s are some positive integers.
Finally, in the third step we partially reverse the second step. For definite-

ness, suppose that p > 0 and that B = ∆pB2.
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First, we take one ∆ from the left and bring it to the right searching for
σ−1
2 . We replace ∆ with σ−1

2 by the wrap σ2σ1. Each time this is done, the
length is reduced by 2.

Now we repeat this operation until there are no ∆’s remaining (if p ≤ r)
or no σ−1

2 remaining (p ≥ r). Denote the obtained braid word by Bmin.
The main theorem of Berger’s work is the following:

Theorem 11.6. Given B, the word Bmin has the minimum length among all
braid words equivalent to B.

11.4 Spherical, cylindrical, and other braids

Actually, the invariant described above (by means of admissible systems
of curves) admits generalisations for cases of braids in different spaces.

11.4.1 Spherical braids

We recall that a spherical braid on n strands is an element of π1(Xn), where
Xn is the configuration space of non-ordered n–point sets on the standard
sphere S2.

As in the case of ordinary braids, spherical braids admit a simple represen-
tation by n strands in the space2 S2

z × It coming downwards with respect to
the coordinate t (height) and connecting fixed points Ai × {1} and Aj × {0},
where A1, . . . , An are fixed points on S2. Like ordinary braids, spherical braids
are considered up to natural isotopy: we decree isotopic braids to be the same;
spherical braids form a group. Denote it by SB(n).

Without loss of generality one can assume that there exists a point X ∈ S2

such that no strand of a given spherical braid contains X× t for any t ∈ [0, 1].
This means that each spherical braid comes from a (not necessarily unique)

ordinary braid. More precisely, there exists a homomorphic map h from Br(n)
onto SB(n) defined as follows: each braid b in R3 = R2 × R generates a
spherical braid b′ simply by compactifying R2 by a point, thus by mapping
R3 to S2 × R. The homomorphic property of the braid group map follows in
a straightforward way.

It is known (see, e.g. [Fra]) that the kernel of h is generated by the only
element Σn = (σ1 . . . σn−1)

n for all n ≥ 2, see [Fra].
Let us now prove this theorem explicitly. The proof that Σn commutes

with the whole group Br(n) is obvious. Actually, to the braid Σn, one can
attach a band such that the first and the last strands are parts of the boundary
of this band and all the other strands divide the band into smaller bands; see
Fig. 11.13.

2Here I is a unit segment; z and t denote coordinates on S2 and I, respectively.
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FIGURE 11.13: ΣN commutes with generators

Now, each generator σi of the braid group can be taken along the corre-
sponding smaller band from the top to the bottom, as shown in Fig. 11.13.

This means that Σn really lies in the centre of the braid group.
The remaining part of the proof can also be expressed in the language of

bands. To do it, one should use induction on the number of strands (starting
from three strands). Here we should slightly modify the induction basis: each
pure braid that commutes with the whole braid group is a power of Σn. We
do it in order to be able to start from the case of two strands. For two strands,
the induction basis is evident.

Then, the induction step can be proved in the following manner: we take
our n–strand braid that commutes with anything. It should be pure. Thus,
we can consider n pure braids obtained from this one by deleting some strand
(one of n). By the induction hypothesis, each of these braids should be Σk

n−1

for some integer k. The remaining part of the proof is left to the reader.
Obviously, the invariant f (see page 172) distinguishes ΣN and the trivial

braid; thus it is not an invariant for SB(n). Moreover, the described kernel
coincides with the centre of Br(n).

The main idea of the proof (see, e.g. [Fra]) is the following. Consider the
trivial braid represented in the most natural way in R3 ⊂ S2 × R. Let us
attach a band to it in the simplest way. Now, while isotoping the braid in
SB(n), one can observe what can happen with the band. The only thing that
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FIGURE 11.14: The twist of the band

can happen is the twist of the band. This occurs when we pass through the
compactification point X ∈ S2 = R2 ∪ {X}; see Fig. 11.14.

Now, it is evident that after a certain number of twists, our braid (in the
sense of Br(n)) just becomes some power of Σn. Thus, we have proved that no
other braids but powers of Σn lie in the kernel of the map Br(n) → SB(n).
On the other hand, Σn really represents the trivial braid in SB(n) for the
same “twist” reasons.

The aim of this subsection is to correct the invariant f for the case of
spherical braids.

We shall do this in the following way. We take a spherical braid b and its
(infinitely many) preimages bα with respect to h. Then we take their images
f(bα), which are, certainly, different. Thus the aim is to construct a map acting
on f(·) that should bring all f(bα) together. This is the way to construct a
spherical braid invariant. We now construct a thin invariant that for any
other braid b′ and its preimages b′α does not glue f(bα) and f(b

′
α). Thus, the

invariant to construct must be complete.
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Let us introduce the sets E′
1, . . . , E

′
n by factorising Ei with respect to the

relation a1 . . . an = e. Thus we get a map h : (E1, . . . , En) 7→ (E′
1, . . . , E

′
n).

Definition 11.27. A spherical n–system is a set of elements e′1 ∈ E′
1, . . . , e

′
n ∈

E′
n. An ordered spherical n–system is a spherical n–system together with a

permutation from Sn.

Now, let us define the map fS from ordinary braids to spherical n–systems
as follows. For each braid b the ordered n–system f(b) consists of the per-
mutation s corresponding to b and a set ei ∈ Ei, i = 1, . . . , n. Then the
ordered spherical n–system fS(β) consists of the permutation s and the set
h(e1), . . . , h(en). Obviously, f is an ordinary braid invariant, and so is fS .

Theorem 11.7. The function fS is a complete invariant of spherical braids;
i.e., two braids b, b′ ∈ Bn generate the same spherical braid if and only if
fS(b) = fS(b

′).

Proof. First, let us note that the statement of Lemma 11.1 is true for the
invariant fS as well. The proof is literally the same.

Thus, for any braid b we have fS(b) = fS(Σb), and, hence fS is a braid
invariant and Σ commutes with b, fS(bΣ) = fS(Σb) = fS(b). Thus, if b and b

′

generate the same spherical braid then fS(b) = fS(b
′). So, fS is invariant.

Now, let us prove the inverse statement; i.e., that fS is complete.
Indeed, we have to show that if β1, β2 are spherically equivalent braids,

then fS(β1) = fS(β2). By Lemma 11.1 for fS we see that it suffices to show
that fS recognises the trivial spherical braid. Suppose β is an ordinary braid,
and h(β) is the spherical braid generated by β. Suppose that fS(h(β)) = e.
By definition, the value f(β) is the following. The permutation of the braid
is trivial and the n–system is ((a1 . . . an)

k1 , . . . , (a1 . . . an)
kn) for some integer

k1, . . . , kn. Recall that the n–system comes from the admissible system of
curves (non-intersecting). Thus we see that k1 = k2 = · · · = kn. Let k = k1 =
· · · = kn.

The only thing to check is that if the n–system is

{((a1 . . . an)k, . . . , (a1 . . . an)k)}
and the permutation is trivial then β = Σk.

But β represents the trivial spherical braid; i.e., h(β) = e. This completes
the proof.

11.4.2 Cylindrical braids

Let C be the cylinder S1 × I.
Definition 11.28. A cylindrical n–strand braid is an element of π1(Cn), where
Cn is the configuration space of non-ordered n–point sets on C. Cylindrical
braids are considered up to natural isotopy. Like ordinary and spherical braids,
cylindrical n–strand braids form a group. Denote this group by CB(n).
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The construction of the invariant for cylindrical braids is even simpler than
that for spherical braids. This simplicity results from the structure of C, which
is the product of the interval I and the circle.

A cylindrical n–strand braid can be considered as a set of n curves in C×It
coming downwards from t = 2 to t = 1 in such a way that the ends of the
curves generate the set {Yi × {1}, Yj × {2}, i, j = 1, . . . , n, Yi ∈ C}. The set
C = C × It = S1

ϕ × Is × It can be considered in R3 = Oxyz: the coordinate
t corresponds to z ∈ [1, 2], and ϕ ∈ [0, 2π), s ∈ [1, 2] form a polar coordinate
system of the plane Oxy.

For each curve in C we can consider its projection on the cylinder S1× It.
Thus, for a cylindrical braid β we have a system of curves on the cylinder
S1 × It, with coordinate t decreasing from two to one. In a general position
these curves have only double transversal crossing points, lying on different
levels of t. For each crossing we must indicate which curve has the greater
coordinate X (forms an overcrossing); the other curve forms an undercrossing.

Fix a point x ∈ S1. Now, a singular level is a value t such that S1 × {t}
contains either a crossing or an intersection of a braid strand with the line
x× R.

Let us require that no crossings lie in x × R; all intersections of strands
with x × R are transversal and each singular level contains either only one
crossing or only one intersection point. Let us also require that no crossing
lies on the intersection line.

Definition 11.29. Such a curve endowed with an undercrossing structure is
called a diagram of a cylindrical braid.

Remark 11.10. Obviously, all ordinary braids generate cylindrical braids by
embedding of R1 in S1 and R2 in S1 × R1. The inverse statement, however,
is not true: if a strand represents a non-trivial element of π1(S × R1), then
the braid does not come from an ordinary braid. For instance CB(1) ∼= Z.

Like the ordinary braid group, the cylindrical braid group CB(n) has a
simple presentation by generators and relations.

Indeed, let β be a braid diagram on the cylinder S1 ×Rt. Then, having a
cylindrical braid diagram β, we can write a word as follows. Denote the set
I × R = (S1\x) × R by T . Each non-singular level of the braid β consists of
n points (coming from the strand). So, each crossing can be given a number
σ±1
i as in the case of ordinary braids, i = 1, . . . , n.
For the intersection point we write τ if while walking along the strand

downwards we intersect the rightmost boundary of T and return from the left
side, and τ−1 otherwise.

Here τ represents an additional generator (with respect to the ordinary
braid group generator).

Obviously, the elements σ1 . . . , σn−1 together with τ form a system of
generators.

An example of a braid word obtained from a cylindrical braid diagram is
shown in Fig. 11.15.
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τσ−1
1 σ2τ

FIGURE 11.15: A cylindrical braid diagram and the corresponding word

As in the case of ordinary braids, the set of moves concerning cylindrical
braids can be easily constructed. They are:

1. Moves of the diagram preserving the combinatorial structure of crossings
(but, possibly, changing the height order of a crossing); see Fig. 11.16.

2. The second Reidemeister move; see Fig. 11.17.

3. The third Reidemeister move; see Fig. 11.18.

Besides the relations for the ordinary braid group {σiσj = σjσi, |i−j| > 1}
and {σiσi+1σi = σi+1σiσi+1} we get more relations: τσi+1 = σiτ for i =
1, . . . , n− 2 and σn−1τ

2 = τ2σ1.
The geometric meaning of the additional relations is as follows. The first

series represents the change of crossing numeration under the action of τ : σi
becomes σi+1 when the rightmost strand appears on the left flank. The second
additional series (of one relation) means that the rightmost crossing is moved
by one full turn together with the two strands, generating it.

It can easily be checked that this system of relations is complete.

Remark 11.11. It is easy to show that the additional relations place the
element τn at the centre of the cylindrical braid group.

Remark 11.12. Both the second and the third Reidemeister moves for cylin-
drical braids are considered in a part of cylinder; i.e., they are just the same
as in the case of an ordinary braid.
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∼

FIGURE 11.16: Transforming a cylindrical braid diagram

Now, having a diagram β of a cylindrical braid b, let us construct the
invariant fC(b) ≡ f(β) (in the sequel, we prove that it is well defined).

Consider the cylinder S1
ϕ × R1.

Definition 11.30. An admissible cylindrical system of n curves is a family
of n non–intersecting non–self-intersecting curves in the upper half–cylinder
S1×R+ such that each curve connects a point with abscissa zero with a point
with abscissa one, such that the coordinate ϕ for all curve ends runs through
the set {

0,
2π

n
, . . . ,

2(n− 1)π

n

}

All points (
2πj

n
, 1

)
,

where j = 1, . . . , n are called upper points, and all points (j, 0) are called lower
points.

Denote

S1\ ∪i
{
2πi

n

}

by Cn.
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∼

FIGURE 11.17: Applying the 2nd Reidemeister move to a cylindrical braid
diagram

Consider the diagram β on the cylinder. Now let us resolve all crossings of
β starting from the upper one as in the case of the ordinary braid.

Thus we obtain an admissible cylindrical system of curves.
The next definition is similar to that for the case of ordinary braids.

Definition 11.31. Two admissible cylindrical systems of curves A and A′

are called equivalent if there exists a homotopy between A and A′ in the class
of curves with fixed end points, lying in the upper half–cylinder, such that no
interior point of any curve can coincide with an upper point.

Having a diagram β of a braid b, we obtain an admissible cylindrical system
A(β) of curves, corresponding to it. We can take an equivalence class of A(β).
Denote it by fC(β).

Now, let us prove the following theorem.

Theorem 11.8. 1. Map fC is a braid invariant; i.e., for different β1, β2
representing the same braid b we have fC(β1) = fC(β2). In this case we
shall write simply f(b).

2. The invariant fC is complete; i.e., fC(b1) = fC(b2) implies b1 = b2.

Proof. To prove the first part of the theorem, we only have to check the
invariance of fC under the second and the third Reidemeister moves. The
proof is the same as in the case of ordinary braids, see Figs. 11.3 and Fig.11.4.

The proof of the second part is also analogous to the proof of completeness
in the ordinary case. By an admissible cylindrical system of curves we restore
a cylindrical braid (with lower points r = 1, ϕ = 2πj

n and upper points r =

2, ϕ = 2πk
n ) by parametrising each curve from the system from 1 to 2. Now,
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∼

FIGURE 11.18: Applying the 3rd Reidemeister move to a cylindrical braid
diagram

let us prove that equivalent admissible cylindrical systems of curves generate
the same braid.

To do this, let us fix the permutation s ∈ Sn (obviously, two admissible
curves can be equivalent only if their permutations coincide). Then we choose
two equivalent admissible systems A and A′ of n curves and choose admissible
parametrisations for them. The rest of the proof we leave for the reader as an
exercise.

Like the ordinary braid invariant f , the invariant fC is also easily recog-
nisable. Indeed, instead of curves on Pn, we consider curves in Cn. So, our
invariant can be completely encoded by the following object.

Let Gt be a free group with generators a1, . . . , an, t. Denote by Gi,
i = 1, . . . , n, the right residue class of G by ai.

Definition 11.32. A cylindrical n–family is a set g1 ∈ G1, . . . , gn ∈ Gn

together with a permutation s ∈ Sn.

Obviously, values of the invariant fC can be completely encoded by cylin-
drical n–families. The permutation is taken directly from the admissible sys-
tem of curves, and elements gi correspond to curve homotopy types in Cn

with fixed points, where t stands for the element of Cn obtained by passing
along the parallel of Cn.



Chapter 12

Markov’s theorem. The Yang–Baxter

equation

In his celebrated work [Mar], A.A. Markov has described the theorem about
necessary and sufficient conditions for braids to represent isotopic links. How-
ever, his proof did not contain all rigorous details. He left this problem to
N.M. Weinberg, who died soon after his first publication on the subject [Wei].
The first published rigorous proof belongs to Joan Birman, [Bir1]. The newest
proofs of Markov’s theorem can be found in [Tra] and in [BM6].

We shall describe the proof according Hugh Morton [Mor1], where a shorter
(than Markov’s one) proof is given.

After this, we shall give some precisions of Alexander’s and Markov’s the-
orems due to Makanin.

In the third part of the chapter, we shall discuss the Yang–Baxter equation
which is closely connected with braid groups and knot invariants.

12.1 Markov’s theorem after Morton

12.1.1 Formulation. Definitions. Threadings.

The Markov theorem gives an answer to the question of when the closures
of two braids represent isotopic links. However, this answer does not lead to
an algorithm; i.e., it gives only a list of moves, necessary and sufficient to
establish such an isotopy, but does not say how to use these moves and when
to stop.

In his work, Morton uses the original idea of threading — an alternative
way of representing a link as a closure of a braid (besides those proposed by
Alexander and Vogel).

Remark 12.1. We shall consider each closure of braids as a set of curves
inside the cylinder not intersecting its axis; the axis of the braid is the closure
of the curve coinciding with the axis of the cylinder inside the cylinder.

We start with the definitions.

Definition 12.1. Let K be an oriented link in R3. Let L be an unknotted

205
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FIGURE 12.1: Representing a braid in a full torus

curve. We say that K is braided with respect to L or K ∪ L is a braid–link
, if K and L represent the closure of some braid and the axis of this braid,
respectively (i.e., K lies inside the full torus S1 ×D, where the coordinate of
S1 is increasing, and L is the axis of the full torus); see Fig. 12.1.

Having a planar diagram of some braid closure, the corresponding braid–
link can be obtained from it by threading this diagram by a circle; see Fig. 12.2.

Let K be a planar diagram of some oriented link. Consider some curve L
on the projection plane P of the link K such that the curve L intersects the
projection of the link K transversely and does not pass through crossings of
K.

Definition 12.2. A choice of overpasses for a link diagram K is a union
of two sets S = {s1, . . . , sk}, F = {f1, . . . , fk} of points at the edges of K
(points should not coincide with crossings) such that while passing along the
orientation of K, the points from S alternate with points from F ; besides,
each interval [s, f ] does not contain undercrossings and each [f, s] does not
contain overcrossings; i.e. [s, f ] are arcs and [f, s] are lower arcs.

Definition 12.3. We say that a curve L whose projection on the plane of the
link K is a simple curve threads K according to a given choice (S, F ) of over-
passes if the interval of K goes over L when it starts in a domain containing
points from S, and it passes under L if it starts in a domain containing points
from S, as it is shown in Fig. 12.3.

Remark 12.2. We do not require that this interval of L contain elements of
the set S or F .

For a given link diagram K and a curve L on the projection plane, such
that L separates points from S from points from F then we can arrange over–
and undercrossings at intersection points between K and L in such a way that
the curve L′ obtained from L threads the link K.
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FIGURE 12.2: A threaded braid closure

Let us now prove the following theorem.

Theorem 12.1. If L threads the link K then K is a braid with respect to L.

Proof. Let us choose the overpasses (S, F ) for the diagram of the link K (in
an arbitrary way) and some curve L on the projection plane P of the diagram
K such that L separates points from S from points belonging to F . Let us
straighten the curve L in the plane P by a homeomorphism of P onto itself: we
require that the transformed L is a straight line inside a domain D, containing
K; L should be closed outside D (say, by a large half–circle). Consequently,
points of S lie on one side of this line, and points of F lie on the other side.
Such a transformation is shown in Fig. 12.4.

Without loss of generality, we can suppose that all under– and overcross-
ings of the diagram L lie in two planes parallel to P (just over and under the
images of the corresponding projections).

Now, let us change the point of view and think of P as the plane Oxz and
L as the axis Oz that is closed far away from the origin of coordinates.

Let us consider the line L (without its “infinite” circular part) as the axis
of cylindrical coordinates. Then the plane P is divided into two half–planes;
one of them is given by the equation {θ = 0} and the other one satisfies
the equation {θ = π}. Here the half–plane z = 0, x > 0 is thought to have
coordinate θ = 0; points over this half-plane are thought to have positive
coordinates.

Let us construct a link isotopic to K as follows. Place all lower arcs of K
(i.e., all intervals [f, s]) on the half planes {θ = −ε} and {θ = π + ε}, and all
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FIGURE 12.3: Crossings with L
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−→
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s3

f1

f2

f3

L

FIGURE 12.4: Straightening the curve L

arcs on the half–planes {θ = ε} and {θ = π − ε}, where ε is small enough.
Herewith, we shall add small intervals over all points belonging to S or F such
that each interval is projected to one point on Oxz.

Let us represent the arcs where K intersects with L by vertical arcs.
Thus, we have made the polar coordinate θ of the link K to be always

constant or increasing.
In Figs. 12.5 and 12.6 we show how to construct a knot with non-decreasing

polar coordinate. This knot is isotopic to the knot shown in Fig. 12.4.
After a small deformation of the obtained link, we can make this coordinate

strictly monotonic.
Thus, the transformed link (which we shall also denote byK) will represent

a braid with respect to L.

It follows from Theorem 12.1 that if some link K is a braid with respect
to an unknotted curve L then K is isotopic to a closure of some braid.

Theorem 12.2. Each closure K of any braid B admits a threading by some
curve L in such a way that K is a braid with respect to L.

Proof. Let D2×I be a cylinder. Consider B as a braid connecting points lying
on the upper base of the cylinder with points on the lower base of the same
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FIGURE 12.5: Link diagram intersecting L

cylinder. Now, let us close the braid as follows. Connect the lower points with
the upper ones by lines, going horizontally along the bases and vertically at
some discrete moments, as shown in Fig. 12.7.

Let us apply the isotopy that straightens the strands and changes homeo-
morphically the upper base of the cylinder. Thus we obtain a link that admits
a simple threading that can be constructed as follows. Let h0 be the height
level of the lower base and h1 be the level of the upper base. Denote the set
of lower ends of the braid B by A1 and the set of upper ones by A2.

One can assume that the levels h0 and h1 contain some additional sets of
vertices B1 and B2 by means of which we are going to construct the closure of
the braid. More precisely, the points from A1 are connected by parallel lines
with points from A2, and points from B1 are connected by parallel lines with
points from B2. Now, let us consider the circle lying on the plane at the level
h = h1+h2

2 and separating sets of lines A1A2 and B1B2.
Let us project the diagram on the base of the cylinder and take the set A1

as S and A2 as F .
It is easy to see that in this case the projection of the circle is really a

threading of the link.

Theorems 12.1 and 12.2 imply the Alexander theorem; the proofs of these
theorems give us a concrete algorithm (different from Alexander’s and Vogel’s
methods) to represent any link as a closure of a braid.

Let us now recall the main theorem of this chapter. It has already been
formulated in Chapter 9.

Theorem 12.3. The closures of braids A and B are isotopic if and only if B
can be obtained from A by a sequence of the following moves (Markov moves):
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FIGURE 12.6: The polar coordinate is increasing while moving along the
link

A1

B1

A2

B2

FIGURE 12.7: A braid and a braided link

1. conjugation b→ a−1ba by an arbitrary braid a with the same number of
strands as b,

2. the move b → bσ±1
n , where b is a braid on n strands and the obtained

braid has n+ 1 strands,

3. the inverse transformation of 2.

The necessity of these two moves is evident. The isotopies between corre-
sponding pairs of braid closures are shown in Fig. 12.8.

In Fig. 12.8.b the first Reidemeister move comes into play. This move did
not take part in braid isotopies, so this kind of knot isotopy appears here.

12.1.2 Markov’s theorem and threadings

Let us now reformulate the difficult part of the Markov theorem.
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FIGURE 12.8: Two Markov moves represent isotopy

To do it, we shall need some definitions.

Definition 12.4. We say that two braided links K∪L and K ′∪L′ are simply
Markov equivalent if there exists an isotopy of the second one, taking L′ to L
and K ′ to the link coinciding with K everywhere except one arc. The link K
contains an arc α and K ′ contains a link α′ with the same ends.

1. The polar coordinate is constant on the arc α and monotonically in-
creasing on α′.

2. The arcs α, α′ bound a disc intersecting L transversely at a unique point.

Definition 12.5. Two braided links are Markov equivalent if one of them
can be transformed to the other by a sequence of isotopies and simple Markov
equivalences.

Exercise 12.1. Show that closures of two n–strand braids are isotopic in
the class of closures of n–strand braids if and only if these two braids are
conjugated.

Lemma 12.1. If links K ∪L and K ′ ∪L′ are simply Markov equivalent then
they represent threaded closures of braids, which are isotopic to some braids
β ∈ Br(n) and βσ±1

n ∈ Br(n + 1).

Proof. Suppose the polar coordinate evaluated at points of the curve α equals
θ0. Consider the arc α0. Without loss of generality, one can assume that the
coordinate is almost everywhere equal to θ0 and in some small neighbourhood
of L′ the arc α0 makes a loop and this loop corresponds to the n–th (last)
strand of the braid α. We can isotope the braids K and K ′ in the neighbour-
hood {α = θ0 ± ε} in such a way that the final points of the arcs α and α0

lie in a small neighbourhood of L′. The remaining part of the Lemma is now
evident.

Lemma 12.1 together with Exercise 12.1 allows us to reformulate the dif-
ficult part of the Markov theorem as follows:
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⇐⇒
1 Type

⇐⇒
2 Type

FIGURE 12.9: Types of transformations

Theorem 12.4. Let β and γ be two braids whose closures B and Γ are isotopic
as oriented links. Let us thread these closures and obtain some braided links
B′ and Γ′. Then B′ and Γ′ are Markov equivalent.

To go further, we shall need some auxiliary lemmas and theorems.

Lemma 12.2. Consider an oriented link diagram K on the plane P and fix
the choice of overpasses (S, F ). Then the threadings of K by different curves
L and L′ separating the sets S and F are Markov equivalent.

Proof. The main idea of the proof is the following. First we consider the case
when the curves L and L′ are isotopic in the complement P\(S ∪ F ). In this
case, one of them can be transformed to the other by means of moves in such
a way that each of these moves is a Markov equivalence.

In the common case we shall use one extra move when two branches of
the line L pass through some point from S (or F ). Such a move is a Markov
equivalence as well (this will be clear from the definition).

Let us give the proof in more detail.
The case a).
Suppose L and L′ are isotopic in P\(S ∪ F ). Then K ∪L and K ∪L′ can

be obtained from each other by a sequence of transformations of the first and
the second type, shown in Fig. 12.9.

The first type is represented either by the second Reidemeister move or by
the “hooking” move, that adds two crossings in alternating order. It will be
shown below that this move is a simple Markov equivalence.

The second type of transformation is an isotopy in all cases except that
shown in Fig. 12.10.
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⇐⇒

FIGURE 12.10: Nonisotopic transformation of type II

In this case, the first threading can be transformed to the second one by
a sequence of moves of the first type and isotopies; see Fig. 12.11.

Here one should note that the passes of the diagram of K under the line
L are alternating with passes of K over L while going along the link K.
It remains to show that the two threadings obtained from each other by a
transformation of the first type are simply Markov equivalent.

Thus, the part of the link K shown in Fig. 12.11 belongs either to an upper
branch or to the lower branch. In the threading construction we can assume
that both parts of the link K on the same side of the line L lie on one and
the same level pL (it might be either {θ = π ± ε} or {θ = ±ε} depending on
the side of overcrossing).

Let us connect them by an arc as shown in Fig. 12.12.
Now, the arcs α and α′ bound a disc. Thus we obtain a simple Markov

equivalence of the two threadings.
The case b).
In the general case, note that if the curve M ′ of P that separates the set

S from the set F can be isotoped to the curve M by means of moving the two
arcs of the link K through some point of S or F (as shown in Fig. 12.13) then
M and M ′ represent isotopic threadings.

Such an isotopy of the “curvilinear” line L (or, equivalently, motions of
points from the sets S and F ) is divided into several steps. Between these steps,
we apply discrete moves changing the combinatorial type of the disposition
for L with respect to the sets S and F . Thus, one can consider the discrete
set of such dispositions, between two of each some elementary transformation
takes place.

Without loss of generality, we may assume the following.
Let S and F consist of points {(−1, ai)} and {(1, ai)} for some a1, . . . ak,

respectively. Let L be a part of Oy closed by a large half–circle in such a way
that the interior of L contains F . We may assume that K is parallel to Ox
near each of the points s1, . . . , sk.

Let L′ be any simple closed curve separating S from F and restricting a
domain that contains the set F . Without loss of generality, we can suppose
that the curve L′ intersects the rays y = ai, x < −1 transversely; see Fig.12.14.
Let us enumerate these intersections according to the decreasing of the ab-
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⇐⇒

⇐⇒

Isotopy

First type

First type

FIGURE 12.11: Transformation of type II reduces to transformations of
type I

scissa. For each of the rays, the number of intersections is even. For each ray,
let us group them pairwise: (1, 2), (3, 4), . . . . To do this, we first isotope L′

inside P\(S⋃F ) in such a way that between each pair of points there are no
crossings of the diagram K.

Now, let us move the curve line L′ to the right in such a way that after
performing the operation all points lie on the left side of the curve L. Let us
divide such a transformation into stages when L′ does not contain points from
S and moments when L′ does. In the first case, such a transformation is a
Markov equivalence as in the case a). In the second case, let us assume that
the intersection points of L′ with each ray disappear pairwise; i.e., the curve
L′ consequently passes two crossings with the same point si. This move is a
Markov equivalence as well; see Fig. 12.13.

Thus, the threading by means of L′ is Markov equivalent to the threading
by the curve lying on the right hand related from all si. This curve is isotopic
to L inside the set P\(S⋃F ); i.e., the threading by means of such curve is
Markov equivalent to the threading by means of L, see a). Consequently, the
threading by L′ is Markov equivalent to the threading by L. This completes
the proof of the lemma.

Lemma 12.3. Given a choice (S, F ) of overpasses for a link diagram K, and
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α α1

FIGURE 12.12: Transformation of type I is a simple Markov equivalence

ss ←→

Threading

←→

FIGURE 12.13: Moving two arcs

a point s in K, not belonging to F , then there exists a choice of overpasses
(S̄, F̄ ) such that s ∈ S̄, S ⊂ S̄, F ⊂ F̄ .
Proof. The idea of the proof is pretty simple: we add elements of S or F where
we want compensating them by corresponding elements of F or S. If s lies
on an upper arc of (S, F ) then one can choose f just before s with respect to
the orientation of K; thus the interval [f, s] ⊂ K contains no overcrossings.
In the case when s lies on a lower arc, we can add f just after s; in this case
[s, f ] ⊂ K contains no undercrossings.

Theorem 12.5. Each two threadings K ∪L and K ∪L′ of the same diagram
K are Markov equivalent.

Proof. Let us choose some overpasses (S, F ) for the threading K ∪ L and
(S′, F ′) for the threading K ∪ L′. According to Lemma 12.3, there exists a
choice of overpasses (S

′′

, F
′′

) such that (S, F ), (S′, F ′) ⊂ (S
′′

, F
′′

), and the
two threadings with this choice of overpasses, the first of which is Markov
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f3

f2

f1s1

s2

s3

L

FIGURE 12.14: Curve L′

equivalent to K ∪ L and the second is Markov equivalent to K ∪ L′. By
Lemma 12.2, these two threadings are Markov equivalent. Thus, the initial
two threadings are Markov equivalent and this completes the proof.

Theorem 12.6. Any two planar diagrams of isotopic links have Markov-
equivalent threadings.

Proof. To prove this theorem, we have to show how to construct Markov equiv-
alent threadings for diagrams obtained from each other by using Reidemeister
moves.

By Theorem 12.5, we can take any choice of overpasses for each of these di-
agrams. The idea is to be able to reconstruct the choice of overpasses together
with L after each Reidemeister move.

Without loss of generality, for the first two Reidemeister moves we can
choose the separating curve outside the small disc of the move (in the case of
Ω1 we choose one vertex s inside the disc; in the case of Ω2 all vertices from
(S, F ) are outside the disc).

We have shown that the link diagrams obtained from each other by Ω1 or
Ω2 obtain Markov equivalent threadings.
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f
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FIGURE 12.15: Choice of overpasses for Reidemeister moves

For Ω3 we can take one vertex s and one vertex f inside the disc and all
the other vertices outside the disc; see Fig. 12.15.

In Fig. 12.16 we show that the threading corresponding to diagrams ob-
tained from each other by Ω3 are isotopic and hence Markov equivalent (we
show only one case, the other cases of Ω3, with orientation and disposition of
L and K in the left picture are quite analogous).

In the upper part of this figure, we show how the line L can be transformed
with respect to this move Ω3. In the lower part, we show how one concrete
transformation is realised with over– and undercrossings between L and K.

Now, we are ready to prove the difficult part of the Markov theorem.

Proof of Theorem 12.4. Let K ∪ L, K ′ ∪ L′ be two braided links whence K
and K ′ are isotopic as links.

By Theorem 12.2, the link K ∪ L is a threading of some diagram K and
the link K ′∪L′ is a threading of some diagram K ′. By Theorem 12.6, one can
choose Markov–equivalent threadings for the first and the second diagram. By
Theorem 12.5, the first one is Markov equivalent to K ∪L and the second one
is Markov equivalent to K ′ ∪ L′.

Consequently, the threading K ∪L is Markov equivalent to K ′∪L′, which
completes the proof of Markov’s theorem.

Let us now present an example of how to use the Markov theorem.
As we have proved before, for each two coprime numbers p and q, the toric

knots of types (p, q) and (q, p) are isotopic. Let us demonstrate the Markov
moves for the braids, whose closures represent trefoils: (2, 3), (3, 2).

Example 12.1. Actually, the first braid has two strands and is given by σ−3
1 ;

the second one (which has three strands) is given by σ−1
1 σ−1

2 σ−1
1 σ−1

2 . Let us
write down a sequence of Markov moves transforming the first braid to the
second one:
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FIGURE 12.16: Isotopic threadings of diagrams differ by Ω3
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σ−3
1

2 move.−→ σ−3
1 σ−1

2

conj.−→ σ−2
1 σ−1

2 σ−1
1

= σ−1
1 (σ−1

1 σ−1
2 σ−1

1 )
braid isotopy−→ σ−1

1 σ−1
2 σ−1

1 σ−1
2 .

Exercise 12.2. Perform the analogous calculation for the case of toric knots
T (2, 2n+ 1) and T (2n+ 1, 2) and for the knots T (3, 4), T (4, 3).

12.2 Makanin’s generalisations. Unary braids

In his work [Mak], G.S. Makanin proposed a nice refinement of the Alexan-
der and Markov theorems: he proved that all knots (not braids) can be ob-
tained as closures of so–called unary braids. Besides, he proved that for any
two unary braids representing the same knot, there is a change of Markov
moves from one to the other that lies in the class of unary braids. Further-
more, Makanin also gave some generating system of (harmonic) braids, such
that their adjoint action has unary braids as an invariant set. For more details,
see the original work [Mak].

Throughout this section, all knots are taken to be oriented.

Definition 12.6. An (n+1)–strand braid is called unary if the strand having
ordinate one on the top has ordinate (n+1) on the bottom and, after deleting
the first strand, we obtain the trivial n–strand braid.

Obviously, unary braids generate only knots (not links).

Theorem 12.7 ([Mak]). For each knot isotopy class K, there exists a unary
braid B, such that Cl(B) is isotopic to K.

The first step here is to note that each knot K can be represented by a
braid β with permutation P = (1→ 2→ 3 · · · → n+ 1→ 1).

The second step of the proof is to show that each braid (e.g. β with permu-
tation P ) is conjugated to some unary braid β′. Thus, by Markov’s theorem,
Cl(β′) is isotopic to K.

Here is the key lemma.

Lemma 12.4. Let K be a braid from Br(n + 1) with permutation P . Then
there exists a unary braid Y that is conjugated with K by means of a strand
from Br(n).

This lemma follows from the construction of Artin [Art1] of so–called “reine
Zöpfe”. There is a nuance concerning mathematical terminology in German.
“Reine Zöpfe” is literally “pure braids”, but they have some other meaning in
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German rather than in English. The word for “pure braids” used in German
is “gefärbte Zöpfe” which literally means “coloured braids”.

For more details concerning these notions and the proof of the lemma, see
the original work of Makanin [Mak].

Theorem 12.8 ([Mak]). Let K1,K2 be two isotopic knots. Let B,B′ be two
unary braids representing the knots K1 and K2, respectively. Then there exists
a chain of unary braids B = B1, B2, . . . , Bk = B′ such that each Ni is obtained
from Bi−1 by a Markov move (for all i = 2, . . . , k).

Proof. Our strategy is the following: first we find some chain “connecting”
these braids by Markov’s moves and then modify it by means of some addi-
tional Markov moves in order to obtain only unary braids.

LetK be a unary braid from Br(p+1) and L be a unary braid from Br(q+
1). Thus, there exists a sequence of braids K,Q1, Q2, . . . , Qt where each braid
Qi+1 can be obtained from the previous one by one Markov move. Without
loss of generality, we can assume that no two conjugations are performed one
after the other. Besides, between any two Markov moves of second type we can
place a conjugation by the unit braid. Thus, we might assume that each move
Q2j−1 → Q2j is a conjugation, and Q2j → Q2j+1 is the second Markov move
(either addition or removal of a strand). The other case can be considered
analogously.

Furthermore, one can easily see that when an m–strand braid and a unary
braid are conjugated, the braid for conjugation can be chosen from Br(m−1).
This follows from the Lemma 12.4.

Now, let us construct our chain. For each braid Qi having ni strands, let
Yi be a unary braid conjugated with the braid Qi by a (ni − 1)-strand braid.

Obviously, each Y2j−1 is conjugated with Y2j by some braid from Br(n2j).
Besides, the braid Y2j ∈ Br(n2j) is conjugated with Q2j ∈ Br(n2j) by means
of some braid δ from Br(n2j −1). In the case when the transformation Q2j →
Q2j+1 adds a strand, we can perform the same operation for Y2j . We obtain
a braid Y ∗

2j . Obviously, the braids Y2j and Q2j+1 are conjugated by means of
δ. So, Y ∗

2j and Y2j+1 are conjugated.
In the other case when Q2j → Q2j+1 deletes a strand, the inverse move

Q2j+1 → Q2j adds a loop. Arguing as above, we see that the braids Y2j and
Y2j+1 are connected by some Markov moves involving only unary braids.

Thus, we have constructed a chain of unary braids, connecting B with B′,
which completes the proof.

The Makanin work allows us to encode all knots by using words in some
finite alphabet. Namely, in order to set an n–strand braid, we should just
describe the behaviour of the first strand of it; i.e., we must indicate when it
goes to the right (to the left) and when it forms an over (under)crossing. To

do this, it would be sufficient to use four brackets:
+→, −→, +←, and

−←.
The only condition for such a word to give a braid is that the total number
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of → minus the total number of ← never exceeds n in all initial subwords,
and equals precisely n for the whole word.

Another approach with some detailed encoding of knots and links by words
in a finite alphabet (bracket calculus) will be described later in Chapter 16.

12.3 The Yang–Baxter equation, braid groups and link
invariants

The Yang–Baxter equation (YBE) was first developed by physicists. How-
ever, these equations turn out to be very convenient in many areas of mathe-
matics. In particular, they are quite well suited for describing braids and their
representations. In our book we shall not touch on the connection between
the YBE and physics, for more details see in e.g. [Kau4].

Just after the revolutionary works by Jones [Jon1, Jon2], it became
clear that the Jones polynomial and its generalisations (e.g. the HOMFLY-
PT polynomial) are in some sense a vast family of knot invariants coming
from quantum representations – the quantum invariants; for the details see
[CES, Dri1, Dri2, Jon3, RT, Tur1].

Let V be the finite dimensional vector space with basis e1, . . . , en over
some field F . Let R : V ⊗ V → V ⊗ V be some endomorphism of V ⊗ V .
Consider the endomorphism

Ri : Id⊗ · · · ⊗ Id⊗R⊗ Id⊗ · · · ⊗ Id : V ⊗n → V ⊗n,

where V ⊗n means the n–th tensor power of V , Id is the identity map, and Ri

acts on the product of spaces V ⊗ V , which have numbers (i, i+ 1).

Definition 12.7. An operator R is said to be an R–matrix if it satisfies the
following conditions:

RiRi+1Ri = Ri+1RiRi+1, i = 1, . . . , n− 1

RiRj = RjRi, |i− j| ≥ 2.

The first of these conditions is called the Yang–Baxter equation; the second
one is just far commutativity for R1, . . . , Rn−1.

The YBE look quite similar to Artin’s relations for the braid group: they
differ just by replacing σ with R, and we obtain one equation from the others.

Now, we are going to show the mathematical connection between the YBE,
braid group representations and link invariants.

Having an R–matrix, one can construct a link invariant by using the follow-
ing construction (proposed by V.G. Turaev in [Tur1]). Below, we just sketch
this construction; for details see the original work.
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First, we construct a representation of the braid group Br(n) to the tensor
power V ⊗n as ρ(σi) = Ri, where σi are standard generators of the braid
groups.

After this, for any given link L we find a braid b with closure Cl(b) that
is isotopic to L.

One can set T (L) = trace(ρ(b)). In this case, T (L) is invariant under braid
isotopies and the first Markov move (conjugation). The latter follows from the
simple fact that for any square matrices A and B of the same size, we have
trace(A) = trace(BAB−1).

In some cases (see [Tur1]), the function T (L) is invariant under the sec-
ond Reidemeister move as well. Thus, T (L) gives a link invariant. As we
have shown before, one can also introduce some specific traces (namely, the
Ocneanu trace) instead of the ordinary trace. Such traces behave quite well
under both Markov’s moves and lead to the Jones polynomial in two variables.

Remark 12.3. Numerical values of the Jones polynomial can be obtained by
means of R–matrices.

In quantum mechanics, one also considers the quantum YBE that looks
like

R12R13R23 = R23R13R12. (12.1)

Here Rij are obtained from some fixed matrix R generating an automorphism

R : V ⊗n2 → V ⊗n2

(e.g. R12 = R⊗ In, where In is the (n×n) identity matrix.
Each solution of (12.1) is called quantum R–matrix.

For the study of quantum invariants, we recommend the beautiful book
by Ohtsuki, [Oht].

A review of classical R–matrices can be read in [Sem]. An interesting work
concerning the problem of finding R–matrices was written by the well-known
Dutch mathematician Michiel Hazewinkel [Haz].
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Vassiliev’s invariants.
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Chapter 13

Definitions and basic notions of

Vassiliev invariant theory

The Vassiliev knot invariants were first proposed around 1989 by Victor A.
Vassiliev [Vas1] while studying the topology of discriminant sets of smooth
maps S1 → R3. A bit later, Mikhail N. Goussarov [Gus] independently found
a combinatorial description of the same invariants.

13.1 Singular knots and
the definition of finite type invariants

Throughout this part of the book, all knots are taken to be oriented,
unless otherwise specified. Besides, we deal only with knots, not links. The
analogous theory can be constructed straightforwardly for the case of links;
the definitions are, however, a bit more complicated.

As we know, each knot can be transformed to the unknot by switching
some crossings. This switch can be thought of as performed in R3.

Having a knot invariant f , one can consider its values on two knots that
differ at only one crossing. Certainly, these two knots might not be isotopic;
hence, these values might not coincide.

While switching the crossing continuously, the most interesting moment is
the intersection moment: in this case we get what is called a singular knot.
More precisely, a singular knot of degree n is an immersion of S1 in R3 with
only n simple transverse intersection points (i.e., points where two branches
intersect transversely).

Singular knots are considered up to isotopy. The isotopy of singular knots
is defined quite analogously to that for the case of classical knots. The set of
singular knots of degree n (for n = 0 the set X0 consists of the classical knots)
is denoted by Xn. The set of all singular knots (including X0) is denoted by
X .

So, while switching a crossing of a classical knot, at some moment we get
a singular knot of order one.

225
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Then, we can define the derivative f ′ of the invariant f according to the
following relation:

f ′( ) = f( )− f( ). (13.1)

This relation holds for all triples of diagrams that differ only outside a

small domain (two of them represent classical knots and represents the
corresponding singular knot).

This relation is called the Vassiliev relation.
It is obvious that the invariant f ′ is a well-defined invariant of singular

knots because with each singular knot and each vertex of it, we can associate
the positive and the negative resolutions of it in R3. If we isotope the singular
knot, the resolutions are “isotoped” together with it.

Having a knot invariant f : X0 → A,1 one can define all its derivatives of
higher orders. To do this, one should take the same formula for two singular
knots of order n and one singular knot of order n + 1 (n singular vertices of
each of them lie outside of the “visible” part of the diagram) and then apply
the Vassiliev relation (13.1).

Thus, we define some invariant on the set X . This invariant is called the
extension of f for singular knots.

Notation: f (n).

Example 13.1. Let us calculate the extension of the Jones polynomial eval-
uated on the simplest singular knot of order two. After applying the Vassiliev
relation twice, we have:

Definition 13.1. An invariant f : X0 → A is said to be a (Vassiliev) invariant
of order ≤ n if its extension for the set of all (n + 1)–singular knots equals
zero identically.

Denote by Vn the space of all Vassiliev knot invariants of order less than
or equal to n.

1A can be a ring or a field; we shall usually deal with the cases of Q,R and C
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FIGURE 13.1: The simplest singular knot

Definition 13.2. A Vassiliev invariant of order (type) ≤ n is said to have
order n if it is not an invariant of order less than or equal to n− 1.

13.2 Invariants of orders zero and one

The definition of the Vassiliev knot invariant shows us that if an invariant
has degree zero then it has the same value on any two knots having diagrams
with the same shadow that differ at precisely one crossing. Thus, it has the
same value on all knots having the same shadow. Let K be a knot diagram,
and S be the shadow of K. There is an unknot diagram with shadow S. So,
the value of our invariant on K equals that evaluated on the unknot.

Thus, such an invariant is constant.
It turns out that the first order gives no new invariants (in comparison

with 0–type invariants, which are constants).
Indeed, consider the simplest singular knot U shown in Fig. 13.1.
Let S be a shadow of a knot with a fixed vertex which is a singular point.

Exercise 13.1. Prove that one can arrange all other crossing types for S to
get a singular knot isotopic to U .

It is easy to see that for each Vassiliev knot invariant I such that I ′′ = 0
we have I ′(U) = 0. Indeed, I ′(U) = I( )− I( ) = 0.

Now, consider an invariant I of degree less than or equal to one. Let K
be an oriented knot diagram. By switching some crossing types, the knot
diagramK can be transformed to some unknot diagram. Thus, I(K) = I(©)+∑±I ′(Ki) where Ki are singular knots with one singular point. But, each Ki

can be transformed to some diagram U by switching some crossing types.
Thus, I ′(Ki) = I ′(U) +

∑±I ′′(Kij), where Kij are singular knots of second
order. By definition, I ′′ ≡ 0, thus I ′(Ki) = 0 and, consequently, I(K) = I(©).
Thus, the invariant function I is a constant. So, there are no invariants of order
one.
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13.3 Examples of higher–order invariants

Consider the Conway polynomial C and its coefficients cn.

Theorem 13.1. For each natural n, the function cn is a knot invariant of
degree less than or equal to n.

Proof. Indeed, we just have to compare the Vassiliev relation and the Conway
skein relation:

c′n( ) = cn( )− cn( ) = x · cn( ).

Thus we see that the first derivative of C is divisible by x; analogously,
the n–th derivative of C is divisible by xn. Thus, after n+ 1 differentiations,
cn vanishes.

This gives us the first non-trivial example. The second coefficient c2 of the
Conway polynomial is the second-order invariant (one can easily check that it
is not constant; namely, its value on the trefoil equals one).

However, this invariant does not distinguish the two trefoils because the
Conway polynomial itself does not. In the next chapter, we shall show how an
invariant of degree three can distinguish the two trefoils.

As will be shown in the future, all even coefficients of the Conway polyno-
mial give us finite–order invariants of corresponding orders.

13.4 Symbols of Vassiliev’s invariants coming from the
Conway polynomial

As we have shown, each coefficient cn of the Conway polynomial has order
less than or equal to n.

Let v be a Vassiliev knot invariant of order n. By definition, v(n+1) = 0.
This means that if we take two singular knots K1,K2 of n–th order whose
diagrams differ at only one crossing (one of them has the overcrossing and
the other one has the undercrossing), then v(n)(K1) = v(n)(K2). Thus, for
singular knots of n–th order one can switch crossing types without changing
the value of v(n). Hence, the value of v(n) does not depend on knottedness
“that is generated” by classical crossings. It depends only on the order of
passing singular points.

Definition 13.3. The function v(n) is called the symbol of v.
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Definition 13.4. By a chord diagram we mean a finite cubic graph consisting
of one oriented cycle (circle) and unoriented chords (edges connecting different
points on this cycle). The order of a chord diagram is the number of its chords.

Remark 13.1. Chord diagrams are considered up to natural graph isomor-
phism taking chords to chords, circle to the circle and preserving the orienta-
tion of the circle.

Remark 13.2. We shall never indicate the orientation of the circle on a
chord diagram, always assuming that it is oriented counterclockwise.

The above statements concerning singular knots can be put in formal di-
agrammatic language. Namely, with each singular knot one can associate a
chord diagram that is obtained as follows. We think of a knot as the image of
the standard oriented Euclidian S1 in R3 and connect by chords the preimages
of the same point in R3.

So, each invariant of order n generates a function on the set of chord
diagrams with n chords. We can consider the formal linear space of chord
diagrams with coefficients, say, in Q, and then consider linear functions on
this space generated by symbols of n–th order Vassiliev invariants (together
with the constant zero function that has order zero).

Now, it is clear that the space Vn/Vn−1 is just the space of symbols that
can be considered in the diagrammatic language.

We shall show that for even n, the coefficient cn of the Conway polynomial
has order precisely n. Moreover, we shall calculate its symbols, according to
[CDL].

Consider a chord diagram D of order n. Let us “double” each chord and
erase small arcs between the ends of parallel chords. The constructed object
(oriented circle without 2n small arcs but with n pairs of parallel chords)
admits a way of walking along itself. Indeed, starting from an arbitrary point
of the circle, we reach the beginning of some chord (after which we can see a
“deleted small arc”), then we turn to the chord and move along it. After the
end of the chord we again move to the arc (that we have not deleted), and so
on. Obviously, we shall finally return to the initial points. Here we have two
possibilities.

In the first case we pass all the object completely; in the second case we
pass only a part of the object.

By performing a small perturbation in R3 we can make all chords non-
intersecting. In this case our object becomes a manifold m(D). The first pos-
sibility described above corresponds to a connected manifold and the second
one corresponds to a disconnected manifold

Proposition 13.1 ([CDL]). The value of the n–th derivative of cn on D
equals one if m(D) has only one connected component and zero, otherwise.

Proof. Let L be a singular knot with chord diagram D. Let us resolve vertices
of D by using the skein relation for the Conway polynomial and the Vassiliev
relation:
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FIGURE 13.2: Calculation of the invariant c4

C′( ) = x · C( ).

Applying this relation n times, we see that the value of the n–th derivative
of the invariant C on L (on D) equals the value of C on the diagram obtained
from D by resolving all singular crossings, multiplied by xn. Herewith, the
coefficient cn of the n–th derivative of the Conway polynomial for the case
of the singular knot is equal to the coefficient c0 evaluated at the “resolved”
diagram.

This value does not depend on crossing types: it equals one on the unknot
and zero on the unlink with more than one component. That completes the
proof.

It turns out that knots (as well as odd–component links) have only even–
degree non-zero monomials of the Conway polynomial: cn ≡ 0 for odd n.

This fact can be proved by using the previous proposition. Let D be a
chord diagram of odd order n. Suppose that the curve m(D) corresponding
to D has precisely one connected component. Let us attach a disc to this
closed curve. Thus we obtain an orientable (prove it!) 2–manifold with disc
cut. Thus, the Euler characteristic of this manifold should be odd. On the
other hand, the Euler characteristic equals V −E+S = 2n−3n+1 = −n+1.
Taking into account that n is odd, we obtain a contradiction that completes
the proof.

Obviously, for even n, there exist chord diagrams, where cn does not vanish.

Example 13.2. The invariant c4 evaluated at the diagram (see Fig. 13.2,

upper picture) is equal to zero; c4 evaluated at (see Fig.13.2, lower pic-
ture), is equal to one.

Exercise 13.2. Show that for each even n the value of the n–th derivative of
the invariant cn evaluated on the diagram with all chords pairwise intersecting
is equal to one.
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This exercise shows the existence of Vassiliev invariants of arbitrary even
orders.

Thus we have proved that the Conway polynomial is weaker than the
Vassiliev knot invariants.

Thus, we can say the same about the Alexander polynomial that can be
obtained from the Conway polynomial by a simple variable change.

13.5 Other polynomials and Vassiliev’s invariants

If we try to apply formal differentiation to the coefficients of other polyno-
mials, we might fail. Thus, for example, coefficients of the Jones polynomial
themselves are not Vassiliev invariants. The main reason is that the Jones
polynomial evaluated at some links might have negative powers of the vari-
able q in such a way that after differentiation we shall still have negative
degrees.

In [JP] the authors give a criterion to detect whether the derivatives of
knot polynomials are Vassiliev invariants. They also show how to construct a
polynomial invariant by a given Vassiliev invariant.

Although other polynomials can not be obtained from the Conway
(Alexander) polynomial by means of a variable change, Vassiliev invariants
are stronger than any of those polynomial invariants of knots (possibly, ex-
cept for the Khovanov polynomial). The results described here first arose in
the work by Birman and Lin [BL] (the preprint of this work appeared in 1991);
see also [BN1, Kal].

First, let us consider the Jones polynomial. Recall that the Jones polyno-
mial satisfies the following skein relation:

q−1V ( )− qV ( ) = (q
1
2 − q− 1

2 )V ( )

Now, perform the variable change q = ex. We get:

e−xV ( )− exV ( ) = (e
x
2 − e− x

2 )V ( ).

Now let us write down the formal Taylor series in x of the expression above
and take all members divisible by x explicitly to the right part.

In the right part we get a sum divisible by x and in the left part we obtain
the derivative of the Jones polynomial plus something divisible by x:

V ( )− V ( ) = x〈some mess〉
. Arguing as above, we see that after the second differentiation, only terms
divisible by x2 arise in the right part.

Consequently, after (n + 1) differentiations, the n–th term of the series
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expressing the Jones polynomial in x, becomes zero. Thus, all terms of this
series, are Vassiliev invariants. So, we obtain the following theorem.

Theorem 13.2. The Jones polynomial in one variable and the Kauffman
polynomial in one variable are weaker than Vassiliev invariants.

One can do the same with the Jones polynomial (denoted by X )) in two
variables.

Let us write down the skein relation for it:

1√
λ
√
q
X ( )−

√
λ
√
qX ( ) =

q − 1√
q
X ( )

and let us make the variable change
√
q = ex,

√
λ = ey and write down the

Taylor series in x and y.
In the right part we get something divisible by x and in the left part

something divisible by xy plus the derivative of the Jones polynomial.
Finally, we have

X ( )−X ( ) = x〈some mess〉.

Thus, after (n+ 1) differentiations, all terms of degree ≤ n in x, vanish.
Consequently, we get the following theorem.

Theorem 13.3. The Jones polynomial in two variables is weaker than Vas-
siliev invariants.

Since the HOMFLY-PT polynomial is obtained from the Jones polynomial
by a variable change, we see that the following theorem holds.

Theorem 13.4. The HOMFLY-PT polynomial is weaker than Vassiliev in-
variants.

The most difficult and interesting case is the Kauffman 2–variable poly-
nomial because this polynomial does not satisfy any Conway relations. This

polynomial can be expressed in the terms of functions z, a, and a−a−1

z . In
order to represent the Kauffman polynomial as a series of Vassiliev invariants,
we have to represent all these functions as series of positive powers of two
variables.

We recall that the Kauffman polynomial in two variables is given by the
formula2

Y (L) = a−w(L)D(L),

where D is a function on the chord diagram that satisfies the following rela-
tions:

2Here we denote the oriented and the unoriented diagrams by the same letter L.
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D(L)−D(L′) = z(D(LA)−D(LB)); (13.2)

D(©) =

(
1 +

a− a−1

z

)
; (13.3)

D(X# ) = aD(X), D(X# ) = a−1D(X), (13.4)

where the diagrams L = , L′ = ,LA = ,LB = coincide outside
a small neighbourhood of some vertex.

Let us rewrite (13.2) for Y . We get:

a−1Y ( )− aY ( ) = z(Y ( )− Y ( )) · 〈Power of a〉. (13.5)

Let us perform the variable change: p = ln(a−1
z ). Then, in terms of z and p,

one can express z, a, a−a−1

z by using only positive powers and series. Actually,
we have:

z = z,

a = zep + 1 = z(1 + p+ . . . ) + 1,

a−1 = 1− z(1 + p+ . . . ) + z2(1 + p+ . . . )2 + . . . ,

a− a−1

z
= a−1(a+ 1)ep

Each of these right parts can evidently be represented as sequences of
positive powers of p and z.

Thus, the value of the Kauffman polynomial in two variables on each knots
is represented by positive powers of p and z. On the other hand, taking into
account that a = 1 + z〈some mess1〉 and a−1 = 1 + z〈some mess2〉, we can
deduce from (13.5) and (13.4) that

Y ′ = z〈some mess〉.
Herewith, all terms of our double sequence having degree less than or equal

to n in the variable z, vanish after the (n + 1)–th differentiation. Thus, all
these terms are Vassiliev invariants.

Thus, we have proved the following theorem.

Theorem 13.5. The Kauffman polynomial in two variables is weaker than
Vassiliev invariants.
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Let us show how to calculate the derivative of products of two functions.
For any two functions f and g defined on knot diagrams one can formally

define the derivatives f ′ and g′ on diagrams of first-order singular knots just
as we define the derivatives of the invariants. Analogously, one can define
higher-order derivatives.

Consider the function f · g and consider a singular knot diagram K of
order n. By a splitting is meant a choice of a subset of i singular vertices of n
singular vertices belonging to K. Choose a splitting s. Let K1s be the diagram
obtained fromK by resolving (n−i) unselected vertices of s negatively, and let
K2s be the knot diagram obtained by resolving i selected vertices positively.

Lemma 13.1. Let K be a chord diagram of degree n. Then the Leibniz for-
mula holds:

(fg)(n)(K) =

n∑

i=0

∑

s

f (i)(K1s)g
(n−i)(K2s).

Proof. We shall use induction on n.
First, let us establish the induction base (the case n = 1). Given a singular

knot of order one, let us consider a diagram of it and the only singular vertex
A of this diagram. Write down the Vassiliev relation for this vertex:

(fg)′( ) = f( )g( )− f( )g( )

= g( )(f( )− f( )) + f( )(g( )− g( ))

= f ′( )g( ) + g′( )f( ). (13.6)

The equality (13.6) holds by definition of f ′ and g′. Thus, we have proved
the claim of the theorem for n = 1. Note that we can apply the obtained
formula for functions on singular (not ordinary) knots, when all singular points
do not take part in the relation; i.e., lie outside the neighbourhood.

Now, for any given singular knot K of order n, let us fix a singular vertex
A of the knot diagram K. The value of (fg)(n) on K equals the difference of
(fg)(n−1) evaluated on two singular knots K1 and K2; these two diagrams of
singular knots of order n− 1 are obtained by positive and negative resolution
of A, respectively.

By the induction hypothesis, we have:

(fg)(n−1)(Ki) =
n−1∑

i=0

∑

s

f (i)(Ki
1s)g

(n−1−i)(Ki
2s), (13.7)

where s runs over the set of all splittings of order (n− 1).
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We have:

(fg)(n)(K) = (fg)(n−1)(K1)− (fg)(n−1)(K2)

=

n−1∑

i=0

∑

s

[
f (i)(K1

1s)g
(n−1−i)(K1

2s)− f (i)(K2
1s)g

(n−1−i)(K2
2s)
]

=

n−1∑

i=0

∑

s

[
f (i)(K1

1s)g
(n−1−i)(K1

2s)− f (i)(K2
1s)g

(n−1−i)(K1
2s)

+ f (i)(K2
1s)g

(n−1−i)(K1
2s)− f (i)(K2

1s)g
(n−1−i)(K2

2s)
]

=

n−1∑

i=0

∑

s

[
f (i+1)(K1s)g

(n−1−i)(K1
2s)− f (i)(K2

1s)g
(n−i)(K2s)

]

=
n∑

i=0

∑

s

f (i)(K1s)g
(n−i)(K2s).

Lemma 13.1 implies the following corollary.

Corollary 13.1. Let f and g be two functions defined on the set of knot
diagrams (not necessarily knot invariants) such that f (n+1) ≡ 0, g(k+1) ≡ 0.
Then (fg)(n+k+1) ≡ 0.

In particular, the product of Vassiliev invariants of orders n and k is a
Vassiliev invariant of order less than or equal to (n+ k).

13.6 An example of an infinite-order invariant

Until now, we have dealt only with invariants either having finite-order
or invariants that can be reduced to finite order invariants. We have not yet
given any proof that some knot invariant has infinite order.

Here we give an example of a knot invariant that has infinite order, [BL].

Definition 13.5. The unknotting number U(K) of an (oriented) link K is
the minimal number n ∈ Z+ such that K can be transformed to the unlink
by passing n times through singular links. In other words, n is the minimal
number such that there exists a diagram of K that can be transformed to an
unlink diagram by switching n crossings.

By definition, our invariant equals zero only for unlinks.

Theorem 13.6. The invariant U has infinite order.
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· · ·

A

4m vertices

FIGURE 13.3: Singular knot, where U i 6= 0.

Proof. Let us fix an arbitrary i ∈ N. Now, we shall give an example of the
singular knot for which U (i) 6= 0. Fix an integer m > 0 and consider the knot
K4m with 4m singularity points which are shown in Fig. 13.3.

By definition of the derivative, the value of U (4m) on this knot is equal to
the alternating sum of 2(4m) summands; each of them is the value of U on a
knot, obtained by somehow resolving all singular vertices of K4m.

Note that for each such singular knot the value of U does not exceed one:
by changing the crossing at the point A, we obtain the unknot. On the other
hand, the knot obtained from K4m by splitting all singular vertices is trivial
if and only if the number of positive splittings equals the number of negative
splittings (they are both equal to 2m).

The case of q positive and 4m − q negative crossings generates the sign
(−1)q.

Thus we finally get that U (4m)(K4m) is equal to

U (4m)(K4m) = 2[C0
4m − C1

4m + · · · − C2m−1
4m ].

This sum is, obviously, negative: U (4m)(K4m) 6= 0. So, for m > i
4 , we get

U (i) 6≡ 0. Thus, the invariant U is not a finite type invariant of order less than
or equal to i. Since i was chosen arbitrarily, the invariant U is not a finite
type invariant.

Remark 13.3. We do not claim that U cannot be represented via finite type
invariants.

The unknotting number is some “measure” of complexity for a knot. Thus,
it would be natural to think that it is realised on minimal diagrams (i.e. the
minimal diagram can be transformed to the unknot diagram by precisely n
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switchings if the unknotting number is equal to n). However, this is not true.
The first results in this directions were obtained by Bleiler and Nakanishi
[Ble, Nak]. Later, an infinite series of knots with this property was constructed
by D.J. Garity [Gari].





Chapter 14

The chord diagram algebra

14.1 Basic structures

In the present chapter, we shall study the algebraic structure that arises
on the set of Vassiliev knot invariants.

In the previous chapter, we defined symbols of the Vassiliev knot invariants
in the language of chord diagrams.

Now, the main question is: Which functions on chord diagrams can play
the role of symbols?

The simplest observation leads to the following fact. If we have a chord

diagram C = with a small solitary chord, then each symbol evaluated at
this diagram equals zero. We have already discussed this in the language of
singular knots.

This relation is called a 1T –relation (or one–term relation).
One can easily prove the generalised 1T–relation where we can take a

diagram C = with a chord that does not intersect any other chord. Then,
each symbol of a Vassiliev knot invariant evaluated at the diagram C equals
zero. The proof is left to the reader.

There exists another relation, consisting of four terms, the so-called 4T –
relation. In fact, let us prove the following theorem.

Theorem 14.1 (The four–term relation). For each symbol vn of an invariant
v of order n the following relation holds:

vn( )− vn( )− vn( ) + vn( ) = 0.

This relation means that for any four diagrams having n chords, where (n−2)
chords (not shown in the Figure) are the same for all diagrams and the other
two look as shown above, the above equality takes place.

Proof. Consider four singular knots S1, S2, S3, S4 of the order n, whose di-
agrams coincide outside some small circle, and their fragments s1, s2, s3, s4
inside this circle look like this:

s1 = , s2 = , s3 = , s4 = .

239
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v(n)( ) v(n−1)( v(n−1)() )= − = a− b

v(n)(

v(n)(

v(n)(

)

)

)

v(n−1)(

v(n−1)(

v(n−1)(

v(n−1)(

v(n−1)(

v(n−1)(

)

)

)

)

)

)

=

=

=

−

−

−

= c− d

= c− a

= d− b

FIGURE 14.1: The same letters express v(n−1) for isotopic long knots

Consider an invariant v of order n and the values of its symbol on these
four knots. Vassiliev’s relation implies the relations shown in Fig. 14.1.

Obviously,

(a− b)− (c− d) + (c− a)− (d− b) = 0.

In order to get singular knots, one should close the fragments s1, s2, s3, s4.
There are two possibilities to do this as shown in Fig. 14.2.

Thus, the diagrams S1, S2, S3, S4 satisfy the relation

v(n)(S1)− v(n)(S2) + v(n)(S3)− v(n)(S4) = 0. (14.1)

Each of the chord diagrams corresponding to S1, S2, S3, S4 has n chords; (n−2)
chords are the same for all diagrams, and only two chords are different for these
diagrams.

Since the order of v equals n, the symbol of v is correctly defined on chord
diagrams of order n. Thus, the value of v(n) on diagrams corresponding to
singular knots S1, S2, S3, S4 equals the value on the singular knots themselves.

Taking into account the formulae obtained above, and the arbitrariness
of the remaining (n − 2) singular vertices of the diagrams S1, S2, S3, S4, we
obtain the statement of the theorem.



The chord diagram algebra 241

− + − =0

− + − =0

FIGURE 14.2: Closures of fragments imply 4T –relation

Both 1T – and 4T –relations can be considered for chord diagrams and on
the dual space of linear functions on chord diagrams (since these two dual
spaces can obviously be identified). For the sake of simplicity, we shall apply
the terms 1T – and 4T –relation to both cases.

Definition 14.1. Each linear function on chord diagrams of order n, satisfy-
ing these relations, is said to be a weight system (of order n).

Notation: Denote the space of all weight systems of order n, by An or by
∆n.

In the last chapter, we considered invariants of orders less than or equal
to two. The situation there is quite clear: there exists the unique non–trivial
(modulo 1T –relation) chord diagram that gives the invariant of order two. As

for dimension three, there are two diagrams: and . It turns out that
they are linearly dependent. Namely, let us write the following 4T –relation
(here the fixed chord is represented by the dotted line):

− = − .

This means that = 2 .
So, if there exists an invariant of order three, then its symbol is uniquely de-

fined by a value on . Suppose we have such an invariant v and V ′′′( ) =
1. Let us show that this invariant distinguishes the two trefoils; see Fig. 14.3

The existence of this invariant will be proved later.
Let us consider the formal space ∆4.
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FIGURE 14.3: Vassiliev invariant of order 3 distinguishes trefoils

Exercise 14.1. Prove the following relations:

= + , + = 2 ,

= + , = + ,

+ = + .

Exercise 14.2. Prove that dim∆4 = 3 and that the following three diagrams
can be chosen as a basis:

{
, ,

}
.

It turns out that the chord diagrams factorised by the 4T –relation (with or
without the 1T –relation) form an algebra. Namely, having two chord diagrams
C1 and C2, one can break them at points c1 ∈ C1 and c2 ∈ C2 (which are not
ends of chords) and then attach the broken diagrams together according to
the orientation. Thus we get a chord diagram. The obtained diagram can be
considered as the product C1 ·C2. Obviously, this way of defining the product
depends on the choice of the base points c1 and c2; thus, different choices
might generate different elements of Ac. However, this is not the case since
we have the 4T –relation.

Theorem 14.2. The product of chord diagrams in Ac is well defined; i.e., it
does not depend on the choice of initial points.

To prove this theorem, we should consider arc diagrams rather than chord
diagrams.
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Definition 14.2. By an arc diagram we mean a diagram consisting of one
straight oriented line and several arcs connecting points of it in such a way that
each arc connects two different points and each point on the line is incident
to no more than one arc.

These diagrams are considered up to the natural equivalence; i.e., a map-
ping of the diagram, taking the line to the line (preserving the orientation of
the line) and taking all arcs to arcs.

Obviously, by breaking one and the same chord diagram at different points,
we obtain different arc diagrams.

Now, we can consider the 4T –relation for the case of the arc diagrams,
namely the relation obtained from a 4T –relation by breaking all four circles
at the same point (which is not a chord end).

The point is that the two arc diagrams A1 and A2 obtained from the same
chord diagram D by breaking this diagram at different points are equivalent
modulo 4T –relation. This will be sufficient for proving Theorem 14.2. Obvi-
ously, one can obtain A2 from A1 by “moving a chord end through infinity”.
Thus, it suffices to prove the following lemma.

Lemma 14.1 (Kontsevich). Let A1, A2 be two arc diagrams that differ only
at the chord: namely, the rightmost position of a chord end of A2 corresponds
to the leftmost position of the corresponding chord end of A1; the other chord
ends of A1 and A2 are on the same places. Then A1 and A2 are equivalent
modulo the four–term relation.

Proof. Suppose that each of the diagrams A1 and A2 have n arcs. Denote the
common arc ends A1 and A2 by X1, X2, . . . , X2n−1 enumerated from the left
to the right. They divide the line into 2n intervals I1, . . . , I2n (from the left to
the right). Denote by Dj the arc diagram having the same “fixed” arc ends as
A1 and A2 and one “mobile” arc end at Ij . Thus, A1 = D1, A2 = D2n. Suppose
that the second end of the “mobile” arc is Xk. Then, obviously, Dk = Dk+1.

Now, consider the following expression

A2n −A1 = A2n −A2n−1 +A2n−1 −A2n−2 + . . .

+Ak+2 −Ak+1 +Ak −Ak−1 + . . . A2 −A1.

Here we have 4n−4 summands. It is easy to see that they can be divided into
n − 1 groups, each of which forms the 4T –relation concerning one immobile
chord and the mobile chord.

Thus, A2n = A1. This completes the proof of the theorem.
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14.2 Bialgebra structure of algebras Ac and At. Chord
diagrams and Feynman diagrams

The chord diagram algebra Ac has, however, very sophisticated structures.
It is indeed a bialgebra. The coalgebra structure of Ac can be introduced as
follows.

Let C be a chord diagram with n chords. Denote the set of all chords of
the diagram C by X . Let ∆(C) be

∑

s∈2X

Cs ⊗ CX\s,

where the sum is taken over all subsets s of X , and Cy denotes the chord
diagram consisting of all chords of C belonging to the set y. Now, let us
extend the coproduct ∆ linearly.

Now we should check that this operation is well defined. Namely, for each

four diagrams A = , B = , C = , D = such that A−B + C −
D = 0 is the 4T –relation, one must check that ∆(A)−∆(B)+∆(C)−∆(D) =
0.

Actually, let A,B,C,D be four such diagrams (A differs from B only by
a crossing of two chords, and D differs from C in the same way). Let us
consider the comultiplication ∆. We see that when the two “principal” chords
are in different parts of X , then we have no difference between A,B as well as
between C,D. Thus, such subsets of X give no impact. And when we take both
chords into the same part for all A,B,C,D, we obtain just the 4T –relation in
one part and the same diagram at the other part. Thus, we have proved that
∆ is well–defined.

Now, let us give the formal definition of the bialgebra.1.

Definition 14.3. An algebra A with algebraic operation µ and unit map e
and with coalgebraic operation ∆ and counit map ε is called a bialgebra if

1. e is an algebra homomorphism;

2. ε is an algebra homomorphism;

3. ∆ is an algebra homomorphism.

Definition 14.4. An element x of a bialgebra B is called primitive if ∆(x) =
x⊗ 1 + 1⊗ x.

1In [Oni] this is also called a Hopf algebra. One usually requires more constructions for
the algebra to be a Hopf algebra, see e.g. [Cas, MiMo]. However, the bialgebras of chord and
Feynman diagrams that we are going to consider are indeed Hopf algebras: the antipode
map is defined by induction on the number of chords. We shall not use the antipode and
its properties.
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= -

FIGURE 14.4: STU–relation

Obviously, for the case of Ac with natural e, ε and endowed with the prod-
uct and coproduct ∆, e and ε are homomorphic. The map ∆ is monomorphic:
it has the empty kernel because for each x 6= 0, ∆(x) contains the summand
x⊗ 1.

Thus, Ac is a bialgebra.
There is another interesting algebra At that is in fact isomorphic to Ac.

Definition 14.5. A Feynman diagram2 is a finite connected graph of valency
three at each vertex with an oriented cycle (circle)3 on it. All vertices not
lying on the circle are called interior vertices. Those lying on the circle are
exterior vertices. Each interior vertex should be endowed with a cyclic order
of outgoing edges.

Remark 14.1. Feynman diagrams on the plane are taken to have the counter-
clockwise orientation of the circle and counterclockwise cyclic order of outgoing
edges at each interior vertex.

Definition 14.6. The degree of a Feynman diagram is half the number of its
vertices.

Obviously, all chord diagrams are Feynman diagrams; in this case the two
definitions of the degree coincide.

Consider the formal linear space of all Feynman diagrams of degree n. Let
us factorise this space by the STU–relation that is shown in Fig. 14.4.

Denote this space by At
n.

Theorem 14.3. There exists a natural isomorphism f : At
n → Ac

n which is
identical on Ac

n. Moreover, the STU–relation implies the following relations
for At:

1. Antisymmetry; see Fig. 14.5.

2. IHX–relation; see Fig. 14.6.

Proof. First, let us prove that the algebras At and As are isomorphic. Ob-
viously, the STU–relation implies the 4T –relation for the elements from Ac.
Let us construct now the isomorphism f . For all elements from Ac ⊂ At we

2Also called Chinese diagram or circular diagram.
3This circle is also called the Wilson loop; we shall not use this term.
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+ =0

FIGURE 14.5: The antisymmetry relation

= −

FIGURE 14.6: The IHX–relation

decree f to be the identity map. To define f on all Feynman diagrams, we
shall use induction on the number x of interior vertices. For x = 0, there is
nothing to prove.

Suppose f is well defined for all Feynman diagrams of degree d. Let K be
a Feynman diagram of degree d+ 1.

Obviously, there exists an interior vertex V of K that is adjacent to some
exterior vertex by an edge v. Thus, we can apply the STU–relation to this
vertex and obtain two diagrams of degree d. However, this operation is not
well defined: it depends on the choice of such a vertex V and the edge v.
Suppose there are two such pairs V, v and U, u, where V 6= U, v 6= u. In this
case, we can prove that our operation is well–defined by applying the STU–
relation twice; see Fig. 14.7.

In the case when U = V and u 6= v, we can try to find another pair.
Namely, the pair W,w, where W is a vertex adjacent to an exterior vertex
and w is an edge connecting this vertex with the circle. Then we prove that
the result for U, u equals that for W,w and then it equals that for U, v.

Finally, we should consider the case when U = V , u 6= v, and U is the only
interior vertex adjacent to the circle. In this case, we are going to show that
our diagram is equivalent to zero modulo the STU–relation.

In this case, we can indicate some domain containing all interior vertices ex-
cept one. This domain has only one connection with exterior vertices , namely
the connection via the vertex U and one of the chords u, v. In this case, the
two possible splittings are equals because the product on Feynman diagrams
is well defined. By the induction hypothesis, we see that the product of two
Feynman diagrams of total degree d is well defined and commutative. By using
this commutativity, we can move the vertex with the small domain from one
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FIGURE 14.7: Applying the STU–relation twice
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FIGURE 14.8: STU-reduction to zero diagram

point to the other one. Thus, we see that each of both splittings gives us zero.
The concrete calculations are shown in Fig. 14.8.

Let us prove now that STU implies the antisymmetry relation.
Applying the STU–relations many times, one can reduce the antisym-

metry relation to the case when all chords outgoing from the given interior
points finish at exterior points. In this case, the antisymmetry relation follows
straightforwardly; see Fig. 14.9.

The proof of the fact that the IHX–relation holds can be reduced to the
case when one of the four vertices (say, lower left) is an exterior one. This can
be done by taking the lower left vertex for all diagrams that have to satisfy the
IHX–relation and then splitting all interior vertices between this vertex and
the circle in the same manner for all diagrams. Then we repeat this procedure



248 Knot Theory

+ = - + - =0

FIGURE 14.9: STU–relation implies antisymmetry

− + − = − − + + − =

= − + + − + − −

− + − + + − = 0

FIGURE 14.10: The STU–relation implies the IHX relation

for all obtained diagrams. Finally, we get many triples of diagrams for each
of which we have to check the IHX relation. For each of them, we have to
consider only the partial case. The last step is shown in Fig. 14.10.

Remark 14.2. Note that the 1–term relation does not spoil the bialgebra
structure; the corresponding bialgebra is obtained by a simple factorisation.

14.3 Coproduct for Feynman diagrams

Now, let us define the coproduct in the algebras Ac and At of chord and
Feynman diagrams.

Remark 14.3. Within this section, we consider the algebras not factorised
by the 1T–relation.

As shown above, these algebras are isomorphic. Thus, At has a Hopf alge-
bra structure as well. Let us describe this structure explicitly.

Let D be a Feynman diagram and let V (D) be connected components of
the diagram; i.e., connected components of the graph obtained from D by
deleting the circle. Let J ⊂ V (D) be a subset of V (D). This subset defines
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⊗ + ⊗ +

⊗ + ⊗

−→

FIGURE 14.11: Coproduct of a Feynman diagram

a Feynman diagram CJ , whose connected components lie in V (D); i.e., the
Feynman diagram consisting of the circle of the diagram D and those con-
nected components of the graph V (D) belonging to J .

Let us define the coproduct µ̃(D) as

µ̃(D) =
∑

J⊂V (D)

CJ ⊗ CV (D)\J .

Example 14.1. In Fig. 14.11 we illustrate the coproduct operation for a
Feynman diagram.

Theorem 14.4. The coproduct defined below coincides with that for Ac; i.e.
µ ≡ µ̃.

Proof. We have to show that for each Feynman diagram D, its coproduct
coincides with the linear combination of coproducts of chord diagrams that D
can be decomposed into.

We shall use induction on the number k of interior vertices of the diagram.
For k = 0, there is nothing to prove.

Suppose that the statement is true for all Feynman diagrams with n inte-
rior vertices. Consider a Feynman diagramD with (n+1) interior vertices. We
have to show that µ(D) = µ̃(D). According to the STU–relation, the diagram
D can be represented as a difference D+ − D−, as shown in Fig. 14.12; in
this case the connected component of D corresponds to a pair of connected
components for each of D+, D−.

Let us choose the components (a+, b+) and (a−, b−) for the diagrams D+

and D−. These components are obtained by resolving a point of D. Each of
D± has n interior vertices. Thus, the claim of the theorem is true for them:
µ(D±) = µ̃(D±). Let us now write µ(D) = µ(D+)− µ(D−). In each of these
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a−b− a+b+
= -

FIGURE 14.12: STU-reduction of a diagram

coproducts we have only those terms where the components (a+, b+) (respec-
tively, (a−, b−)) lie on the same side with respect to the ⊗ sign. Obviously,
these terms collected together give µ̃(D) (in the previous sense of the coprod-
uct). It is easy to see that the remaining terms give us zero. In fact, suppose
we have a splitting of the Feynman diagram D+ into two diagrams, where a+
belongs to one of them and b+ belongs to the other. Then if we divide D−
in just the same way as we did with D+ with respect to all other connected
components and take a− to be the first multiplicator of the tensor product
and b− to be the second one, we obtain two coinciding tensor products.

Collecting all previous statements together, we obtain the statement of the
theorem.

14.4 Lie algebra representations, chord diagrams, and
the four colour theorem

There is a beautiful idea connecting the representation theory of Lie alge-
bras, and knot theory. It was popularised in [BN1]; for further developments
see e.g. [BN4, BLT, CV, Vog2, Vog3].

The motto is: contract trivalent tensors along graphs.

Remark 14.4. Within this section, we do not take into account the 1T–
relation. We work only with the 4T–relation (or STU–relation for Feynman
diagrams).

In more detail, having a trivalent graph and a trivalent tensor, we can set
this tensor to each vertex of the graph, and then contract the tensors along the
edges of the graph. Clearly, we need some metric; besides we must be able to
switch indices. All these conditions obviously hold for the case of semisimple
Lie algebras: we can take the structure constant tensor Cijk (with all lower
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indices) and the metric gij that is not degenerate. As a trivalent graph, one
can take a Feynman diagram together with its rotation structure at vertices.

The beautiful observation is that the STU–relation (as well as the IHX–
relation) for Feynman diagrams represents the Jacobi identity for Lie algebras.
Thus, the constructed numbers (obtained after all contractions) are indeed
invariant under the STU–relation.

This construction is the simplest case of the general construction; it deals
only with adjoint representations of Lie algebras. In the general case, one
should fix the circle of the Feynman diagram and the representation R of the
Lie algebra G. Then, along the circle, we put elements of the representation
space such that any two adjacent elements are obtained from each other by
the action of the Lie algebra element associated with the edge outgoing from
the point connecting these two arcs.

Consider the adjoint representation of SO(3). In this case, it is very easy
to calculate the contractions. Namely, we have three elements a, b, c and the
following contraction law: [a, b] = c; [b, c] = a; [c, a] = b.

Definition 14.7. By a planar map we mean a cubic graph embedded in R2

(this graph divides the plane into cells which are called regions).

Now, suppose we wish to colour the map with four colours. Let us take
them from the palette Z2 ⊕ Z2: they are (0,0),(0,1),(1,0), and (1,1).

Definition 14.8. The map is four colourable if one can associate one of the
four colours to each region in such a way that no two adjacent regions have
the same colour

The four colour theorem claims that every planar map (without loops)
is four colourable.

It remained unsolved for a long time. Its first solution [AH] is very techni-
cally complicated and contains numerous combinatorial constructions to work
with. Below, we give some sufficient condition for a map to be four colourable
[BN4].

Suppose we have some colouring of some map. Then, we can colour each
edge by an element from Z2 ⊕ Z2 which is a sum of the elements associated
with the adjacent regions.

Now, it is obvious that the map is four colourable if the edges of it can be
coloured only with the colours (0,1),(1,0), and (1,1) in such a way that no two
adjacent edges have the same colour. So, the edges should be three colourable.
The inverse statement is also true: if edges are three–colourable then the map
is four–colourable.

Now, we can think of each map M as a Feynmann diagram and associate
a number to it with respect to the adjoint representation of SO(3). Denote
this number by I3(N).

Theorem 14.5 (BN5). If I3(M) 6= 0 then M is four colourable.
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FIGURE 14.13: Each map coming from d–diagram is four colourable

Proof. Indeed, we can use the basis a, b, c for calculating I3(M). Since I3(M) 6=
0, there exists at least one contraction that gives a non–zero element. Taking
into account the law for SO(n), we see that the edges are three colourable
(triples with at least two equal elements give zero!).Thus,M is four colourable.

Suppose we have a d–diagram embedded in R2. Then, the corresponding
map is four colourable. Actually, our plane is divided into two parts by the cir-
cle. A simple observation shows that each of these parts (interior and exterior)
is two colourable; see Fig. 14.13. Thus, the whole picture is four colourable.

Thus, one can ask the following question. Consider a map (or planar Feyn-
man diagram). Can one recognise a d–diagram in it? In other words, can one
select some subset edges that compose a cycle in such a way that all other
edges connect points of this cycle?

This problem is very famous and is still unsolved. It was first stated by
W.R.Hamilton, and the cycle we are looking for is called a Hamiltonian cycle
. To date, only some (positive) solutions for some classes of maps are known.

One can easily see that the unsolved problem on Hamiltonian curves leads
to the positive solution of the four colour problem via d–diagrams.

However, the way proposed by Bar–Natan is not a criterion. Actually,
having a Feynmann diagram D, for which I3(D) = 0, the corresponding map
can have a Hamiltonian curve and thus be four colourable. The point is that
while calculating I3(D), some terms (corresponding to proper four colourings)
give a positive contribution and the others give a negative contribution and
the total number can be equal to zero.
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14.5 Dimension estimates for Ad. A table of known di-
mensions.

We are going to talk about the lower and upper bounds for the dimensions
of spaces ∆n. Later, we shall prove that ∆n is precisely Vn/Vn−1.

14.5.1 Historical development

A priori it is obvious that the cardinality of the set of all chord diagrams
on d chords does not exceed (2d− 1)!! = 1 · 3 · · · (2d− 1).

This gives the first evident upper bound. After this, the following results
appeared (results listed according to [CDM]).

1. (1993) Chmutov and Duzhin in [CD1] proved that dimAd < (d− 1)!.

2. (1995) K. Ng in [NgK] replaced (d− 1)! by (d−2)!
2

3. (1996) A. Stoimenov [Sto] proved that dimAd grows slower than d!
ad ,

where a = 1.1.

4. (2000) B. Bollobás and O. Riordan [BR] obtained the asymptotical
bound d!

(2 ln (2)+o(1))d
(approximately d!

1.38d
).

5. (2001) D. Zagier in [Zag] improved the result to 6d
√
d·d!

π2d , which is asymp-

totically smaller than d!
ad for any constant a < π2

6 = 1.644...

The history of lower bounds was developing as follows.

1. (1994) Chmutov, Duzhin and Lando [CDL] gave a lower approximation
for the number of primitive elements Pn (“forest elements”): dimPd ≥ 1
for d > 1.

2. (1995) dimPd ≥ [d2 ] (see Melvin–Morton [MeMo] and Chmutov–
Varchenko [CV]).

3. (1996) dimPd
>∼ d2

96 , see Duzhin [Duz].

4. (1997) dimPd
>∼ dlogd, see Chmutov–Duzhin, [CD2].

5. (1997) dimPn > eπ
√

n/3, see Kontsevich [Kon1].

6. (1997) dimPn > eC
√
n for any constant C < π

√
2/3 (Dasbach, [Das]).

Below, we are going to prove the simplest upper bound from [CD1] and give
an idea that leads to the lower bound estimates from [CD2]. The ideas of [Das]
generalise the techniques from [CD2] by adding some more low–dimensional
topology. For more details, see [CDM] or the original works (for all the other
estimates).
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14.5.2 An upper bound

First, let us discuss the upper bound [CD1]. They state that dim∆n ≤
(n− 1)!. Namely, they present a set of (n− 1)! generating elements for ∆n.

Definition 14.9. A chord diagram is called a spine if it contains a chord of
it intersecting all other chords.

Theorem 14.6. The set of all spine chord diagrams generates ∆n.

Rather than proving this theorem, we shall divide it into small steps (ac-
cording to [CD2]); each of these steps can be easily proven by the reader as a
simple exercise. While performing these steps, we shall use induction on some
parameters.

Definition 14.10. Given a chord diagram D, let d be a chord of diagram
D. The degree of d is the number of chords intersecting d. The degree of the
chord diagram D is the maximal degree of its chords.

Notation: deg(d), deg(D).

Fix a diagram D. By definition, if D has n chords and deg(D) = n − 1
then D is a spine diagram.

We shall use induction on the degree of D and prove that if deg(D) < n−1
then D can be represented as a linear combination of diagrams of greater
degrees.

Suppose deg(D) = f . Choose a chord d such that deg(d) = f . After a
rotation, we can assume that the chord f is vertical and the right part of D
(with respect to d) contains more chord ends than the left one.

Then there exists a chord d′ with both ends lying in the right part. The
top end of it lies at some distance from the top end of f . Denote the number
of points between them by k.

Exercise 14.3. If k > 0 then the diagram D can be represented as a linear
combination of chord diagrams of greater degree and diagrams of the same
degree with smaller k.

Thus we can assume that k = 0.
Now let us consider the lower end of d′.

Definition 14.11. The lower end of any chord which intersects d′ and does
not intersect d is bound. A point that lies on the lower arc between d and d′

and is not bound will be referred as loose.

Let l be the number of loose points in the chord diagram, and b be the
number of bound points between the lower end of d′ and the first loose point.
The index of the chord diagram is the pair (l, b). The index will be used as the
induction parameter with respect to the following lexicographical ordering:
(l1, b1) > (l2, b2) if and only if either l1 > l2 or l1 = l2, b1 > b2.

Now we are going to show that each non–zero degree diagram can be
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FIGURE 14.14: A linear combination of diagrams of greater degree

represented as a linear combination of diagrams of the same degree and lower
index and some diagrams of greater degree.

This consists of two induction steps, both of which are left to the reader.
Each of them follows straightforwardly from applying the 4T –relation.

The first step.

Exercise 14.4. If l > 0, b = 0, then the diagram can be represented as a
linear combination of diagrams of greater degrees and diagrams of the same
degree and smaller l.

The second step.

Exercise 14.5. If l > 0, b > 0 then the diagram can be represented as a
linear combination of chord diagrams of greater degree or the same degree and
smaller index.

Now, if l = 0, b 6= 0 then each chord intersecting d intersects d′ as well and
there are chords intersecting d′ but not d. Thus, the degree of the diagram is
indeed greater than f , so this is not the case.

If l = 0, b = 0, then we have two “parallel chords” and the following 4T –
relation (together with a 1T –relation that we do not illustrate on the picture)
completes the proof of the theorem; see Fig. 14.14.

14.5.3 A lower bound

We are going to present a lower bound for the dimension of An according
to [CD2]. As the authors say, “the story of lower bounds for the Vassiliev
invariants is more enigmatic” [than that of upper bounds]. The first estimate
was proposed by Bar–Natan in [BN1] as follows: dimVn > ec

√
n, n→∞. This

estimate comes from the connection between the Vassiliev knot invariants and
Lie algebras that was discussed in the Section 14.4 of this chapter.

Definition 14.12. By a Jacobi diagram we mean the same as a Feynman
diagram but without the oriented circle; namely, a graph whose vertices have
valency one or three; each vertex of valency three should be endowed with a
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FIGURE 14.15: The diagram Bn1,...,nk

cyclic order of outgoing edges. The degree of a Jacobi diagram is half of the
total number of its vertices.

For Jacobi diagrams, we can consider the IHX relation and the antisym-
metry relations. Obviously, they are both homogeneous with respect to the
graduation described above. Like Feynman diagrams, Jacobi diagrams have
multiplication and comultiplication, which are defined even more simply than
that for Feynman diagrams: we have no oriented circle, so the multiplication
is just the disconnected sum, and the comultiplication is defined by splittings
into connected components.

Thus, we know which Jacobi diagrams are primitive: they are just con-
nected uni–trivalent graphs for which each trivalent vertex is endowed with a
cyclic order.

To go on, we shall need to introduce some notions. Consider the space
of all primitive Jacobi diagrams. Each primitive Feynman diagram has an
even number of vertices. Denote half of this number by d. Both IHX and
antisymmetry relations are homogeneous with respect to d. The space C is
thus bigraded: C = ⊕Cd,n, where Cd,n is a subspace of the space C generated
by primitive Jacobi diagrams with a total of 2d vertices, precisely n of which
are univalent.

Let us define a family of Baguette diagrams.

Definition 14.13. A Baguette diagram Bn1,...,nk
is a Jacobi diagram shown

in Fig. 14.15.

The baguette diagram Bn1,...,nk
has 2(n1 + · · ·+ nk − k − 1) vertices, out

of which n1 + · · ·+ nk are univalent.

Theorem 14.7 (Main theorem,[CD2]). Let n = n1 + · · · + nk and d = n +
k− 1. The elements Bn1...nk

defined as above are linearly independent in Cd,n
if n1, . . . , nk are all even and satisfy the following conditions:

n1 < n2

n1 + n2 < n3
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n1 + n2 + n3 < n4

. . .

n1 + n2 + · · ·+ nk−2 < nk−1

n1 + n2 + · · ·+ nk−2 + nk−1 <
n

3
.

The proof of this theorem involves the techniques of Bar–Natan. Namely,
instead of chord diagrams (Feynman diagrams) we consider the corresponding
polynomials coming from the natural representation of SL(n). Thus, we obtain
a polynomial in N . The polynomials corresponding to baguette diagrams are
linearly independent; thus, so are the diagrams themselves. In addition, one
can consider uni–trivalent diagrams, which are in natural correspondence with
linear combinations of Feynman diagrams, see [CDM].

Theorem 14.8. ([CD2]) For any fixed value of k = d − n + 1 we have the
following asymptotic inequality as d tends to ∞:

dimCd,n >∼ 1

2
k(k−1)

2 3k−1(k − 1)!
(d− k + 1)k−1.

Proof. This theorem follows from Theorem 14.7. Actually, we have to count
the number of integer points with even coordinates belonging to the body in
Rk−1 described by the set of inequalities above. Asymptotically, the number
of such points is equal to the volume of the body divided by 2k−1.

To find this volume, let us note that the condition n1 + · · · + nk−1 <
n
3

specifies the interior part of a (k−1)–simplex in Rk−1 that has (k−1) sides of
length n

3 and all right angles between sides. Obviously, its volume is equal to
(n/3)k−1

(k−1)! . The inequality n1 < n2 cuts exactly one half of this body, the next

equality cuts a quarter of the obtained half, and so on, and the last one cuts
1

2k−2 –th part of the result obtained at the previous step.
Summarising the results above, we obtain the statement of the theorem.

14.5.4 A table of dimensions

The first precise calculation for the dimensions dim An were made by
Bar–Natan. To implement his algorithm and to calculate the dimensions of
An up to n = 9 he borrowed extra RAM for his computer. The program had
been working for several days.

Below, we give the table of dimensions up to n = 12; see [Kne].
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n 0 1 2 3 4 5 6 7 8 9 10 11 12
dim Pn 0 0 1 1 2 3 5 8 12 18 27 39 55
dim An 1 0 1 1 3 4 9 14 27 44 80 132 232
dim Vn 1 1 2 3 6 10 19 33 60 104 184 316 548

The answer for n = 10, 11, 12 was obtained by using a thin technique using
special structures on the set of primitive diagrams.



Chapter 15

The Kontsevich integral and formulae

for the Vassiliev invariants

The Kontsevich integral was first invented by M.L. Kontsevich [Kon1] in 1992.
It was based on a remarkable construction of the product integral, better
known as Chen construction or iterated integration formula. Kontsevich used
the integration in the way proposed by Knizhnik and Zamolodchikov [KZ].

After Kontsevich’s original proof, some other sympathetic (mostly combi-
natorial) constructions describing the same knot invariant arose; see the works
of Cartier and Piunikhin [Car93, Piu]. The work by Le and Murakami [LM]
proposes a concrete method of calculation of the Kontsevich integral. See also
[Lan, CD3].

A very fundamental approach to Kontsevich’s integral is presented in the
book by Chmutov and Duzhin [CDM].

First, recall some definitions. Given a Vassiliev invariant V of degree n,
then its (n + 1)–th derivative equals zero. The value of the n–th derivative
of the invariant V (the symbol of V ) depends only on the passing order of
singular points; thus it can be considered as a function on chord diagrams. It
was shown that each such function satisfies the one–term and the four–term
relations (such functions are called weight systems).

Theorem 15.1. (1) (V.A. Vassiliev) Each symbol of an invariant of degree n
comes from some element of graduation n of the chord diagram algebra (with
1T and 4T–relations).

(2) (M.L. Kontsevich) All elements of ∆n are symbols of the Vassiliev knot
invariants of degree n.

The first part of the theorem follows from Vassiliev’s works [Vas1, Vas2].
We have already proved it previously.

The main goal of this chapter is to prove the second part of this theorem.

259
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15.1 Preliminary Kontsevich integral

Definition 15.1. The completion ∆ of ∆ = ⊕∞
m=0∆m is the set of all formal

series
∑

m cmam, where cm ∈ C are numeric coefficients, and am ∈ ∆m are
elements of the space of degree m chord diagrams.

Let us think of the space R3 as a Cartesian product of C1 with the coor-
dinate z and R1 with the coordinate t.

Given an oriented knot K in R3 = Cz × Rt, by a small motion in R3

(without changing the knot isotopy type), we can make the coordinate t a
simple Morse function on the knot K. This means that all critical points of t
on the knot K are regular and all critical points have different critical values.

Remark 15.1. Later on, such embeddings will be called Morse knots.

Definition 15.2. The preliminary Kontsevich integral of a knot K is the
following element of ∆:

Z(K) =
∞∑

m=0

1

(2πi)m

∫
cmin<t1<···<tm<cmax

tjnon-critical

∑

P={(zj ,z′j)}

(−1)↓DP

m∧

j=1

dzj − dz
′

j

zj − z′j
(15.1)

We decree the coefficient of the “empty” chord diagram to be equal to one.

Let us discuss the formula (15.1) in more detail.
The real numbers cmin and cmax are maximal and minimal values of the

function t on the knot K.
The integration domain is an n–simplex cmin < t1 < · · · < tm < cmax. This

domain is divided into connected components. Herewith, zi and dzi should be
understood as functions of the corresponding ti. For instance, for the unknot
shown in Fig. 15.1 andm = 2 the integration domain consists of 6 components
and looks as shown in Fig. 15.1.

The number of summands is constant for each connected component, but
it can vary when passing from one component to another. The part of the
knot lying inside the margin between two adjacent critical levels is a set of
curves; each of these curves is uniquely parametrised by t.

Let us fix m and choose m horizontal planes {t = ti}, i = 1, . . . ,m, each
of which does not contain critical points and lies between the minimal and
the maximal levels. Later, we shall take the sum over all natural m. At each
plane {t = ti} ⊂ R3, let us choose an unordered pair (zi, ti), (z

′

i, ti) of different
points lying on K. Denote by P = {(zi, z′i)} the system of m such pairings.
Fix a pairing P . If we think of a knot as a circle and then connect the points of
the circle corresponding to zi, z

′
i of the same pair (according to P ) we obtain

a chord diagram. Denote this diagram by DP .
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z
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c2
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c1

c2
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t2

cmin c1 c2 cmax

t1

FIGURE 15.1: Integration domains for the Kontsevich integral

Now, under the integral we have the sum of such diagrams corresponding
to different pairings P . The coefficients are obtained in the following way.
Choosing any arbitrary connected component, the choice of P means that for
each ti, some pair of knot branches is taken. Thus, choosing m planes, we get
m pairs of points.

As a matter of fact, after we have chosen all pairings, the diagram DP

is defined; thus we should integrate not chord diagrams, but only the form

(−1)↓ ∧mj=1
dzj−dz′j
zj−z′j

. The obtained integral will give us the coefficient of our

chord diagram DP . Later, we shall collect similar terms.
In the example shown above, the connected component {cmin < t1 <

c1, c2 < t2 < cmax} corresponds to a unique pair of points at the levels
{t = t1} and {t = t2}. In this case, the desired sum consists of a unique
summand. For the component {cmin < t1 < c1, c1 < t2 < c2}, we have a
unique choice at the level {t = t1}, but the plane {t = t2} intersects the knot
at four points; thus we have C2

4 = 6 possible pairings (z2, z
′
2), and the total

number of summands equals six. For the component {c1 < t1, t2 < c2} we have
36 summands, among them the most interesting case of appears. In each
part of the figure, we choose exactly one pairing and show the corresponding
chord diagram.

It is easy to see that in all cases except {c1 < t1 < t2 < c2} we obtain

the chord diagram with two non–intersecting chords. These diagrams are
equal to zero modulo one–term relation. Thus, the integration can be reduced
to the small simplex {c1 < t1 < t2 < c2}.

The symbol ↓ for a given set choice of P denotes the number of points
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(−1)2(−1)2(−1)2

(−1)1

(−1)2 (−1)1

1 summand 6 summands 1 summand

36 summands1 summand

6 summands

FIGURE 15.2: Integration domain and chord diagrams

(z, ti) or (z
′, ti) of P , where the coordinate t is decreasing while moving along

the knot according to its orientation. In Fig. 15.2, the diagrams corresponding
to different integration domains are shown.

Now we have the following questions to answer.

1. Do the coefficients of ∆̄ in the formula (15.1) converge?

2. Is the obtained element a knot invariant?

3. How is it related to the Vassiliev invariants?

4. How do we calculate this integral?

Theorem 15.2 ([Kon1], see also [BN1]). All coefficients of (15.1) are finite.

Definition 15.3. A horizontal deformation is an isotopy of a Morse embed-
ding of a curve in R3 that does not change the setup of singular points.

The horizontal deformation can be expressed as a composition of moves
shown in Fig. 15.3.

Theorem 15.3 ([BN1]). The function Z(K) is invariant under horizontal
deformations of a knot and under the transformation shown in Fig. 15.4, but
not invariant under the transformation (*), shown in Fig. 15.5.

Denote the knot representing the closure of the arc shown in Fig. 15.5 by
A.
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←→

FIGURE 15.3: Horizontal deformation

←→

FIGURE 15.4: Moving critical values

←→
(*)

FIGURE 15.5: Forbidden transformation
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=

FIGURE 15.6: The “∞” knot

K K#∞

−→

FIGURE 15.7: Transformation (*)

We can consider the simplest realisation of the unknot (with one minimum
and one maximum) and the realisation given by ∞; see Fig. 15.6. It is easy
to see that Z(K) for the simplest realisation is equal to one (i.e., the series
consisting of the only diagram without chords with coefficient one). Moreover,
Z(∞) is not equal to 1 =©.

Thus we see that Z is not a knot invariant.
On the other hand, one can prove the following theorem.

Theorem 15.4. If the knot K ′ is obtained from K by using (∗) then Z(K ′) =
Z(K) · Z(∞).

Proof. First, let us note that ∞ is obtained from the knot A by using allowed
moves, thus Z(∞) = Z(A).

Let us consider now the connected sum of K with a “small” knot ∞ in
such a way that the interval of the coordinate t, corresponding to the knot A,
has no critical points of the knot K. In this case, just two new critical points
— one maximum and one minimum are added to this knot; see Fig. 15.7.

By virtue of the previous theorems, the Kontsevich integral of the obtained
knot coincides with the Kontsevich integral forK ′ that is obtained fromK#∞
by using horizontal deformations. Comparing the Kontsevich integral for the
initial knot and for the knot K, we see that each term for the integral of the
knot K corresponds to the same term multiplied by the Kontsevich integral
for A (in the integral of K ′). Consequently, Z(K ′) = Z(K) · Z(∞).
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15.2 Z(∞) and the normalisation

Thus, the change of the preliminary integral Z(·) under (*) is not difficult:
the value is just multiplied by Z(∞). Now let K be a Morse embedding of S1

in R3, and c be the number of critical points of t on K.
Let us consider now the preliminary Kontsevich integral as a formal series.

Hence this series consists of elements of a graded algebra and its initial element
is the unit element of this algebra. Then one can inverse such rows by

(1 + a)−1 = 1− a+ a2 − a3 + . . . ,

where ai is the formal series for the i–th power of the series a. Furthermore,
one can formally multiply such series.

Definition 15.4. The universal Vassiliev–Kontsevich invariant of a knot K
is the following element of the completion of the chord diagram algebra:

I(K) =
Z(K)

Z(∞)
c
2−1

. (15.2)

Remark 15.2. Here the degree ( c2 − 1) is taken for the following majors. In
the case of the simplest embedding representing the unknot we wish to have
I(©) = 1. For one maximum and one minimum we have c

2 − 1 = 0.

Remark 15.3. Obviously, if (15.1) converges, then (15.2) makes sense: it is
just the fraction of two series.

Thus we obtain the following theorem.

Theorem 15.5. The Kontsevich integral I(·) is a knot invariant.

Proof. Indeed, by virtue of Theorem 15.4 we see that Z(K) depends not on
the configuration of critical points but only on their quantity.

It is easy to check that two Morse embeddings represent the same knot
if and only if one can be transformed to the other by means of moves not
changing the setting of critical points and moves shown in Figs. 15.4 and 15.5.

Taking into account the invariance of Z under all moves but the last one,
we obtain the statement of the theorem.

The invariant I(·) is called the universal Vassiliev–Kontsevich invariant.
Now it remains to formulate and to prove the most important theorem.
Let W be a weight system of degree m. Decree that W (d) = 0 for all

diagrams d with the number of chords not equal to m.

Theorem 15.6 (Kontsevich, see also [BN1]). The invariant W (I(·)) is a
Vassiliev invariant with symbol W ; i.e.,

V (W )(K) =W (I(K))

for each knot K.
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This theorem implies the second (difficult) part of the Vassiliev–Kontsevich
theorem about the existence of Vassiliev invariants corresponding to any given
weight system.

We shall prove Theorems 15.2, 15.3 and 15.6 later.

15.3 Invariance of the Kontsevich integral

We are now going to prove theorems 15.2, 15.3 and 15.6.

Remark 15.4. By Zm(K) and Im(K) we mean the m–th graded summand
of Z(K) and I(K), respectively.

First, let us prove Theorem 15.2 which states that the series for each
coefficient at each term of (15.1) converges.

Proof. Consider a Morse knot K in R3. Let us fix m ∈ N and choose some m
planes not intersecting K at critical points.

Choose some chord diagramD and consider the coefficient at this diagram.
It is obtained by integrating the form

m∧

j=1

dz′j(tj)− dzj(tj)
z′j(tj)− zj(tj)

over the part of the simplex {cmin < t1 < · · · < tm < cmax} corresponding to
the chord diagram D.

Let us consider the singular points of the form, namely, those where the
condition zj = z′j holds for some j. The integral of the form might diverge
only in the neighbourhood of these points. Consider such pairs of points zj, z

′
j

closed to the singular position.
Then we have the two possibilities:

1. The arc between zj and z′j contains other ends of chords (as shown in
Fig. 15.8). Then the integration domain (where we integrate zj − z′j)
has smallness of higher order than zj − z′j because the singular point is
not degenerate. Consequently, this part of (15.2) gives no divergence.

2. The arc between zj and z′j has no other chord ends; see Fig. 15.9. Then
the chord zjz

′
j of the diagram D is isolated; thus, the diagram D equals

zero modulo 1T–relation.

This completes the proof of the theorem.
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zj zj

zk

FIGURE 15.8:

zj z′j

−→

FIGURE 15.9:

15.3.1 Integrating holonomies

In order to prove the remaining two theorems, we shall have to integrate
holonomies and introduce the so called Knizhnik–Zamolodchikov connection.

First, let us recall some constructions.

Definition 15.5. Let X be a smooth manifold and let U be an associative
topological algebra with the unit element (considered over R or C).

Then a U–connection Ω on the manifold X is a 1–form Ω on X with
coefficients from U .

The curvature of the connection Ω is the 2–form

FΩ = dΩ+ Ω ∧ Ω.

The connection is flat if its curvature equals zero.

Definition 15.6. Let B : I → X be a smooth mapping of the interval [a, b]
to the space X . Let Ω be a U–connection on X .

Let us define the holonomy hB,Ω of the form Ω along the path B as the
solution of the differential equation ∂

∂thB,Ω(t) = Ω(B′(t)) ·hB,Ω(t), t ∈ I, with
the initial condition hB,Ω(a) = 1.

Remark 15.5. It is easy to show that if the connection Ω is flat, then the
holonomy is defined only by the ends of a path and the homotopy type of this
path.
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This is quite analogous to the Gauss–Ostrogradsky formula in the commu-
tative case. Then the multiplicative integral is just the exponent of the Riem-
manian integral for the logarithmic function. In the non–commutative case the
extra term Ω ∧ Ω arises.

15.3.1.1 The product integration

The solution to such an equation (holonomy) often exists. It is called the
product or multiplicative integral of the form Ω. In many cases, the holonomy
can be calculated according to the following iterated formula:

hB,Ω(t) = 1 +

∞∑

m=1

∫

a≤t1≤t2≤···≤tm≤t

(B∗Ω)(tm) . . . (B∗Ω)(t1). (15.3)

In order to clarify the situation, let us consider the following simple con-
struction.

Example 15.1. Let
Y ′ = AY

be a differential equation with the initial condition Y (0) = 1, say, in n × n
matrices.1. Obviously, its solution Y (t) is the product of “infinitely many”
elements “infinitely close to the unit element”. This is naturally called the
product integral of A and denoted by

Y (x) =

∫ x

0

∩
(E +A(t)dt).

Note that in order to calculate Y (x), one can use the following formula

Y (x) = E +

∫ x

0

A(t1)dt1 +

∫ x

0

A(t1)

∫ t1

0

A(t2)dt2dt1 + · · · (15.4)

if the series (15.4) converges.

Remark 15.6. In all “normal” cases this series actually converges.

Actually, while integrating the series, each next term becomes equal to the
previous one multiplied by A.

Each term of the iterated integral (15.4) can be considered as an integral
over some simplex.

The formula (15.3) is completely analogous to the formula (15.4).
The theory of product integration is well described in [DF, ManO2, MaMa].

1or in any other topological algebra: all we need here is linear operations over the main
field, multiplication, and an intrinsic topology (in order to consider limits of sequences).
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FIGURE 15.10: An element AKZ

Remark 15.7. In the normal (convergent) case it is obvious that the formula
actually gives a solution to the differential equation. The initial condition evi-
dently holds. The derivative of the m–th integral gives the (m− 1)–th integral
with coefficient Ω(Ḃ).

15.3.1.2 The Knizhnik–Zamolodchikov connection

Denote by DKZ
n the set of all diagrams consisting of n ascending infinite

arrows (in Fig. 15.10 they are shown by thick lines) and a finite number of
edges such that:

1. each end point of each edge either lies on the arrow or is a trivalent
vertex (with two other ends of edges);

2. one point on the arrow is incident to no more than one interval (only
one end of this edge can coincide with this point).

Such diagrams are considered up to combinatorial equivalence.
Let C be the main field. Consider the set AKZ

n = span(DKZ
n )/{STU −

relations}. The STU–relation means the same as for the Feynman diagrams
(by “multiplication” of all “partial” integrals), where we consider a part of
an arrow instead of part of an oriented circle. Note that the STU–relation
is local. When we finally close the “arrow” diagrams in order to obtain the
Feynman diagram, we get the STU–relation as well.

For a fixed n, the set AKZ
n admits an algebraic structure: the product

means the juxtaposition of one diagram over the other.

Example 15.2. For n = 3 such a multiplication for AKZ
n is shown in

Fig. 15.11.

For a fixed n, the algebra AKZ
n is graded: the order of an element is equal

to half of the total number of vertices.
For 1 ≤ i, j ≤ n, let us define Ωij ∈ AKZ

n as the element with only one
edge connecting the arrows i and j.

Remark 15.8. It is easy to see that if {i, j}⋂{k, l} = ∅ then Ωij and Ωkl

commute.
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× =

FIGURE 15.11: Multiplication in AKZ

. . . . . . . . .

i j

FIGURE 15.12: The element Ωij

Let Xn be the configuration space of n pairwise different points on C1. Let
ωij be the following 1–form on Xn:

ωij = d(ln(zi − zj)) =
dzi − dzj
zi − zj

.

Let us define the formal Knizhnik–Zamolodchikov connection Ωn with co-
efficients in AKZ

n as Ωn =
∑

1≤i<j≤n Ωijωij on Xn.

Theorem 15.7. This connection is flat. More precisely Ωn ∧ Ωn = 0 and
dΩn = 0.

Proof. The last statement is evident. Indeed, dωij = d2(ln(zi − zj)) and this
vanishes by definition of d.

Let us prove the first statement. Consider the element

Ωn ∧ Ωn =
∑

i<j;k<l

ΩijΩklωijωkl (15.5)

and the set {i, j, k, l}. If this set consists of two or four elements then the
corresponding term of the sum equals zero (this case is commutative). Con-
sequently, the desired sum equals the sum along all i, j, k, l, where the set
{i, j, k, l} consists of three elements. Consider, e.g., the set {i, j, k, l} = {1, 2, 3}
and all corresponding terms in the sum (15.5). In this case we get:

∑

{i,j,k,l}={1,2,3}
ΩijΩklωijωkl = (Ω12Ω23−Ω23Ω12)ω12∧ω23+〈cyclic permutations〉.
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. . .

FIGURE 15.13: The element Ω123

By using the STU–relation, we see that the desired sum equals

−Ω123(ω12 ∧ ω23 + ω23 ∧ ω31 + ω31 ∧ ω12),

where Ω123 is the element shown in Fig. 15.13.

Exercise 15.1. (V.I. Arnold’s identity.)
Show that ω12 ∧ ω23 + ω23 ∧ ω31 + ω31 ∧ ω12 = 0.

Remark 15.9. This identity appeared in [Arn1] when Arnold studied the
cohomologies of the pure braid group.

Thus if some set {i, j, k, l} consists of precisely three different members, it
gives no contribution. We have considered all possible cases. Thus, Ωn∧Ωn =
0.

Remark 15.10. The connection Ωn can be slightly modified for the case of the
algebra AKZ

nn . This algebra is generated by arrow diagrams with 2n arrows (the
first n arrows oriented upwards and the last n arrows oriented downwards).
The STU–relation for such diagrams depends on the direction of the chord
that the relation has to be applied to.

Let Ωnn =
∑

1≤i<j≤n sisjΩijωij , where si equals 1 for i ≤ n and −1 for
i > n.

Exercise 15.2. Show that the connection Ωnn is flat.

Now, let us prove the invariance theorem (Theorem 15.3).

Proof. First, let us prove that the preliminary Kontsevich integral Z(K) is
invariant under the transformation preserving the critical points.

The point is that the Kontsevich integral for the whole knot can be decom-
posed into a product of similar integrals for parts of this knot; each of these
parts represents an element of some Knizhnik–Zamolodchikov algebra with
ascending and descending arrows; being connected together, they constitute a
normal chord diagram. Thus, the product of elements in some AKZ is thought
to be an element of ∆̄.

Let cmin ≤ a < b ≤ cmax. Let us define Z(K, [a, b]) just as was done
in (15.1), but taking the integration domain to be {a < t1 < · · · < tn < b}, and
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replacing the chord diagrams with elements of the Knizhnik–Zamolodchikov
algebra.

Although Z(K, [a, b]) does not belong to Ac, the corresponding series (eval-
uated at a knot) converges for the same reasons as Z. Since the interval (a, b)
has no critical points, the intersection of the knot with the margin C× (a, b)
is a set of oriented curves without horizontal tangent lines. Suppose that the
number of such curves equals 2n. Obviously, n of them are ascending and the
other n are descending. Let us fix the lower points a1, . . . , a2n and the cor-
responding upper points b1, . . . , b2n, where the first n coordinates correspond
to ascending curves and the other ones correspond to descending curves. The
convergence of the integral can be proved in the same manner as before. One
should, however, introduce an analogue of the one–term relation taking all
diagrams with a “solitary” chord (with one end on an ascending chord and
one end on a descending arc) to zero.

Now, the integral Z(K[a, b]) can be represented as the holonomy of the
connection Ωnn along the path from (a1, . . . , a2n) to (b1, . . . , b2n) by virtue of
the iteration formula (15.3). Actually, the m–th term of the iteration formula
for Ωnn corresponds to the m–th term of the Kontsevich integral because in
both cases we integrate the form

∑

P={(zj ,z′j)}
(−1)↓Ωjj′

m∧

j=1

dzj − dz
′

j

zj − z′j
, (15.6)

where (−1)↓ corresponds to the sign of the product sjs
′
j .

Recall that the STU–relation for Feymann diagrams is “the same” as the
4T –relation for chord diagrams. This is just the place when we use the 4T –
relation (in its STU–form).

Since the curvature of the connection Ωnn is zero, the integral (15.6) is
invariant under homotopies of the integration path with fixed endpoints; i.e.,
under horizontal isotopies of the part of the knot lying inside t ∈ (a, b).

It is not difficult to show that for arbitrary a < b < c (possibly, critical),
we have Z(K, [a, c]) = Z(K, [a, b]) · Z(K, [b, c]). Thus we conclude that the
integral Z(K) which is a product Z(K, [ci, ci+1]), where ci, ci+1 are all pairs
of “adjacent” critical points, is invariant under horizontal deformation in the
intervals not containing critical points.

Now, let us consider the cases when critical points are moving during the
knot isotopy.

1. The critical point is moving, but the disposition of all critical points
stays the same; see Fig. 15.14.

2. The order of applicates of two critical points changes; see Fig. 15.15.

As shown in Figs. 15.14 and 15.15, one can first perform the transformation
that does not change Z(K) to obtain a knot with a thin “needle”. Let us
show that the removal of this needle changes the m–th graduation term of the
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−→ −→

FIGURE 15.14:

−→−→

FIGURE 15.15:

Kontsevich integral by some infinitely small ε depending on the diameter of
the needle.

Actually, let K be a knot and let K ′ be the knot obtained from the knot
K by means of adding a vertical needle somewhere.

Obviously, the difference Z(K) − Z(K ′) contains only the terms corre-
sponding to the diagrams with ends lying inside the needle. Suppose that the
width of the needle equals ε. Let us show that Zm(K)− Zm(K ′) = O(ε).

Actually, consider all the chords incident to the needle. If the upper chord
has both ends on the needle then the chord diagram equals zero modulo 1T –
relation. If there are no chords with all ends lying on the margin, the situation
is quite simple as well: the term shown in Fig. 15.16 should have smallness
of order ε: while integrating the left and the right part, the numbers ↑ have
difference 1; thus we obtain a contraction because for each term there exists
a “mirror” term; see Fig. 15.16.

Thus, we only have to consider the case when the upper chord (zi, z
′
i) has

+

FIGURE 15.16:
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← ε→

...

j1

jk

i

FIGURE 15.17:

one end lying on the needle, and there are k chords lying under this with both
ends on the needle. Suppose the lowest one is (zj1 , z

′
j1) and the upper one is

(zjk , z
′
jk
); see Fig. 15.17.

We may assume that (zi, z
′
i) is the only chord such that one end of it lies

on the needle. If we delete such chords, we multiply the final integral by some
number bounded from zero and the infinity.

Let δα = |zjα − zj′α |. Then the difference Z(K ′) − Z(K) is bounded by
some constant multiplied by

∫ ε

0

dδ1
δ1

∫ δ1

0

dδ2
δ2

. . .

∫ δk−1

0

dδk
δk

∫ zj′
k

zjk

dzi − dz′i
zi − z′i

.

The integral has smallness of the order ε̃. Actually, the last integral has
smallness of the order of δk. Consequently, the term δk is reduced in the
penultimate integral, so this integral has smallness of δk−1, and so on. Finally,
the total integral has smallness of δ1 ∼ ε.

Since ε is arbitrarily small, we conclude the desired invariance.

Thus, we have proved that I(·) is a knot invariant.
Now, let us prove Theorem 15.6 that for each weight system W , the func-

tion W (I(·)) generates a Vassiliev invariant with symbol W .

Proof. Without loss of generality, we might assume that our knots are not only
Morse embedded in R3 but their projections on some vertical plane (say, Oxz)
represent planar knot diagrams (in the ordinary sense). Let W be a weight
system of order m. In order to prove the theorem, we have to show that if D
is a chord diagram of degree m and KD is a Morse embedding of the singular
curve (curve with intersection) in Cz × Rt (the singular knot corresponds to
D) then we have

I(KD) = D̄ + 〈terms of order ≥ m〉,

where D̄ is the equivalence class of the chord diagram D and I(KD) is defined
to be the alternating sum of I evaluated at 2m knots generating the singular
knot KD.
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If two Morse knots K1 and K2 in Cz × Rt coincide everywhere except for
a small part, where the branches of K1 form an overcrossing (with respect to
the projection on a vertical plane) and those of K2 form an undercrossing,
then the values Z(K2) and Z(K1) differ only in those chord diagrams, for
which some point(s) on this branches is (are) paired with other point(s).

By virtue of Vassiliev’s relation, the singular knot KD is an alternating
sum of 2m knots that differ in small neighbourhoods ofm points. Note that the
sign of this alternating sum is regulated by the multiplicator (−1)↓ in (15.1).

Arguing as above, we conclude that Z(KD) has non-zero coefficients only
at those chord diagrams obtained by pairing points for each neighbourhood.
Thus, chord diagrams with non-zero coefficients must have at least m chords.

For chord diagrams of degree m this coefficient is not equal to zero only
for the diagram KD.

Let us calculate this coefficient.
At each of m vertices we obtain the difference of the integrals of the dif-

ferential form
dzi−dz′i
zi−z′

i
.

This difference equals the integral of dz
z along the circuit passing once

around zero. According to Cauchy’s theorem, this integral equals 2πi. Be-
cause the number of such contours equals m, the coefficients should be mul-
tiplied. Thus we obtain the multiplication factor (2πi)m that is cancelled by
the denominator of (15.1). This means that

Z(KD) = D̄ + 〈terms of order ≥ m〉.

Taking into account I(K) = Z(K)

Z(∞)
c
2
−1 , we have

I(KD) = D̄ + 〈terms of order ≥ m〉.

Consequently, W (I(KD)) =W (D), and the Vassiliev invariant W (I(·)) of
order m has the symbol W . This completes the proof.

The calculation of the Kontsevich integral is, however, very difficult. For
instance, it was quite a complicated problem to calculate the integral (pre-
liminary) of ∞. The form (in the Feynman diagram) of the integral was con-
jectured by Bar–Natan, Garoufalidis, Rozansky, Thurston [BGRT] and finally
proved in [BN6].

The formula is represented in terms of Feynman diagrams. It looks like

I(∞) = exp

∞∑

n=0

b2nw2n = 1 +

( ∞∑

n=0

b2nw2n

)
+

1

2

( ∞∑

n=0

b2nw2n

)2

+ . . . .

Here b2n are modified Bernoulli numbers; i.e., the coefficients of the Taylor
series:
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FIGURE 15.18:

∞∑

n=0

b2nx
2n =

1

2
ln
ex/2 − e−x/2

x/2
,

and w2n are wheels.
Each wheel w2n is 1

(2n)! multiplied by the sum of (2n!) Feynman dia-

grams. Each of these diagrams consists of one exterior circle, one interior
circle (treated just as a circular set of interior edges), and 2n chords connect-
ing fixed 2n points on the first one with fixed 2n points on the second one.
These points can be connected according to arbitrary permutation from S2n.
Thus, we have (2n)! summands and take their average.

For instance, if we consider w4, we see that eight summands represent the
diagram Dx shown in the left part Fig. 15.18 and another sixteen summands
represent the diagram Dy, see the right part of Fig. 15.18.

In the terms of chord diagrams w4 can be represented as follows:

w4 = − 10

3
+

4

3
.

Analogously (in fact, even more easily) one can find the expression for w2

and w2
2 .

Exercise 15.3. Prove the formulae above.

The first terms of the final result look like:

I(∞) = 1 +
1

48
w2 +

1

4608
w2

2 −
1

5760
w4 + . . .

or, in terms of chord diagrams,

I(∞) = 1− 1

24
− 1

5760
+

1

1152
+

1

2880
+ . . .

Besides this, Le and Murakami [LM] constructed a generalisation of the
Kontsevich integral for the case of so–called tangles — one–dimensional mani-
folds lying between two horizontal planes and incident to these planes only at
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a finite number of points. A tangle is a common generalisation of both knots
and braids, and the computation of the Kontsevich integral for the case of
braids is much easier. In fact, tangles appeared indirectly in the text while
calculating Z[a, b] for some interval [a, b]. By using their own techniques, they
calculated Z(∞). Later, S.D. Tyurina calculated such integrals for various
knots, see [Tyu1, Tyu2].

15.4 Vassiliev’s module

It is not known whether the Vassiliev knot invariants distinguish all iso-
topy classes of knots and link. This is conjectured and known as Vassiliev’s
conjecture.

Let us introduce the Vassiliev module where two knots are taken to be
different if they are distinguished by some Vassiliev invariant having order
not higher than some fixed order. Besides, each knot can be decomposed into
a finite sum of generators of the module.

Let us give now the precise definition.

Definition 15.7. The Vassiliev module of order n is the module over Z (or
Q) generated by isotopy classes of oriented knots and singular knots modulo
the following relations:

1. © = 0, where © is the unknot.

2. The Vassiliev relation.

3. Km = 0 for m > n, where Km is an arbitrary singular knot of order m.

The following theorem holds.

Theorem 15.8 (Decomposition theorem). In the Vassiliev module of order
n, each knot K has the following decomposition:

K =

r+s∑

i=1

vi(K)Ki,

where r is the dimension of the set of Vassiliev invariants having order less
than or equal to (n− 1), and s is the dimension of weight systems of order n;
all vi’s are Vassiliev’s invariants of order less than or equal to n, and Ki are
some fixed basic knots independent of the knot K.

This theorem follows straightforwardly from the definitions.

Definition 15.8. For any n, the actuality table of a Vassiliev invariant of
type n is the set of its values on all basic knots.
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The simplest decomposition in Vassiliev’s module [Lan] of order two is the
following:

K = V2(K) ,

where V2 is the second coefficient of the Conway polynomial.
For more details see, e.g. [CDM, Tyu1, Tyu2].



Chapter 16

Atoms, height atoms and knots

In the present chapter, we shall talk about an alternative way for encod-
ing knots and links (different from planar diagrams and closures of braids).
Namely, all knots can be encoded by so-called “atoms” and d–diagrams.

Atoms are combinatorial objects that arose several years ago in [Fom] for
purposes of classification of integrable Hamiltonian systems of low complexity.
d–diagrams are special chord diagrams closely connected with atoms.

Atoms play a crucial role for the construction of Khovanov homology.
By using this approach, we are going to prove several theorems on knots

and curves: Kauffman–Murasugi’s theorem on alternating links, the criterion
for embeddability of special graphs, etc. We shall also describe a way of encod-
ing knots by words in a finite alphabet via d–diagrams (“bracket calculus”).
For a review on the bracket calculus see [Man5].

16.1 Atoms and height atoms

Let us start with definitions and introduce the notation.

Definition 16.1. An atom is a pair: a connected 2–manifold M2 without
boundary and a graph Γ ⊂ M2 such that M2\Γ is a disconnected union of
cells that admit a chessboard colouring (with black and white colours).

The graph Γ is said to be the frame of the atom. The genus (respectively,
Euler characteristic) of the atom is that of its first component.

The complexity of the atom is the number of vertices of its frame.

Atoms are considered up to natural isomorphism: two atoms are called
isomorphic if there exists a one–to–one map of their first components taking
frame to frame and black cells to black cells.

Atoms can be generated by Morse functions on 2–surfaces: an atom’s frame
is just the critical level with several critical points on it.

Definition 16.2. An atom is called a height (or a vertical) atom if it is
isomorphic to an atom obtained by the third projection function on some
closed 2–manifold embedded in R3.

279
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−→

FIGURE 16.1: A part of a knot diagram constructed by a frame embedding

Each atom (more precisely, its equivalence class) can be completely re-
stored from the following combinatorial structure:

1. the frame (four–valent graph);

2. the A–structure (dividing the outgoing half–edges into two pairs accord-
ing to their disposition on the surface); and the

3. B–structure (for each vertex, we indicate some two pairs of adjacent
half–edges (also: two angles) that constitute a part of the boundary of
black cells).

In [Man2, Man’1] the following criterion is proved.

Theorem 16.1. An atom V is a height atom if and only if its frame Γ
is embeddable in R2 with respect to the A–structure (i.e., the intrinsic A–
structure on the surface coincides with that induced from the plane).

It turns out that height atoms are closely connected with knots unlike the
non-height ones. Having a height atom V , one can construct a knot diagram
as follows. Consider the frame Γ of V and let us embed Γ in the plane with
respect to the A–structure on V . Then, the B–structure of this atom can be
illustrated on the plane: if a pair of edges outgoing from a vertex is adjacent
in V , it remains so on the plane. Thus, one can locally indicate the structure
of supercritical levels on the plane.

Thus, we have a four–valent graph on the plane with endowed B–structure.
This B–structure allows us to construct a link diagram as shown in Fig. 16.1.

Remark 16.1. In Fig. 16.1, the angles of the supercritical level (in the left
part) are marked by additional thick lines.

For each vertex A we set the crossing type in such a way that while turning
inside the supercritical angle clockwise, one passes from the undercrossing to
the overcrossing.

Thus, having an embedding of the frame of an atom with respect to the
A–structure, one can construct a knot (link) diagram.
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Let an atom be given. Assume that for the A-structure of the atom there
exists an orientation of all edges of the atom such that at each vertex two
opposite edges are emanating and two other opposite edges are coming.

Definition 16.3. We call this structure the source–sink structure.

Remark 16.2. The same structure was investigated in the theory of virtual
knots by Kamada, see, e.g. [KamN1, KamN2]. This structure was called an
alternating orientation for a graph (in the present work we call this graph a
frame of an atom).

Exercise 16.1. The frame of an atom admits a source–sink structure if and
only if the atom is orientable.

Remark 16.3. It follows from Exercise 16.1 that if an atom (M,Γ) with
a frame Γ is orientable, then each atom (M ′,Γ) with the same frame and
A-structure is orientable, too.

Remark 16.4. The source–sink structure given on the whole atom defines an
orientation for circles at all states of the Kauffman bracket polynomial of the
corresponding link. Thus, if one constructs a diagram obtained by smoothing
of some crossings and deleting unlinked circles not being incident to chosen
crossings, then the frame of the atom corresponding to the new diagram will
inherit the source–sink structure from the initial one. Therefore, the obtained
atom will be orientable.

16.2 Theorem on atoms and knots

It turns out that all knots can be encoded (not uniquely) by height atoms.
In fact, consider a height atom V . Let us embed its frame in R2 while pre-
serving the A–structure of the atom.

Furthermore, the following theorem holds.

Theorem 16.2 (Theorem on atoms and knots, [Man2]). Let V be an atom.
Then the planar link diagrams obtained from V by using the algorithm above
generate diagrams representing the same link isotopy type.

Thus, we can say that an atom generates a knot (link).
The proof of the theorem on atoms and knots follows from a well–known

theorem:

Theorem 16.3. If two planar graphs are isomorphic, then their embeddings
in one and the same plane R2 are homeomorphic in R3.

This theorem allows one to restore the homeomorphism of knots in the
ambient space from embeddings of the atom’s frame. For more details see e.g.
[Man2].
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FIGURE 16.2: Link diagram above and supercritical circles below

16.3 Encoding of knots by d–diagrams

We begin with a theorem from [Man3].

Theorem 16.4. For each link isotopy class L, there exists a height atom V
that encodes a link from this class and has only one supercritical circle.

Proof. Consider an arbitrary diagram of link L and the corresponding height
atom V1. Suppose that the atom V1 has k supercritical circles. If k = 1 then
there is nothing to prove.

If k > 1 then there exists a vertex A of V1 such that the two supercritical
angles of this vertex correspond to two arcs of different supercritical circles.

Let us apply the move Ω2 to the initial diagram, as shown in Fig. 16.2.
It is easy to see that after such transformation, the two circles shown in

Fig. 16.2 are transformed into one circle. Thus, we decrease the number of su-
percritical circles by one without changing the link isotopy class. Reiterating
this operation many times, we obtain a diagram with precisely one supercrit-
ical circle.

Consequently, d–diagrams encode all knot and link isotopy classes.
Let us give some examples. Consider the simplest planar diagram of the

left trefoil knot. The corresponding height atom has two supercritical circles.
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FIGURE 16.3: d-diagram

a b

FIGURE 16.4: d–Diagrams of trefoil and figure eight knot

Thus, by applying one move Ω2, we can obtain a diagram of the same trefoil for
which the corresponding atom has one supercritical circle. The corresponding
d–diagram is shown in Fig. 16.3.

Exercise 16.2. Show that d–diagrams shown in Figs. 16.4.a, 16.4.b encode
the right trefoil and the figure eight knot.

From the arguments described above, we conclude that if a link L has
a planar diagram with n crossings such that the corresponding height atom
V (L) has k supercritical circles, then L can be encoded by a d–diagram having
n+ 2(k − 1) chords.

It is easy to see that the total number of sub– and supercritical circles
of V (L) does not exceed χ(V ) − n + (2n) ≤ n + 2, where χ(V ) is the Euler
characteristic of V (L). Since V has at least one subcritical circle then k does
not exceed (n+ 1). So, we obtain an upper bound for the minimal number of
chords of the d–diagram corresponding to our knot: it does not exceed 3n.

Exercise 16.3. Show that a chord diagram is a d–diagram if and only if it
does not contain the subdiagrams shown in Fig. 16.5 (2n+ 1–gons).

We have constructed the map from the set of all d–diagrams to the set
of all link isotopy classes. This map is not injective (for instance, by adding
a solitary chord to a d–diagram we do not change the link isotopy type).
In fact, d–diagrams do not encode all the planar diagrams of links but only
those corresponding to atoms with a unique supercritical circle. To simplify
the situation, let us generalise the notion of d–diagram as follows.
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FIGURE 16.5: Chord diagrams which are not d–diagrams

+
←→

−
←→

FIGURE 16.6: Crossings corresponding to chords

Definition 16.4. A marked or labelled d–diagram is a d–diagram where each
chord is endowed with a label “+” or ”−”. Unlabelled d–diagrams are taken
to have all labels positive.

Having a d–diagram C, one can construct a link diagram as follows. Let us
split chords of the diagram into two families of non-intersecting chords. Then,
let us embed C into the plane: chords of the first family are embedded inside
the circle; chords of the second family are embedded outside the circle. Then
we replace all chords together with small pieces of arcs by crossings, as shown
in Fig. 16.6.

It is easy to see that this definition coincides with the old one in the case
of an unlabelled d–diagram.

Exercise 16.4. Show that the link isotopy class constructed in this way (for
a labelled d–diagram) does not depend on the splitting of chords into two fam-
ilies.

Theorem 16.5 ([Man’2]). Each planar link diagram can be obtained from
some labelled d–diagram in the way described above.

Proof. Let L be a planar diagram of some link. Let us construct a circuit of
this diagram as follows. Let us choose a vertex V and an edge e outgoing from
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−

+
−

FIGURE 16.7: A circuit for the trefoil

− ←→ +

+

+

FIGURE 16.8: Twice cut positive chord and negative chord

this vertex. Then, let us move along e. When we meet a vertex, we turn to
one of the two possible directions (not opposite to the direction where we have
come from).

Exercise 16.5. Show that one can choose the directions of our turns in such
a way that we return to V after passing each edge once and each vertex twice.

Such a circuit generates some chord diagram. Actually, it represents a
circle together with a rule for identifying points on it: we identify pre-images
of vertices. Denote this diagram by C. Obviously, C is a d–diagram (there is
a natural splitting of chords into interior and exterior ones). To each chord of
C, there corresponds a crossing of L.

Here, the circuit at vertices looks as shown in the left part of Fig. 16.6.
We set the positive label in this case, and the negative label otherwise.

By construction, the obtained labelled d–diagram encodes the link diagram
L.

Definition 16.5. A chord a is said to be cut if one “small” positive chord
intersecting only a is added to it.

A chord is said to be cut twice if it is cut from both ends.

Exercise 16.6. Show that if we replace a negative chord of a marked d–
diagram with a positive chord cut twice (see Fig. 16.8), we obtain a d–diagram
representing the same link isotopy type.
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Thus, we give one more way for constructing an unmarked d–diagram
representing the given link. Namely, consider a link L and an arbitrary planar
diagram P of it. There exists a marked d–diagram DM corresponding to P .
Replacing each negative chord of DM with a twice cut positive chord, we
obtain a d–diagram representing a link isotopic to L.

16.4 d–Diagrams and chord diagrams. Criterion of em-
beddability for a curve in terms of chord diagrams

The method of encoding links by using d–diagrams can be considered for a
simpler object, namely, on smooth curves immersed in R2 where only double
transverse intersection points are available. Having a d–diagram, we construct
such a curve just like a knot diagram: we put an intersection instead of cross-
ing.

In terms of d–diagrams, one can easily solve the realisability problem for
a Gauss diagram (see Definition 17.6). One solution is given in [Burm].

The main features of our d–diagram method of recognition realisability are
the following. We look at a diagram of a curve (disposition of its crossings)
from two points of view: Gaussian (when we go along the curve transversely)
or d–diagram (when we should always turn left or right). In the second point of
view, only d–diagrams represent realisable curves. So, we just have to translate
Gauss diagrams into the language of d–diagrams and see what happens there.

First, let us solve this problem for the case of regularly immersed curves.
To do this, we shall not pay attention to crossing types. In this way, each d–
diagram encodes not a link but one or several immersed curves (immersion is
thought to be regular if it has no tangencies and no intersections of multiplicity
more than two). Moreover, instead of Gauss diagrams, we deal just with chord
diagrams corresponding to such immersions.

Definition 16.6. Such immersion are called proper; the corresponding chord
diagrams are called realisable.

Suppose G is a chord diagram of an immersed curve. Then we can construct
a circuit of this diagram according to “d–diagram rules”. Namely, let us choose
an arc a of G and let us go along this arc in an arbitrary direction. When
we get to some vertex V of the diagram G, we have to turn right or left (in
terms of planar diagrams). In the language of Gauss diagrams, this means the
following. Suppose the vertex V is incident to the chord X of G; the two arcs
incident to V are a and b; the arcs incident to the other end of the chord
X are c and d. Thus, we must choose one of the two arcs: c or d. Then, we
move along the chosen arc and come to some vertex. We must repeat the same
situation. It is obvious that we can arrange our circuit in such a way that all
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arcs of the diagram G are passed once and finally we come to the point we
started from.

In this way, we can construct a chord diagram (that should be in fact a
d–diagram). Namely, we just give a new enumeration for the edges according
to our circuit and compose a circle of them. Then, if a quadruple of edges
(arcs of the diagram to be constructed) p, q, r, s corresponds to a chord (say
p, q are incident to one end of it, and r, s are incident to the other end), then
the same quadruple will give us a couple of points for the new diagram (say,
p, r and q, s). These points must be connected by a chord.

This is the algorithm of translating a chord diagram to the “d–diagram
language”. By construction, we have the following statement.

Statement 16.1. If G is a realisable chord diagram then the corresponding
diagram is a d–diagram.

The condition above is, however, not sufficient. In fact, for the diagram

it does not hold.
If we perform the algorithm above, we obtain the same diagram. However,

this is not a realisable Gauss diagram. The reason is obvious. Let us call this
algorithm the A–algorithm.

Remark 16.5. Note that this algorithm is not uniquely defined.

Definition 16.7. A chord d of a chord diagramD is called even if the number
of chord ends lying in an arc between the ends of this chord is even. Otherwise,
the chord is called odd.

Obviously, this is well defined (does not depend on the choice of one of the
two arcs between two points).

Thus, for each realisable chord diagram each chord is even.

Exercise 16.7. Prove this fact.

It turns out that the two conditions described above are sufficient. In fact,
the following theorem is true.

Theorem 16.6. Let G be a chord diagram. Let D be a diagram obtained from
G by applying the A–algorithm. Then G is realisable if and only if each chord
of G is even and D is a d–diagram.

Before proving this theorem, we formulate a corollary from it.

Corollary 16.1. If G is a chord diagram with all chords even, then diagrams
that can be obtained from G by applying the A–algorithm are either all d–
diagrams, or not d–diagrams.

In order to prove Theorem 16.6, we shall construct the reversed algorithm
(how to obtain the chord diagram of a curve from its d–diagram).



288 Knot Theory

a b
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a b

d c

a b

d c

FIGURE 16.9: The “bad” case

Let D be a d–diagram. Then it generates some curve K, which is stan-
dardly immersed in R2. In order to construct the chord diagram corresponding
to K, we must find some unicursal circuit for D (as in the case of the A–
algorithm). More precisely, let us choose some vertex V1 of D and some edge
a outgoing from it (say, in the clockwise direction). Then we come to some
other vertex V2. After it, our algorithm is uniquely defined: we have only the
possibility to go forward (not right or left). This means that for the chord c
incident to V2 we go to the opposite side, and then proceed moving in the
opposite direction of our circuit (i.e., counterclockwise, if the initial moving
was clockwise). After moving to each next vertex, we jump to the other side of
the chord and change the direction. We can choose our circuit in such a way
that finally we successfully return to the vertex V1 with the initial direction
after we shall have passed all arcs precisely once.

Let us call this algorithm the B–algorithm.
If we have a realisable chord diagram C then, for each diagram D obtained

from C by applying the A–algorithm, the diagram obtained from D by the
B–algorithm will be just the diagram C. However, for some diagrams this is

not so. For instance, if we take the diagram then the A–algorithm will

give us , and the B–algorithm applied to the “new ” will give .
The only thing that remains to prove is that it is not the case for diagrams

all chords of which are even.
The reason is the following. Consider a chord diagram C, and a vertex V of

it. There are four arcs incident to V and the opposite (by edge) vertex. Denote
them by a, b, c, d. Suppose that a is opposite to c (i.e., next on the diagram
C). Then, for the d–diagram D(C) obtained from C by the A–algorithm a is
adjacent either to b or to d. Without loss of generality, suppose a is adjacent to
b. Then there are two hypothetical possibilities for the B–algorithm to restore
the opposite chord for a: it will be either c (as it must be) or d; see Fig. 16.9.

The B–algorithm is uniquely defined. Thus, we need to find a condition
for the initial diagram C such that this algorithm always restores the opposite
edge correctly (in our case c for a).

Now, suppose that C is a chord diagram, all edges of which are even.
Then, for any circuit of C constructed according to the A–algorithm, orient
all edges of the diagram according to this circuit. A vertex is said to be good
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a b

d c

b a

c d

FIGURE 16.10: Local structure of edges and arcs.

if it is either a source (both incident edges are outgoing) or a strain (both are
incoming). It is easy to see that for C having all even edges, all vertices are
good.

The case of good edges is just what we wanted: in this case, the algorithm
B will restore the initial diagram. Let us consider this fact in detail.

Let C, V, a, b, c, d be defined as above. Consider the d–diagram D(C) ob-
tained from the diagram C by applying the A–algorithm. Without loss of
generality, assume that in the diagram C, the arc c goes after a, and the arc d
goes after b. Suppose we have chosen a way of applying the A–algorithm such
that in the diagram D(C), the arc b is adjacent to a and d is adjacent to c.
Moreover, suppose that b follows a in our circuit (in the d–diagram D). Thus,
the vertex V is a strain. The vertex V ′ connected with V by a chord (in C) is
thus a source. Thus we conclude that the chord d follows c. So, when we draw
our d–diagram D on the plane, we see the picture shown in Fig. 16.10 (in the
right part or in the left part).

This means that the arc c is opposite to the arc a (and the analogous
situation is true at all vertices), and after applying the B–algorithm, we obtain
the initial diagram C. This completes the proof of the theorem.

One can easily modify this algorithm for the case of knots and Gaussian
curves. Obviously, it is sufficient to consider only the case of connected Gauss
diagrams.

First, having a Gauss diagram G one should forget about its labels and
arrows and consider the chord diagram C. If it is not realisable then G is not
realisable either.

In the case when C is realisable, one should apply the first algorithm to
it and obtain the d–diagram D. It is not difficult to consider all embeddings
of D in the plane. Then one should try to set all crossings according to the
labels on the arcs and check carefully whether there is no contradiction with
the directions of these arcs (the arcs can be set with respect to the initial
point, thus one should consider several cases). If there are no contradictions
then the diagram G is realisable.
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16.5 A new proof of the Kauffman–Murasugi theorem

In order to prove the Kauffman–Murasugi theorem (Theorem 7.5), one
should appreciate the length of the Jones polynomial. Obviously, it is just the
same as the length of the Kauffman bracket divided by four.

Consider formulae (6.4) and (6.5) for the definition of the Jones–Kauffman
polynomial. We are interested in the states that give the maximal and the
minimal possible degree of monomials in the sum (6.4).

Definition 16.8. Now, let the minimal state of L be the state where all
crossings are resolved positively, and the maximal state be the state of L
where all crossings are resolved negatively.

In order to estimate these degrees, we shall use atoms. Namely, consider
a diagram L of a link (all link diagrams are thought to be connected). It has
an intrinsic A–structure as any four–valent graph embedded in the plane. It
also has a B–structure of the atom that can be restored from it.

Suppose the diagram L is prime. The remaining case will be considered
later.

It is easy to see that the maximal possible monomial degree in formula (6.4)
corresponds to the maximal state and the minimal possible degree corresponds
to the minimal state. These easy facts are left for the reader as exercises.

Denote these states by smax and smin and the corresponding numbers of
circles by γmax and γmin, respectively.

Let us calculate the desired maximal and minimal monomial degrees. We
have: n + 2(γmax − 1) and −n − 2(γmin − 1). Here “2” and “minus 2” come
from the exponent a±2(γ(s)−1).

The difference (the upper bound) equals

2n+ 2(γmin + γmax)− 4.

Now, let us return to the atom V corresponding to L. Its Euler character-
istic obviously equals −n+ γmin + γmax. Taking into account that this is less
than or equal to two, we conclude that our upper bound does not exceed 4n.

Thus, we have proved the first part of the Kauffman–Murasugi Theorem.
Now, the question is: when can we get this upper bound? First, the atom

should be a spherical one.
So, we must present a B–structure of a spherical atom with respect to the

A–structure of the shadow of L in order to obtain a spherical atom. There are
two such structures corresponding to the two alternating diagrams with the
same shadow.

But, since L is prime, there are no other B–structures creating spher-
ical atoms. Thus, the diagram L is alternating.

Now, let us check that the only obstruction for X(L) to have length 4n is
the existence of splitting points. Obviously, if a diagram has a splitting point,
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it can be represented as a connected sum of two diagrams having a smaller
number of crossings. Thus, its length cannot be equal to 4n.

If the length of the Kauffman bracket for an alternating link diagram with
n crossings is less than 4n, then either the leading or the lowest coefficient
coming from γmax is cancelled by some other term. Without loss of generality,
assume that the first one is the case. Then, there exists a state different from
smax that gives the same exponent of a: n+2γmax−1. Suppose it differs from
smax at some crossings. Let us choose one of them and denote it by X . It
is obvious that the state s′max that differs from smax at the only crossing X
also gives the power n + 2γmax − 1. So, γ(s′max) = γ(smax) + 1. This means
that when we change the state smax at the vertex X , one circle is divided
into two circles. Taking into account that the initial diagram is alternating,
we conclude that X is a splitting point.

Finally, if L is not a prime diagram, we can decompose it into prime com-
ponents. Taking into account the multiplicativity of the Jones (or Kauffman)
polynomial, we see that they all are alternating diagrams without splitting
points. This completes the proof of the Kauffman–Murasugi theorem.

16.6 Representation of long links by words in a finite
alphabet

As shown above, all links can be represented by d–diagrams. One can view
a d–diagram as follows. First, fix the way of splitting chords of d–diagrams
into two families. Choose a point of a d–diagram different from any chord end.

d–diagrams with a marked point admit a simple combinatorial representa-
tion by words in the four-bracket alphabet. Indeed, while “reading” the chord
diagram starting from the given point, we can write down a round bracket
when encountering an end of chord belonging to the first family and a square
bracket when we meet an end of chord from the second family. Thus we get
what is called a “balanced bibracket structure”.

Definition 16.9. A balanced bibracket structure is a word in the alphabet
( , ) , [ , ] such that:

1. in each initial subword a′ of the word a the number of “)” does not
exceed that of “(”, and the number of “]” does not exceed that of “[”;

2. in the word a the number of “(” equals the number of “)”, and that of
“[” equals that of “]”.

It is obvious that the d–diagram with initial point can be uniquely restored
from the corresponding balanced bibracket structure.

d–diagrams encode links. Thus, d–diagrams with a fixed point encode links
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K1 K2

K1#K2

FIGURE 16.11: Product of two long links

with a fixed point on the oriented component (or, what is just the same) long
links.

Definition 16.10. By a long link is meant a smooth compact 1–manifold
with boundary, embedded in R3 coinciding with Ox outside some ball centred
at O and isotopic to the disconnected sum of one line and several (possibly,
no) circles.

A long link consisting of one component is called a long knot.
Long links are considered up to natural isotopy.

Now, let is define the semigroup K of long links as follows.

1. Elements of K are the isotopy classes of long links.

2. The unit of K is the equivalence class of the manifold, given by {y =
0, z = 0}. This equivalence class is called the long unknot or the long
trivial knot.

3. The product of two elements L1, L2 ∈ K is defined as follows. First,
we choose representatives of these classes: some links K1 and K2. They
coincide with Ox outside the balls centred at zero; the radii of these
balls are some R1 and R2, respectively. Then we construct a long link
consisting of the three following parts. One part of it lies in {x > 2R2}
and {x < −2R1} and coincides with Ox there. Another part lies inside
BR2(R2, 0, 0) and coincides there with the shift ofK2∩BR2(0, 0, 0) along
the vector (R2, 0, 0). The third part lies inside BR1(−R1, 0, 0) and coin-
cides there with the shift ofK1∩BR1 (0, 0, 0) along the vector (−R1, 0, 0).
See Fig. 16.11. The isotopy class of the constructed long link is decreed
to be the product of L1 ·L2. Obviously, this isotopy class depends neither
on the randomness of K1 and K2 nor on the randomness of the radii R1

and R2. Thus, the product in K is well defined.

It is obvious that the concatenation of balanced bibracket structures cor-
responds to the connected sum operation for long links.
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Thus, one can say that the long link semigroup can be encoded in terms
of balanced bibracket structures. This is called the bracket calculus.

All balanced bibracket structures themselves form a semigroup, where the
empty word plays the role of the unit element, and the multiplication is ex-
pressed by concatenation. Denote this group by G.

The main problem of the bracket calculus is to describe the equivalence of
long links in terms of bibracket structures. This was done in [Man3].

The main idea is to describe the “elementary” isotopy moves in terms of
bracket structures.

These isotopies originate from Reidemeister moves and one special move
that corresponds to the “circuit change”. They are completely enumerated in
[Man5].

The semigroup of balanced bibracket structures factorised by these rela-
tions is thus isomorphic to the semigroup K.

Each of these relations is an identity A = B, where A,B are some (possibly,
non–balanced) words in the bracket alphabet. Such a relation means that for
any balanced bibracket structure xAy, the structure xBy is balanced as well,
and represents the same long link isotopy class (the same statement is true
for xBy, xAy). We factorise the group G by all relations xAy = xBy for all
x, y such that xAy is balanced which are taken with respect to the relation
A = B taken from the given list. Some parts of this list are given below.

First Reidemeister move:

( ) = empty word

[ ] = empty word

[ ( ] [ ) ] = empty word

( [ ) ( ] ) = empty word.

Second Reidemeister move:

( [ ( ] A [ ) ] ) = A

[ ( ] ( A ) [ ) ] = A,

In each of the two relations above, A has balanced round–bracket structure.

[ ( [ ) A ( ] ) ] = A

( [ ) [ A ] ( ] ) = A.

Here A has balanced square–bracket structure.
Third Reidemeister move:

( ( [ ) [ ( ] ( [ ) ( [ ) [ ) ] ) ( ] ) = ( [ ( ] ( [ ) [ ) ] [ ( ] ( [ ) [ ) ] )

( [ ) ( ( [ ) ( [ ( ] ( ] ) ( ] ) [ ) ] = [ ( [ ) ( ( ] ) [ ( ] ].
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For the change of circuits we use the following four moves:

[ A ( ] C ) = [ ( ] C ( [ ) [ ) ] A ( ] ),

( [ ) A ( ( ] ) C ) = ( C ( [ ) ) A ( ] ),

[ A [ ( ] ] C [ ) ] = [ ( ] C [ [ ) ] A ],

( [ ) A [ ( ] ( ] ) C [ ) ] = ( C [ ) A ].

In each of these relations, A should have balanced square bracket structure
and C has balanced round bracket structure.

For more details and all proofs, see [Man5].

16.7 Representation of links by quasitoric braids

In the present section, we are going to describe how knots can be rep-
resented by closures of a small class of braids, and the class of d–diagrams,
generating these braids, see [Man6].

16.7.1 Definition of quasitoric braids

We recall that toric braids (depending on the two parameters p and q,
where p is the number of strands) are given by the following formula:

T (p, q) = (σ1 . . . σp−1)
q

and have an intuitive interpretation; see Fig. 16.12.a.

Definition 16.11. A braid β is said to be quasitoric of type (p, q) if it can be
expressed as β1 . . . , βq, where for each βj = σ

ej1
1 . . . σ

ej,p−1

p−1 , each ejk is either
1 or −1. In other words, a quasitoric braid of type (p, q) is a braid obtained
from the standard diagram of the toric (p, q) braid by switching some crossing
types; see Fig. 16.12.b.

It is easy to see that the product of quasitoric n-strand braids is a quasitoric
n-strand braid.

In fact, a more precise statement can be made.

Proposition 16.1. For every p ∈ N, p-strand quasitoric braids make a sub-
group in Bp.

To prove this result, we only have to prove the following lemma.

Lemma 16.1. For every p, the inverse of a p-strand quasitoric braid is qua-
sitoric.
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a b

FIGURE 16.12: Toric and quasitoric braids

Proof. We have to prove that for the braid δ = σe1
1 . . . σ

ep−1

p−1 , where each ei
equals 1 or −1, the braid δ−1 is a quasitoric braid. In this case, the proof
of the lemma follows straightforwardly, since each quasitoric braid is just a
product of positive powers of such braids.

In other words, we have to prove that there exists a quasitoric braid η,
such that η · δ is the trivial braid.

We are going to prove that there exist braids δ1, . . . δp−1, where δi =
σei1
1 . . . σ

ei,p−1

p−1 , such that for η = δ1, . . . , δp−1 we have ηδ = e is the trivial
braid.

Let us consider the shadow S of the standard toric braid diagram of type
(p, p) that will be the shadow of our diagram δ1 . . . δp−1δ. The lower part of
this diagram has crossing types coming from δ. So we only have to set the
rest of the crossings (i.e. to define δ1 . . . δp−1 in order to get the trivial braid
δ1 . . . δp−1δ). The lower part of the shadow S consists of p strands; one of
them (denote it by x) intersects all other strands once; other strands do not
intersect each other.

If we set all crossing types for the lower part of S as in δ then we see that
some strands in the lower part come over x, and the others come under x; see
Fig. 16.13.a.

Let us denote strands from the first set of strands by y1, . . . yk, and strands
from the second set by z1, . . . zl.

Let us say that for a pure r-strand braid β1 with strands ai, i = 1 . . . r,
the order of strands is a1 > a2 > · · · > ar if at each crossing X involving
ai, aj , i < j, the strand ai comes over aj . It is obvious that in this case the
braid β1 is trivial.

Now we can easily set all crossing types for the upper part of S in such a
way that for the braid δ1δ2 . . . δp−1δ the order of strands is y1 > y2 > y3 >
· · · > yk > x > z1 > · · · > zl; see Fig. 16.13.b. So the braid ηδ is trivial, which
completes the proof of the lemma.

Thus, we have the group of quasitoric braids. Now, let us state the main
theorem of this section.
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a b

z1 y z2 x z1 y z2 x

FIGURE 16.13: Inverting a quasitoric braid

Theorem 16.7. Each knot isotopy class can be obtained as a closure of some
quasitoric braid.

16.7.2 Pure braids are quasitoric

First, note that, by Alexander’s theorem, for a given knot K there exists a
braid β, whose closure is isotopic to K. Our goal is to transform β in a proper
way in order to obtain a quasitoric braid.

Let us prove the following lemma.

Lemma 16.2. Every braid β is Markov–equivalent to an r-strand braid whose
permutation is a power of the cyclic permutation (1, 2, . . . , r) for some r.

Proof. Suppose β has n strands. Consider the permutation α corresponding
to it, and orbits of the action of α on the set (1, . . . , n).

These orbits might contain different numbers of elements. Now, let us
apply Markov’s move for transforming these orbits. The first Markov move
conjugates the braid, thus, it conjugates the corresponding permutation. So,
the number of elements in orbits does not change, but elements in orbits
permute. The second Markov move increases the number of strands by one,
adds the element (n+ 1) to the orbit, containing the element n and does not
change other orbits. Thus, by using Markov’s moves, one can re–enumerate
elements in such a way that the smallest orbit contains n, and then increase
the number of elements in this orbit by one. Reiterating this operation many
times, we finally obtain the same number of elements for all orbits. Suppose
the permutation corresponding to the obtained km-strand braid β acts on km
elements in such a way that each of k orbits of the permutation contains m
elements. By conjugating β, we can get the corresponding permutation equal
to the m-th power of the cyclic permutation (1 2 . . . km), k,m ∈ N.

Denote the obtained braid by γ. As shown in Lemma 16.2, γ is Markov–
equivalent to β.
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i j

b1ij

b2ij

FIGURE 16.14: Generator bij of the pure braid group

The next step is to prove that γ is a quasitoric braid.
So, let us change the braid diagram of γ, without changing its isotopy type.

To complete the proof of the theorem, we have to prove the following lemma.

Lemma 16.3. An r–strand braid whose permutation is a power of the cyclic
permutation (1 2 . . . r) is quasitoric.

Proof. Let γ be an r-strand braid, having the permutation (1 2 . . . r)s. Con-
sider the braid γ′ = γ · T (r, 1)−s.

Then, γ′ is a pure braid. Besides, the braid γ′ is quasitoric if and only if γ
is quasitoric (since T (r, 1)s is a quasitoric braid).

Thus, it remains to prove the following

Lemma 16.4. Every pure braid is quasitoric.

Recall that one can choose generators bi,j , 1 ≤ i < j ≤ r, of the pure
r-strand braid group, as shown in Fig. 16.14.

Now, we only have to show that all generators bij are quasitoric braids.
Actually, for all i and j between 1 and n, i < j, the braid bij is a product of

the two braids b1ij · b2ij (they are shown in Fig. 16.14 above and below the hor-

izontal line), where the first braid b1ij = σ−1
i . . . σ−1

j−2σj−1 has ascending order

of generators, and b2ij = σj−1σj−2 . . . σi has descending order of generators;
see Fig. 16.14. Now, consider only strands numbered from i-th to j-th. Then,
we can introduce the analogous definition of quasitoric braids on strands from
the i-th to j-th (i.e. with other strands vertical). It is evident that both b1ij
and b2ij are (i, j)-quasitoric braids on the strands from i-th to j-th (for b1ij it

is clear by definition, and b2ij is the inverse to a quasitoric braid).

Definition 16.12. For 1 ≤ i < j ≤ n an n-strand braid ζ is said to be (i, j)–
quasitoric if it has a diagram with strands of it except those numbered from
i-th to j-th going vertically and unlinked with the other strands, and strands
from i to j forming a quasitoric braid (in the standard sense). Such a diagram
is called a standard diagram of an (i, j)-quasitoric braid.

To complete the proof of Lemma 16.4 and the main theorem, it suffices to
prove the following lemma.
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FIGURE 16.15: Adding a “thin” strand to a quasitoric braid

Lemma 16.5. Assume 1 ≤ i < j ≤ r. Then every (i, j)-quasitoric pure
r-strand braid is quasitoric.

Proof. We use induction on r − (j − i+ 1). We have to show that by adding
a separate vertical strand to the standard diagram of a quasitoric braid, we
obtain a diagram of a quasitoric braid.

Consider a standard quasitoric q-strand braid diagram ρ and add a sepa-
rate strand on the right hand (the case of a left–handed strand can be con-
sidered analogously). Let the initial braid diagram be obtained from the toric
braid (q, ql) by switching some crossings.

Consider the standard diagram of the pure toric braid (q + 1, (q + 1)l)
and the first q strands of it. Obviously, they form a toric braid diagram of
type (q, ql). Let us set the crossing types of these strands as in the case of
the diagram ρ, and let us arrange the additional strand under all the others.
Obviously, we get a diagram, isotopic to that obtained from ρ by adding a
separate strand on the right hand; see Fig. 16.15.

Thus, the standard generators of the pure braid group Pn for arbitrary n
are quasitoric, hence, by Proposition 16.1, so is every pure braid.

So, by using Markov’s moves and braid diagram isotopies to the initial
braid diagram, we obtain a quasitoric braid ζ, whose closure is isotopic to K
and this completes the proof of the main theorem.

16.7.3 d–diagrams of quasitoric braids

Toric (and quasitoric) braids in their natural representation allow us to
consider two ways of encoding links: by braids and by d–diagrams together.

Namely, the following statement is true.

Statement 16.2. Standard diagrams of closures of quasitoric braids (with odd
p) are the only link diagrams that can be obtained from labelled d–diagrams
and braided around the centre of the corresponding circle.
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FIGURE 16.16: Quasitoric d–diagrams for q = 3

FIGURE 16.17: Quasitoric d–diagrams for q = 5

More precisely, we require that the circle is standardly embedded in R2 :
x2 + y2 = 1, and that ends of chords are uniformly distributed along the
circle; chords of one (interior) family of a d–diagram are taken to be straight
lines (thus we require the absence of diametral chords), and chords of the
other family are the images of straight lines inverted in the circle. One should
also make one more correction. Namely, let D be a d–diagram, and let a and
b be some two intersecting chords of D belonging to different families, such
that one end a1 of a and one end b of b1 are adjacent vertices. Let us choose
points P , Q on the chords a, b and a point R on the arc a1b1. Denote the
corresponding unit tangent vectors (at these points) by t(P ), t(Q), t(R). Then
the vectors OP × t(P ) and OQ × t(Q) (where O is the centre of the circle)
are collinear, and the vector OR× t(R) has opposite direction.

So, we shall delete such an arc; i.e., construct the link diagram by a d–
diagram in such a way that one half of a1b1 is deleted together with the chord
a, and the other is deleted together with the chord b. Within this chapter, we
accept these corrections.

To check the Statement 16.2, one should only study the property of shad-
ows of such link diagrams. The proof of the statement is left for the reader.

The d–diagram corresponding to the toric braid T (p, q) is constructed as
follows. Let p = 2m+1. Let us mark the 4mq points on the sphere, split into
2q groups of 2m adjacent points in each group. Enumerate the points in each
group by numbers from 1 to 2m; in “even groups” we enumerate clockwise;
in odd groups we enumerate counterclockwise.

Each marked point is connected with a point from an adjacent group hav-
ing the same number. The adjacent group is chosen according to the following
rules:
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1. Points from the same group having the same parity have the same ad-
jacent groups; points from the same group having different parity have
different adjacent groups.

2. Point number one is never connected with the adjacent point (on the
circle).

Examples of these d–diagrams are shown in Fig. 16.16 for p = 3 and
Fig. 16.17 for p = 5.

Obviously, “quasitoric” d–diagrams with odd q are obtained from these
“toric” ones by marking some chords as “negative”.
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Virtual knots
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Chapter 17

Virtual knots. Basic definitions and

motivation

Virtual knot theory was proposed by Kauffman [Kau3]. This theory arises from
the theory of knots in thickened surfaces Sg × I, first studied by Kauffman,
Jaeger, and Saleur, see [JKS]. Virtual knots (and links) appear by projecting
knots and links in Sg to R2 and hence, Sg × R onto R3. By projecting link
diagrams (i.e., graphs of valency four with over– and undercrossing structures
at vertices) in Sg onto R

2, one obtains diagrams on the plane. Virtual crossings
arise as artefacts of such a projection; i.e., intersection points of images of
arcs, non-intersecting in Sg and classical crossings appear just as projections
of crossings.

In the very beginning of this theory, the creators have proposed gen-
eralisations of some basic knot invariants: the knot quandle, the funda-
mental group, the Jones polynomial [Kau3]. For further developments see
[MI, Man4, Man9, Man10, Man13, Man’3, FJK, HK, Hre, Kau7, Kau10, KK,
KNS, Saw, SW, Kup1] On the other hand, see [GPV], virtual knots arise
from non-realisable Gauss diagrams: having a non-realisable (by embedding)
diagram, one can “realise it” by means of immersion; the “new” intersection
points are marked by virtual crossings. We recall that realisability of Gauss
diagrams was described in Chapter 16.

17.1 Combinatorial definition

Let us start with the definitions and introduce the notation.

Definition 17.1. A virtual link diagram is a planar graph of valency four
endowed with the following structure: each vertex either has an over– and
undercrossing or is marked by a virtual crossing, (such a crossing is shown in
Fig. 17.1).

All crossings except virtual ones are said to be classical.
Two diagrams of virtual links (or, simply, virtual diagrams) are said to

be equivalent if there exists a sequence of generalised Reidemeister moves,
transforming one diagram to the other one.

303
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FIGURE 17.1: Virtual crossing

FIGURE 17.2: Moves Ω′
1,Ω

′
2,Ω

′
3

As in the classical case, all moves are thought to be performed inside a
small domain; outside this domain the diagram does not change.

Definition 17.2. Here we give the list of generalised Reidemeister moves:

1. Classical Reidemeister moves related to classical vertices.

2. Virtual versions Ω′
1,Ω

′
2,Ω

′
3 of Reidemeister moves; see Fig. 17.2.

3. The “semivirtual” version of the third Reidemeister move; see Fig. 17.3,

Remark 17.1. The two similar versions of the third move shown in Fig. 17.4
are forbidden, i.e., they are not in the list of generalised moves and cannot be
expressed via these moves.

FIGURE 17.3: The semivirtual move Ω′′
3
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FIGURE 17.4: The forbidden move

Definition 17.3. A virtual link is an equivalence class of virtual diagrams
modulo generalised Reidemeister moves.

One can easily calculate the number of components of a virtual link. A
virtual knot is a one–component virtual link.

Exercise 17.1. Show that any virtual link having a diagram without classical
crossings is equivalent to a classical unlink.

Remark 17.2. Formally, virtual Reidemeister moves give a new equivalence
relation for classical links: there exist two isotopies for classical links, the
classical one that we are used to working with, and the virtual one. Later we
shall show that this is not the case, see also [Man27].

Remark 17.3. Actually, the forbidden move is a very strong one. Each virtual
knot can be transformed to another one by using all generalised Reidemeister
moves and all versions of the forbidden moves. This was proved by Sam Nelson
in [Nel] by using Gauss diagrams of virtual links.

The idea was that one can make each pair intersecting chords of
Gauss diagrams of a virtual knot having adjacent ends non-intersecting. See
also [Man27].

If we allow only the forbidden move shown in the left part of Fig. 17.4, we
obtain what is called welded knots. Some initial information on this theory
can be found in [KamS1]. Welded knots can be interpreted as isotopy classes
of toral surfaces in R4, see [Sat, Rou].

Definition 17.4. By a mirror image of the virtual link diagram we mean
the diagram obtained from the initial one by switching all types of classical
crossings (all virtual crossings stay on the same positions).

17.2 Projections from handlebodies

The choice of generalised Reidemeister moves is very natural. Namely, it
is the complete list of moves that may occur while considering the projection
of Sg × I to R × I (or, equivalently, R3). Obviously, all classical Reidemeis-
ter moves can be realised on a small part of any Sg that is homeomorphic
to a 3-ball B3. The other moves, namely, the semivirtual move and purely
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FIGURE 17.5: Generalised Reidemeister moves and thickened surfaces

virtual moves, are shown in Fig. 17.5 together with the corresponding moves
in handlebodies.

There exists a more intuitive topological interpretation for virtual knot
theory in terms of embeddings of links in thickened surfaces [Kau5, Kau7].
For more details see [MI]. Regard each virtual crossing as a shorthand for a
detour of one of the arcs in the crossing through a 1–handle that has been
attached to the 2–sphere of the original diagram. The two choices for the 1–
handle detour are homeomorphic to each other (as abstract manifolds with
boundary). By interpreting each virtual crossing in such a way, we obtain an
embedding of a collection of circles into a thickened surface Sg × R, where
g is the number of virtual crossings in the original diagram L and Sg is the
orientable 2–manifold homeomorphic to the sphere with g handles. Thus, to
each virtual diagram L we obtain an embedding s(L)→ Sg(L)×R, where g(L)
is the number of virtual crossings of L and s(L) is a disjoint union of circles. We
say that two such stable thickened surface embeddings are stably equivalent
if one can be obtained from the other by isotopy in the thickened surface,
homeomorphisms of surfaces, and the addition of substraction or handles not
incident to images of curves.

Theorem 17.1. Two virtual link diagrams generate equivalent (isotopic) vir-
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tual links if and only if their corresponding surface embeddings are stably equiv-
alent.

This result was sketched by Kauffman in [Kau6], see also [Kau10, GPV,
Kup1].

A hint to this proof is demonstrated in Fig. 17.5.
Here we wish to emphasise the following important circumstance.

Definition 17.5. A virtual link diagram is minimal if no handles can be
removed after a sequence of Reidemeister moves.

An important Theorem by Kuperberg [Kup1] says the following.

Theorem 17.2. For a virtual knot diagram K there exists a unique minimal
surface in which an I–neighbourhood of an equivalent diagram embeds and the
embedding type of the surface is unique.

17.3 Gauss diagram approach

Definition 17.6. A Gauss diagram of a (virtual) knot diagram K is an ori-
ented circle (with a fixed point) where pre-images of over– and undercrossing
of each crossing are connected by a chord. Pre-images of each classical cross-
ing are connected by an arrow, directed from the pre-image of the overcrossing
to the pre-image of the undercrossing. The sign of each arrow equals the local
writhe number of the vertex. The signs of chords are defined as in the clas-
sical case. Note that arrows (chords) correspond to classical crossings only.
This means that virtual knot theory is essentially defined by means of classi-
cal crossings.

Remark 17.4. For classical knots this definition is just the same as before.

Given a Gauss diagram with labelled arrows, if this diagram is realisable
then it (uniquely) represents some classical knot diagram. Otherwise one can-
not get any classical knot diagram.

Herewith, the four–valent graph represented by this Gauss diagram and
not embeddable in R2 can be immersed to R2. Certainly, we shall consider
only “good” immersions without triple points and tangencies.

Having such an immersion, let us associate virtual crossings with intersec-
tions of edge images, and classical crossings at images of crossing; see Fig. 17.6.

Thus, by a given Gauss diagram we have constructed (not uniquely) a
virtual knot diagram.

Theorem 17.3 ([GPV]). The virtual knot isotopy class is uniquely defined
by this Gauss diagram.
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FIGURE 17.6: A virtual knot and its Gauss diagram

FIGURE 17.7: A virtual link that is not isotopic to any classical link

Exercise 17.2. Prove this fact.

Hint 17.1. Show that purely virtual moves and the semivirtual move are just
the moves that do not change the Gauss diagram at all.

High-dimensional virtual knots were considered by Kamada [KamS2].

17.4 Virtual knots and links and their simplest invari-
ants

There exist a lot of simple combinatorial ways for constructing virtual knot
and link invariants.

Consider the virtual link shown in Fig. 17.7.
It is intuitively clear that this link cannot be isotopic to any classical one

because of “the linking number”.

Exercise 17.3. Define accurately the linking number for virtual links and
prove that the link shown in Fig. 17.7 is not isotopic to any classical link.

The next simplest invariant is the colouring invariant: we take the three
colours (as before) and associate a colour with each (long) arc (i.e., a part
of the diagram going from one undercrossing to the next undercrossing; this
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part might contain virtual crossings). Then we calculate the number of proper
colourings. This invariant will be considered in more detail together with the
quandle and fundamental group.

Exercise 17.4. Prove the invariance of the colouring invariant.

17.5 Invariants coming from the virtual quandle

Later, we shall define the quandle for virtual knots in many ways. In the
present sections, we are going to construct invariants “coming from this quan-
dle”; however, we are going to describe them independently.

17.5.1 Fundamental groups

Though virtual knots are not embeddings in R3, one can easily construct a
generalisation of the knot complement fundamental group (or, simply, the knot
group) for virtual knots. Namely, one can modify the Wirtinger presentation
for virtual diagrams. Consider a diagram L̄ of a virtual link L. Instead of arcs
we shall consider long arcs of L̄. We take these arcs as generators of the group
to be constructed. After this, we shall write down the relations at classical
crossings just as in the classical case: if two long arcs a and c are divided by
a long arc b, whence a lies on the right hand with respect to the orientation
of b, then we write down the relation c = bab−1.

The invariance of this group under classical Reidemeister moves can be
checked straightforwardly: the combinatorial proof of this fact works both
for virtual and classical knots (see Exercise 4.7). For the semivirtual move
and purely virtual moves there is nothing to prove: we shall get the same
presentation.

However, this invariance results from a stronger result: invariance of the
virtual knot quandle, which will be discussed later.

Definition 17.7. The group defined as above is called the group of the link
L.

Obviously, the analogue of the colouring invariant Lemma 4.6 is true for
virtual knots. Its formulation and proof literally coincide with the formulation
and proof of Lemma 4.6.

17.5.2 Strange properties of virtual knots

Some virtual links may have properties that do not occur in the classical
case. For instance, both in the classical and the virtual case one can define
“upper” and “lower” presentations of the knot group (the first is as above,
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FIGURE 17.8: A virtual knot with different upper and lower groups

FIGURE 17.9: The virtual trefoil

the second is just the same for the knot (or link) where all classical types are
switched). In the classical case, these two presentations give the same group
(for geometric reasons). In the virtual case it is however not so. The example
first given in [GPV] is as follows.

In fact, taking the arcs a, b, c, d shown in Fig. 17.8 as generators, we obtain
the following relations:

b = dad−1, a = bdb−1, d = bcb−1, c = dbd−1.

Thus, a and c can be expressed in the terms of b and d. So, we obtain the
presentation 〈b, d|bdb = dbd〉. So, this group is isomorphic to the trefoil group.

Exercise 17.5. Show that the group of the mirror virtual knot is isomorphic
to Z.

This example shows us that the knot shown above is not a classical knot.
Moreover, it is a good example of the existence of a non-trivial virtual knot
with group Z (the same as that for the unknot). The latter cannot happen in
the classical case.

The simplest example of the virtual knot with group Z is the virtual trefoil;
see Fig. 17.9.

The fact that the virtual trefoil is not the unknot will be proved later.
Besides this example, one encounters the following strange example

(Kishino knot): the connected sum of two (virtual) unknots is not trivial;
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FIGURE 17.10: Non-trivial connected sum of two unknots

see Fig. 17.10. This example was considered in [Kis], see also [Kim]. We shall
discuss this problem later, while speaking about long virtual knots.

It is well known that the complement of each classical knot is an Eilenberg–
McLane space K(π, 1), for which all cohomology groups starting from the
second group, are trivial. However, this is not the case for virtual knots: if we
calculate the second cohomology the K(π, 1) space where π is some virtual
knot group, we might have some torsion. In [Kim] one can find a detailed
description of such torsions.

17.6 Vassiliev’s invariants for virtual links

There are two approaches to the finite type invariants of virtual knots: the
one proposed by Goussarov, Polyak and Viro [GPV] and the one proposed by
Kauffman [Kau6]. They both seem to be natural because they originate from
the formal Vassiliev relation but the invariants proposed in [GPV] are not so
strong.

Below, we shall give the basic definitions and some examples.

17.6.1 The Goussarov–Viro–Polyak approach

First, we shall give the definitions we are going to work with, see
also [GPV]. We introduce the semivirtual crossing. This crossing still has an
overpass and an underpass. In a diagram, a semivirtual crossing is shown as a
classical one but encircled. Semivirtual crossings are related to the crossings
of other types by the following formal relation:

(17.1)
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Let K be a virtual knot diagram with n classical crossings, and let
{v1, v2, . . . , vn} be different classical crossings of it. For an n-tuple {σ1, . . . , σn}
of zeros and ones, let Kσ be the diagram obtained from K by switching all
vi’s with σi = 1 to virtual crossings. Denote by |σ| the number of ones in σ.
The formal alternating sum

∑

σ

(−1)|σ|Kσ

is called a diagram with n semivirtual crossings.
Denote by K the set of all virtual knots. Let ν : K → G be an invariant

of virtual knots with values in an abelian group G. Extend this invariant to
Z[K] linearly.

The next definition is due to Goussarov, Polyak and Viro.

Definition 17.8. We say that ν is an invariant of finite type or a finite-type
invariant if for some n ∈ N, it vanishes on any virtual knot with more than
n semivirtual crossings, see [GPV]. The minimal such n is called the degree of
the invariant ν.

The formal Vassiliev relation in the form = − together with
the relation defining a virtual crossing implies the relation

(17.2)

Remark 17.5. Note that singular knots are not considered here as indepen-
dent objects having a geometrical sense of knots with some singularities, but
just as linear combinations of simpler objects.

It is obvious that for any finite-type invariant ν of the virtual theory in
the sense described above, its restriction for the case of classical knots is a
finite-type invariant in the ordinary sense.

However, not every classical finite-type invariant can be extended to a
finite-type invariant in this virtual sense. For instance, there are no invariants
of order two for (compact) virtual knots; see, for more details, [GPV, Oht, PV].

Starting from the formal relation defining a virtual crossing and the Vas-
siliev relation, Polyak constructed the Polyak algebra [GPV] that gave formu-
lae for all finite-type invariants of virtual knots. Besides this, they give explicit
diagrammatic formulae for some of them and also construct some finite-type
invariants for long virtual knots.

Following Goussarov, Polyak and Viro [GPV], let us describe diagrammatic
formulae for classical long knots. We need some definitions and constructions.

For a classical (virtual) long knot diagram we can construct the Gauss
diagram; i.e. the line parametrizing the knot together with signed arrows con-
necting the preimages of each classical crossing.
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Definition 17.9. An arrow diagram (on a circle) is an abstract diagram,
which consists of an oriented circle with pairs of distinct points connected
by dashed arrows. Each arrow is equipped with a sign. The group of arrow
diagrams A is the free abelian group generated by all arrow diagrams.

Denote the set of all Gauss diagrams (non-realizable diagrams are allowed)
by D (here all diagrams have thick arrows). Starting from any Gauss diagram
we get an arrow diagram just by making all its arrows dashed. The extension
of this map to Z[D] defines a natural isomorphism i : Z[D]→ A.

There is another important map I : D → A, assigning to a Gauss diagram
D the sum of all its subdiagrams and then making each of them dashed:

I(D) =
∑

D′⊂D

i(D′)

(here D′ is a subdiagram of D if all the arrows of D′ belong to D, and we
write D′ ⊂ D). Extend I to Z[D] by linearity.

The following proposition is left to the reader as an exercise.

Proposition 17.1 ([GPV]). There exists the inverse map I−1 : A → Z[D]
which is defined on the generators of A by the formula:

I−1(A) =
∑

A′⊂A

(−1)|A−A′|i−1(A′),

where |A−A′| is the number of arrows of A which do not belong to A′. There-
fore, I : Z[D]→ A is an isomorphism.

Since the group A has a distinguished basis, consisting of arrow diagrams,
there is a natural orthonormal scalar product (·, ·) on A. Namely, on the
generators of A we put (A1, A2) to be 1, if A1 = A2, and 0 otherwise, and then
extend (·, ·) bilinearly. This allows us to define the pairing 〈·, ·〉 : A × D → Z

by putting
〈A,D〉 = (A, I(D))

for any D ∈ D and A ∈ A. Informally speaking, we count subdiagrams of D
with weights, where the weight of a diagram D′ is the coefficient of i(D′) in
A.

Let us consider the case of (classical) long knots. The following theorem
shows that any Vassiliev invariant can be calculated as a function of arrow
polynomials evaluated on the knot diagram.

Theorem 17.4 (Goussarov et al. [GPV]). Let G be an abelian group, and
let ν be a G-valued invariant of degree n of classical long knots. Then there
exists a function π : A → G such that ν = π ◦ I and π vanishes on any arrow
diagram with more than n arrows.

We immediately get the following corollary.



314 Knot Theory

FIGURE 17.11: Forbidden situations.

Corollary 17.1 ([GPV]). Any integer-valued finite-type invariant of degree
n of classical long knots can be presented as 〈A, ·〉, where A is a linear combi-
nation of arrow diagrams on a line with at most n arrows.

Let us prove Theorem 17.4 by following along the lines of [GPV, Theo-
rem 3.A]. Consider long virtual singular knot diagrams; i.e. we have three types
of crossings. We equip each double point with a sign as follows. The branches
at a double point are ordered and the sign is the intersection number of the
branches (taken in this order).

On the Gauss diagram of a long singular knot, each double point is shown
by a dashed chord equipped with the above sign.

Definition 17.10. A diagram D′ is called a subdiagram of a diagram D if D′

consists of all the chords and some arrows of D.

Definition 17.11. A diagram of a classical long knot is descending if when
going along the knot in the positive direction we pass first along overcrossing
and then undercrossing. In terms of Gauss diagrams it means that all the
arrows are directed to the right.

Let us now extend this notion to virtual long knots with double points.
We still require that all the arrows are directed to the right. There is also an
additional condition: There is no chord whose left endpoint neighbors with an
endpoint of an arrow from left. In Fig. 17.11 forbidden situations are shown.

It is not difficult to see that a classical long knot with a Gauss diagram of
this type can be presented by a diagram such that

1. all the double points are in the left half-plane,

2. all the crossings are in the right half-plane,

3. the intersection of the diagram with the left half-plane is an embedded
tree,

4. the intersection with the right half-plane is an ordered collection of arcs;
each of them is descending and lies below all the previous ones.

An example of such a diagram is given in Fig. 17.12.
It is easy to see that the chord part of the Gauss diagram of a descending

classical long knot diagram with singular crossings determines the isotopy
class of the classical long knot completely. As a result, we get the following
lemma.
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+- +- - - +- + -++ -

FIGURE 17.12: A descending classical long knot diagram and its Gauss
diagram.

Lemma 17.1 ([GPV]). Let D1 and D2 be Gauss diagrams of descending
classical long knots (with singular crossings), and let ν be an invariant of long
knots. If the chord parts of D1 and D2 coincide, then ν(D1) = ν(D2).

Remark 17.6. Lemma 17.1 is not true for descending virtual long knots
with singular crossings. Namely, we cannot determine a virtual long knot with
singular crossings by just knowing the chord part of the Gauss diagram of
its descending diagram. Therefore, the proof of the Goussarov theorem given
above cannot be straightforwardly generalized for the virtual case.

The next step of the proof is to show that the Gauss diagram of a classi-
cal long knot with double points can be represented as a linear combination
of descending diagrams. There is an algorithm allowing us to do this. This
algorithm consists of steps of two types. At each step, one inspects the Gauss
diagram from the left to the right looking for the first fragment where the
diagram fails to be descending. Such a fragment may either be a bad arrow
or a bad chord.

Definition 17.12. An arrow is bad if it is directed to the left and a bad chord
is depicted in Fig. 17.11.

In the case of a bad arrow the step of the algorithm is the replacement of
the diagram with the sum of two diagrams according to the formula

.
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FIGURE 17.13: The case of a bad chord.

In terms of Gauss diagrams this replacement is as follows:

α α α

α
.

In the case of a bad chord the step of the algorithm is the pulling of the
crossing over or under the appropriate branch by isotopy; see Fig. 17.13 (knot
diagrams) and Fig. 17.14 (Gauss diagrams).

Denote by Dn the free abelian group generated by Gauss diagrams of
virtual long singular knots with at most n chords (note that Z[D] = D0 ⊂ Dn).
We shall think of a step of the algorithm as an operator acting on Dn. Denote
this operator by P . By the definition of P , for any descending Gauss diagram
D we have P (D) = D.

Lemma 17.2 ([GPV]). For any diagram D ∈ Dn there exists m such that
Pm(D) is a sum of descending diagrams.

This lemma can be proved by considering the number l(D) of chords of
D which have one of the endpoints to the left of the first bad fragment.
It is not easy to see that this number does not decrease after applying the
operator P , and the number of such chords in a non-descending diagram is
at most n. Recall that we deal with an invariant of degree n, the diagrams
with more than n chords are disregarded. Thus, when one applies a step of
the algorithm to a bad arrow in a diagram with n chords, the summand with
n + 1 chords disappears. To complete the proof of the lemma one can show
that the diagram cannot change infinitely many times in subsequent iterations
of P without changing l.

Let us extend an invariant ν of degree at most n to all virtual knot dia-
grams.

Denote by Dre
n the subgroup of Dn generated by Gauss diagrams of clas-

sical long singular knots. Any finite-type invariant of classical knots of degree
at most n extends to Dre

n by linearity. The next lemma is obvious.
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FIGURE 17.14: The case of a bad chord in terms of Gauss diagrams.
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Lemma 17.3 ([GPV]). The operator P : Dn → Dn preserves Dre
n . The re-

striction of P to Dre
n preserves any invariant of degree at most n.

Let us first consider virtual descending long knot diagrams. By turning
all the virtual crossings of such a diagram D into appropriate classical ones,
we get a descending long classical knot diagram Dre with the same double
points. Put ν(D) = ν(Dre) (note that this operation is not well defined on
virtual knots, it is defined just on diagrams). By Lemma 17.1, ν(Dre) does
not depend on the choice of Dre for classical knots.

Using Lemma 17.2, for any virtual diagramD we can find a natural number
m such that Pm(D) is a sum of descending diagrams. Put ν(D) = ν(Pm(D)).
Lemma 17.3 implies that for classical diagrams this definition coincides with
the initial one. Since Pm+1(D) = Pm(D) we get

Lemma 17.4 ([GPV]). The operator P : Dn → Dn preserves ν, i.e. ν◦P = ν.

Let us construct the map π : A → G by defining it as the composition

A I−1

−→ Z[D] ⊂ Dn
ν−→ G.

Then for any diagram D of a classical long knot we have

ν(D) = π(I(D)) =
∑

D′⊂D

π(i(D′)).

In order to prove the Goussarov theorem, we must show that π(A) = 0 for
any arrow diagram A with more than n arrows.

Denote by An the free abelian group generated by diagrams on the line
containing signed dashed arrows and at most n dashed chords. The maps
i, I : Z[D] → A defined on Gauss diagrams without dashed chords extend
to isomorphisms i, I : Dn → An (the chord parts of the diagrams remain
untouched under both i and I).

Let us now define an operator Q : An → An, which is an analogue of the
operator P .

Definition 17.13. A diagram A ∈ An is called descending if i−1(A) is de-
scending. A fragment of A is called bad if the corresponding fragment of i−1(A)
is bad.

Put Q(A) = A if A is descending. Otherwise, find the leftmost bad frag-
ment of A. If it is a bad arrow, we define Q(A) = iP i−1(A). If it is a bad
chord, put Q(A) =

∑
A′ where the sum runs over all the subdiagrams of

iP i−1(A), each of which contains all the arrows not shown in Fig. 17.14, all
the chords and at least one more arrow. In other words, we sum up all seven
subdiagrams of iP i−1(A) which contain all the arrows and chords also be-
longing to A plus at least one more arrow. Here we need that the number of
arrows is not decreased by Q, though this map is not invariant.

The next lemma is obvious.
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Lemma 17.5 ([GPV]). For any diagram A ∈ An, the total number of arrows
and chords in each diagram appearing in Q(A) is at least the total number of
arrows and chords in A.

The following lemma is analogous to Lemma 17.2.

Lemma 17.6 ([GPV]). For any diagram A ∈ An, there exists m such that
Qm(A) is a sum of descending diagrams.

Lemma 17.7 ([GPV]). For any non-descending diagram D ∈ Dn, there is a
splitting I(D) = U + V with U, V ∈ An such that

I(P (D)) = Q(U) + V (17.3)

and U = i(D) + U ′, where U ′ is a sum of diagrams each of which has fewer
arrows than D.

Proof. Let U be the sum of all the subdiagrams of i(D) which include the first
bad fragment of i(D). These subdiagrams contain the same bad fragment as
the whole diagram i(D). Here Q(U) is the sum of all subdiagrams of diagrams
in iP (D) which are not subdiagrams of i(D). Then V is the sum of the sub-
diagrams of i(D) which do not contain the arrow from the bad fragment and
these subdiagrams of i(D) remain unchanged, when one applies P to D. Thus
I(P (D)) = Q(U) + V .

Though the operator Q is not invariant under the Reidemeister moves
(sometimes we remove one term from the summation), the following lemma
holds.

Lemma 17.8 ([GPV]). The operator Q : An → An preserves π, i.e. π◦Q = π.

Proof. Let A ∈ An be a diagram and D = i−1(A). Let us prove that
π(Q(A)) = π(A) by induction on the number of arrows in A.

The induction base. If this number equals 0, then A is descending and
Q(A) = A by definition of Q.

The induction step. Suppose inductively that the statement is correct for
any diagram whose number of arrows is less than the number of arrows in A,
and let us prove the statement for A. Apply π to the equality (17.3):

π ◦Q(U) + π(V ) = π ◦ I ◦ P (D) = ν ◦ P (D).

Since the operator P preserves ν, we get

ν ◦ P (D) = ν(D) = π ◦ I(D) = π(U) + π(V ).

Thus π ◦ Q(U) = π(U). By the induction assumption, π ◦ Q(U ′) = π(U ′),
where U ′ = U −A, and we obtain the desired equality π(Q(A)) = π(A). This
completes the induction step.
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Lemma 17.9 ([GPV]). Let A ∈ An be a descending diagram such that the
total number of arrows and chords in A is greater than n. Then π(A) = 0.

Proof. Let D = i−1(A). We have

π(A) = ν ◦R(A) =
∑

D′⊂D

(−1)|D−D′|ν(D′).

Since any subdiagram D′ of D is descending and has the same chord part,
ν(D′) = ν(D) by the construction of ν. Therefore,

π(A) =

( ∑

D′⊂D

(−1)|D−D′|
)
ν(D).

As one can easily check by induction on the number of arrows in A, the
sum in parentheses is equal to 1 if A has no arrows and is 0 otherwise. Since all
the diagrams in An have at most n chords and the total number of arrows and
chords in A is greater than n, it has at least one arrow. Hence π(A) = 0.

Lemma 17.10 ([GPV]). Let A ∈ An be a diagram such that the total number
of arrows and chords in A is greater than n. Then π(A) = 0.

Proof. Let m be the number which exists for A by Lemma 17.6. By
Lemma 17.8, π(A) = π(Qm(A)). By Lemma 17.5, the expansion of Qm(A)
contains only descending diagrams with the total number of chords and ar-
rows greater than n. Then by Lemma 17.9, π(A) = 0.

The last lemma completes the proof of the Goussarov theorem.

17.6.2 The Kauffman approach

Kauffman starts from the formal definition of a singular virtual knot (link).

Definition 17.14. A singular virtual link diagram is a four–valent graph in
the plane endowed with orientations of unicursal curves and crossing structure:
each crossing should be either classical, or virtual, or singular.

Definition 17.15. A singular virtual knot is an equivalence class of virtual
knot diagrams by generalised Reidemeister moves and rigid vertex isotopy,
shown in Fig. 17.15

Now, the definition of the Vassiliev knot invariants is literally the same as
in the classical case. For each invariant f of virtual links, one defines its formal

derivative f ′ by Vassiliev’s rule f ′( ) = f( ) − f( ) and says that the

invariant f has order less than or equal to n if f (n+1) ≡ 0.
The space of finite type invariants of virtual knots (by Kauffman) is much

more complicated than that of classical knots. For instance, the space of in-
variants of order zero is infinite–dimensional because there are infinitely many
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FIGURE 17.15: Rigid vertex isotopy moves for virtual knots

classes of virtual knots that can not be obtained from each other by using iso-
topy and classical crossing switches (one can separately define the value of an
invariant on each of these equivalence classes). The structure of higher order
invariants is even more complicated.

The Jones–Kauffman invariant in the form [Kau6] is weaker than the finite
type invariants. Namely, one can transform it (by the exponential variable
change) into a series with finite type invariant coefficient just as was done in
Chapter 13.

It is easy to see that many such invariants are not of finite type in the
sense of [GPV]. This observation is due to Kauffman [Kau5].





Chapter 18

Invariant polynomials of virtual links

We have already considered some generalisations of basic knot invariants: the
colouring invariant and the fundamental group. In Section 18.2 below we shall
consider a generalisation of the Jones–Kauffman polynomial [Kau5].

All the generalisations described above were constructed by using the fol-
lowing idea: one thinks of a virtual link diagram as a set of classical crossings
provided with the information about how they are connected on the plane
and one does not pay attention to virtual crossings. Thus, for instance, the
generators of the fundamental group that correspond to arcs of the diagram
may pass through virtual crossings, and all relations are taken only at classical
crossings.

In the present chapter, we shall describe the invariants proposed in the
author’s papers [Man4, Man9, Man10, Man13, MI] (for short versions see
in [Man7, Man11]). Interested readers may also read the excellent review of
Kauffman [Kau7] and his works with Radford [KR] and the author [KM1]
about so–called “biquandles”. Polynomial invariants of virtual knots and links
were also constructed in [BF, Saw, SW].

In the present chapter, we are going to modify these invariants in the
following manner: we find a way that a virtual crossing can have impact on
the constructed object (e.g., for the case of the fundamental group and what
it does with the generator) and then prove its invariance.

The main results present here can be found in [Man4].
The main idea of this construction is the following: while constructing the

invariant of the virtual link (or braid), we have taken into consideration that
virtual crossings can change the corresponding element, say, by multiplying
one of them by q, and the other one will be denoted by q−1 (if we deal with
some group structures). This idea of adding a new “variable” will be the main
one in this chapter.

It turns out that in some cases (e.g. the Alexander module) this new
variable plays a significant role and allows us to construct a virtual knot
invariant that is not a generalisation of any classical knot invariant.

Throughout the present chapter, all knots and links (virtual or classical)
are thought to be oriented, unless otherwise specified.

By a homomorphism of two objects O1 and O2 both endowed with a set
of operations (o1, . . . , om) we mean a map from O1 to O2 with respect to all
these operations.

323
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18.1 The virtual groupoid (quandle)

We recall that the notion of quandle (also known as a distributive
groupoid) first appeared in the pioneering works of Matveev [Mat1] and Joyce
[Joy]. They have proved that it is a complete invariant of knots.

We recall that a quandle is a set M together with the operation ◦ that is

1. idempotent: ∀a ∈M : a ◦ a = a,

2. right self–distributive:

∀a, b, c ∈M : (a ◦ b) ◦ c = (a ◦ c) ◦ (b ◦ c), (18.1)

and

3. left–invertible: ∀a, b ∈M : ∃!x ∈M : x ◦ a = b. This element is denoted
by b/a.

All these conditions are necessary and sufficient for the constructed quan-
dle to be invariant under the Reidemeister moves. More precisely, for each
knot (link) one can construct the knot (link) quandle.

Let L be an oriented virtual link diagram.

Definition 18.1. A Kauffman arc or long arc of this diagram is an oriented
interval (piece of a curve) between two adjacent undercrossings (i.e., while
walking along this arc, we make only overcrossings or virtual crossings).

With each arc ai, i = 1, . . . , n, we associate an element xi of the quandle
to be constructed. First, we take the free quandle generated by a1, . . . , an.
Then, if three arcs a1, a2, a3 meet each other at a classical crossing as shown
in Fig. 18.1, we write down the relation

ai1 ◦ ai2 = ai3 . (18.2)

Definition 18.2. The Kauffman quandle of L is the formal quandle, gener-
ated by ai, i = 1, . . . , n, and all relations (18.2) for all classical vertices.

More precisely, elements of such a quandle are equivalence classes of words
obtained from ai by means of ◦ and /, where equivalence is defined by crossing
relations.

The invariance of this quandle under purely virtual moves and the semivir-
tual move comes straightforwardly: the representation stays the same.

Remark 18.1. The invariance of this quandle under the classical Reidemeis-
ter moves can be checked straightforwardly just as in the classical case.
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ai1ai2

ai3

ai1 ◦ ai2 = ai3

FIGURE 18.1: Crossing relation for the quandle

Denote the obtained quandle by QK(L).
Obviously, for the unknot U we have QK(L) = {a}.
Thus, we have constructed a link invariant. By definition, it coincides with

the classical quandle [Mat1, Joy] on the classical links.
It might seem that for the classical links there are two equivalences: the

classical one and the virtual one. However, this is not the case.

Theorem 18.1. [GPV] Let L and L′ be two (oriented) classical link diagrams
such that L and L′ are equivalent under generalised Reidemeister moves. Then
L and L′ are equivalent under classical Reidemeister moves.

Proof. Note that longitudes (see definition on page 29) are preserved under
virtual moves (adding a virtual crossing to the diagram does not change the
expression for a longitude). Thus, an isomorphism for QK(L) and QK(L′)
induced by generalised Reidemeister moves preserves longitudes. Since the
isomorphism class of the quandle plus longitudes classifies classical knots, we
conclude that L and L′ are classically equivalent.

However, unlike the classical case, this quandle is rather weak in the virtual
sense: there are different simple knots that cannot be recognised by it.

Indeed, consider the knot diagram K shown in the left part Fig. 18.2. The
quandle QK corresponding to this diagram has two generators a, b and two
relations a ◦ b = b and b ◦ b = a. Obviously, they imply a = b. Thus this
quandle is the same as that for the unknot.

Later, we shall see that this non-trivial knot is recognised by the “virtual
quandle” to be constructed and thus, it is not trivial.

Besides the virtual quandle to be constructed, there is another generalisa-
tion of the quandle: the so-called biquandle (due to Kauffman and Radford,
[KR], and to Kauffman and the author [KM1]). Unlike our “virtual quandle”
approach, where we add a new operation at a virtual crossing, Kauffman and
Radford extend the algebraic structure at a classical crossing: the algebraic
element associated to a part of an arc “before” the (under)crossing differs
from that associated to the part “after” the undercrossing. The comparison of
these two approaches seems to be quite interesting for further investigations.



326 Knot Theory
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FIGURE 18.2: The virtual trefoil and its labellings

Now, let us construct the modified (virtual) quandle (we shall denote it
just by Q unlike Kauffman’s quandle QK).

Definition 18.3. A virtual quandle is a quandle (M, ◦) endowed with a unary
operation f such that:

1. f is invertible; the inverse operation is denoted by f−1;

2. ◦ is distributive with respect to f :

∀a, b ∈M : f(a) ◦ f(b) = f(a ◦ b). (18.3)

Remark 18.2. The equation (18.3) easily implies for all a, b ∈M :

f−1(a) ◦ f−1(b) = f−1(a ◦ b),

f(a)/f(b) = f(a/b),

and

f−1(a)/f−1(b) = f−1(a/b).

For a given virtual link diagram L, let us construct its virtual quandle
Q(L) as follows.

First, let us choose a diagram L′ in such a way that it can be divided
into long arcs in a proper way. Such diagrams are called proper. Obviously, a
proper diagram with m crossings has m long arcs.

More precisely, we need the result that each long arc has two different final
crossing points. For some diagrams this is not true. However, this can easily
be done by slight deformations of the diagram; see Fig. 18.3.

Exercise 18.1. Show that equivalent proper diagrams of virtual links can be
transformed to each other by generalised Reidemeister moves in the class of
proper diagrams.

Remark 18.3. Later in this chapter, all diagrams are taken to be proper,
unless otherwise specified.
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circular long arc proper diagram

Ω2

FIGURE 18.3: Reconstructing a link diagram in a proper way

FIGURE 18.4: A knot diagram and its arcs

Let L′ be a virtual diagram; let us think of its undercrossings as broken
(disconnected) lines as they are drawn on the plane. Let L̂′ be the set obtained
from L′ by removing all virtual crossings (vertices).

Definition 18.4. An arc of L′ is a connected component of L̂′.

Exercise 18.2. The knot shown in Fig. 18.4 has three classical crossings,
three arcs (a1 and a2; b1 and b2; c), and five virtual arcs (a1, a2, b1, b2, c).

Remark 18.4. The knot in Fig. 18.2 has thus four arcs (see the middle
picture): each of the two “former” arcs a and b is now divided into two arcs
by the virtual crossing.

The invariant Q(L) is now constructed as follows. Consider all arcs ai, i =
1, . . . , n, of the diagram L′. Consider the set of formal words X(L′) obtained
inductively from ai by using ◦, /, f, f−1. In order to construct Q(L′) we shall
factorise X(L′) by some equivalence relations.

First of all, for each a, b, c ∈ X(L′) we identify:

f−1(f(a)) ∼ f(f−1(a)) ∼ a;

(a ◦ b)/b ∼ a;
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aj1
aj3

aj4
aj2

FIGURE 18.5: Relation for a virtual crossing

(a/b) ◦ b ∼ a;

a ∼ a ◦ a;

(a ◦ b) ◦ c ∼ (a ◦ c) ◦ (b ◦ c);

f(a ◦ b) ∼ f(a) ◦ f(b).
Thus, we get the “free” quandle with generators a1, . . . , an. The following

factorisation will be done with respect to the structure of the diagram L′.
For each classical crossing we write down the relation (18.2) just as in

the classical case. For each virtual crossing V we also write relations. Let
aj1 , aj2 , aj3 , aj4 be the four arcs incident to V as it is shown in Fig.18.5.

Then, let us write the relations:

aj2 = f(aj1) (18.4)

and

aj3 = f(aj4). (18.5)

So, the virtual quandle Q(L) is the quandle generated by all arcs ai, i =
1, . . . , n, all relations (18.2) at classical vertices and all relations (18.4), (18.5)
at virtual crossings.

Theorem 18.2. The virtual quandle Q(L) is a virtual link invariant.

Proof. The invariance under classical Reidemeister moves is just the same as
in the classical case (cf. Remark 18.1).

First, let us note that two proper diagrams generate isotopic virtual links
if and only if one of them can be deformed to the other by using a sequence
of virtual Reidemeister moves. Indeed, if a circular long link occurs during
the isotopy, then we can modify the isotopy by applying the first classical
Reidemeister move to this long arc and subdividing it into two parts.
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FIGURE 18.6: Invariance of Q under the first virtual move

Now, we have to show that by applying a Reidemeister move to a link
diagram, we transform our quandle to an isomorphic one.

Consider some virtual Reidemeister move. Let L̄ and L̄′ be two virtual
link diagrams obtained from each other by applying this move. Since this
move is performed inside a small circle C, all arcs of L and L′ can be split
into three sets: the common set E of exterior arcs belonging to both L and
L′, the common set S of arcs intersecting the circle C, and the sets I, I ′ of
interior arcs belonging to L and L′, respectively. Hence, the quandle M(L)
has the following generators and relations.

First, we have the relations to be denoted by ε (distributivity and idem-
potence) and E, S, I, and Γ(L′) is generated by ε and E, S, I ′.

Relations (crossings) for diagrams L,L′ are also divided into two sets:
exterior ones RE which are common for L and L′ and interior RI , R

′
I related

to L and L′, respectively. Besides them, each quandle has general quandle
relations (left–invertibility and right self–distributivity). Later in the proof,
by relation we shall mean only those relations that come from crossings (not
idempotence or distributivity).

Now, it is easy to see that for each concrete generalised Reidemeister move,
by using RI one can remove the generators I by expressing them in terms of
S. Actually, this will add some “interior” relations RS for S. The same can
be done for I ′. Denote these relations by R′

S . So, we transform both quandles
Γ(L) and Γ(L′) into isomorphic quandles Γ̃(L) and Γ̃(L′). The latter ones are
generated only by E, S (and ε). They have a common set of exterior relations
RE .

The only thing to show is that relations RS and R′
S determine the same

equivalence on S (by means of ε).
Let us perform it for concrete versions of Reidemeister moves; the other

cases are completely analogous to those to be described.
We have to show that Q(L) is invariant under virtual Reidemeister moves.
The invariance of Q under all classical moves is checked in the same way

as that of Q.
Let us now check the invariance of Q under purely virtual Reidemeister

moves.
The first virtual Reidemeister move is shown in Fig. 18.6. In the initial

local picture we have one local generator a. Here we just add a new generator
b and two coinciding relations: b = f−1(a). Thus, it does not change the virtual
quandle at all.
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FIGURE 18.7: Invariance of Q under the second virtual move
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FIGURE 18.8: Invariance of Q under the third virtual move

The case of inverse orientation at the crossings gives us b = f(a) which
does not change the situation.

For each next relation, we shall check only one case of arc orientation.
The second Reidemeister move (see Fig. 18.7) adds two generators c and d

and two pairs of coinciding relations: c = f(a), d = f−1(b). Thus, the quandle
Q stays the same.

In the case of the third Reidemeister move we have six “exterior arcs”:
three incoming (a, b, c) and three outgoing (p, q, r), see Fig 18.8. In both cases
we have p = f2(a), q = b, r = f−2(c). The three interior arcs are expressed in
a, b, c, and give no other relations.

Finally, let us check the mixed move. We are going to check the only version
of it; see Fig. 18.9

In both pictures we have three incoming edges a, b, c and three outgoing
edges p, q, r. In the first case we have relations: p = f(a), q = b, r = f−1(c)◦a.
In the second case we have: p = f(a), q = b, r = f−1(c ◦ f(a)).

The distributivity relation f(x ◦ y) = f(x) ◦ f(y) implies the relation
f−1(c) ◦ a = f−1(c ◦ f(a)). Hence, two virtual quandles before the mixed
move and after the mixed move coincide.

The other cases of the mixed move lead to other relations all equivalent to
f(x ◦ y) = f(x) ◦ f(y).

This completes the proof of the theorem.
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FIGURE 18.9: Invariance of Q under the mixed move

Remark 18.5. Note that for the classical links, QK can be easily restored
from Q. In the case of virtual links Q is, indeed, stronger: having Q, one
easily obtains QK by putting ∀x ∈ Qf(x) ≡ x.

Example 18.1. Consider the virtual knot K (middle part) shown in Fig. 18.2.
It has four arcs: a1 = a, b1 = f(b) (before the virtual crossing) and a2, b2 (after
the virtual crossing).

The relations in this quandle are: a2 = f(a1), b1 = f(b2), a2 ◦ b2 = b1 and
b2 ◦ b1 = a1. Rewriting the last two relations for the two generators a1, b2, we
get: f(a1) ◦ b2 = f(b2) and b2 ◦ f(b2) = a1.

Obviously, two quandles are not easy to compare. Of course, neither are
virtual quandles. And we cannot show just now why Q(K) 6= {a}. However,
we shall soon describe some simplifications of Q which are weaker, but easier
to compare. They will show us that Q(K) 6= {a}, and consequently K is
indeed knotted.

The idea of applying some relation to virtual crossings can be transformed
to the idea of endowing classical crossings with additional information (which
is somehow related to the virtual crossing count).

Here we briefly mention parity (see [MM1, MM2, Man22, Man23, Man24,
Man25, Man28, CM, MI, IMN1, IMN2, CFM, IM1, Man31, IMN3, FM]).

In fact, classical crossings can be endowed with some much more powerful
information that just numbers, namely, we can endow classical crossings with
pictures [KM2, KM3, Man30, MN].

18.2 The Jones–Kauffman polynomial

The Kauffman construction for the Jones polynomial for virtual knots
[Kau5] works just as well as in the case of classical knots. Namely, we first
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FIGURE 18.10: The two variants of the twist move

FIGURE 18.11: A virtual knot reduced to the unknot by the virtualisation
and the generalised Reidemeister moves.

consider an oriented link L and the corresponding unoriented link |L|. After
this, we smooth all classical crossings of |L| just as before (obtaining states
of the diagram). In this way, we obtain a diagram without classical crossings,
which is an unlink diagram. The number of components of this diagram (for
a state s) is denoted by γ(s). Then we define the Kauffman bracket by the
same formula

X(L) =
∑

s

(−a)3w(L)aα(s)−β(s)(−a2 − a−2)γ(s)−1, (18.6)

where w(L) is the writhe number taken over all classical crossings of L, and
α(s), β(s) are defined as in the classical case.

The invariance proof for this polynomial under classical Reidemeister
moves is just the same as in the classical case; under purely virtual and semivir-
tual moves it is clearly invariant term–by–term.

However, this invariant has a disadvantage [Kau5]: invariance under a move
that might not be an equivalence.

Exercise 18.3. Prove that the polynomial X is invariant under the follow-
ing local moves — twist move or virtual switch move or virtualisation; see
Fig.18.10.

Example 18.2. Let us consider the virtual knot diagram shown in Fig. 18.11.
This knot was first considered by Kauffman.
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This knot can be reduced to the unknot with virtualisations and generalised
Reidemeister moves; see Fig. 18.12.

In Fig. 18.12 by the transformation B′ we mean a move applied to one clas-
sical and one virtual crossing; it represents a composition of the virtualisation
and the second Reidemeister move; see Fig. 18.13. For each of the transfor-
mations shown in Fig. 18.12, we pick out a domain which this transformation
is applied to.

Thus, the Jones–Kauffman polynomial of the knot depicted in Fig. 18.11
coincides with the polynomial of the unknot. One can show though (e.g. using
the techniques of virtual quandles) that this virtual knot is not trivial.

18.3 Presentations of the quandle

The quandle admits some presentations such as the fundamental group,
the Alexander polynomial, and the colouring invariant. Here we shall show
how to construct analogous presentations for the quandle Q.

18.3.1 The fundamental group

We recall that the fundamental group G of the complement to an oriented
link L is obtained from its quandle QK(L) as follows. Instead of elements ai
of the quandle Q we write elements of the formal group G (to be constructed),
and instead of the operation ◦ we write the conjugation operation: x ◦ y be-
comes yxy−1. It is easy to check that this presentation of the operation ◦
preserves the idempotence property and the relation (18.2). Besides, it has an
evident inverse operation, namely: in the group a/b is going to be b−1ab.

Thus, having written all relations for all classical vertices of the link l, we
get a group G(L) that is called the fundamental group of the complement to
L. In the case of classical knots, this group has a real geometric sense.

Obviously, we can do just the same for the case of virtual knots. In this
case we also get a virtual link invariant, called the Kauffman fundamental
group of a virtual link.

Actually, each such presentation makes the initial invariant weaker. Thus,
Kauffman’s virtual fundamental group does not distinguish the “virtual tre-
foil” knot K and the unknot.

Now, we construct the presentation of the invariant Q in the category of
groups.

We have already seen that the conjugation plays the role of the operation ◦.
So, we only have to find an appropriate operation to present f(·).

This operation can be taken as follows: we just add a new generator q and
say that f(a) = qaq−1.

These two operations together make a groupoid from each group.
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FIGURE 18.12: Reducing to the unknot by virtualisations and generalised
Reidemeister moves.

FIGURE 18.13: The move B′ is expressed in terms of the virtualisation.
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In fact, the following lemma holds.

Lemma 18.1. For each group G, the group G∗{q} (free product) with the two
operations ◦, f(·) defined as a◦b = bab−1, f(c) = qcq−1 for all a, b, c ∈ G∗{q},
is a virtual groupoid.

Proof. Indeed, we just have to show that f(a ◦ b) = f(a) ◦ f(b). Actually,
f(a◦b) = f(bab−1) = qbab−1q−1 = qbq−1(qaq−1)qb−1q−1 = f(b)f(a)f(b)−1 =
f(a) ◦ f(b).

Now, let us construct the fundamental group G(L) of a virtual link diagram
L. Let us enumerate all arcs of L by ai, i = 1, . . . , n. So, G is the group gen-
erated by a1, . . . , an, q with the relations obtained from (18.2), (18.4), (18.5)
by putting f(x) = qxq−1, y ◦ z = zyz−1.

Thus, we obtain the following important theorem.

Theorem 18.3. The group G(L) is an invariant of virtual links.

Proof. The proof follows immediately from Theorem 18.2 and Lemma 18.1.

Obviously, for the unknot U we have G(U) = 〈a, q|〉 is a free group with
two generators.

Exercise 18.4. Calculate the fundamental group G(K) of the virtual trefoil
(together with the element q in it) and prove that this group together with q
distinguishes K from the unknot.

Thus, the knot K is not trivial.
Besides the fundamental group, for each knot one can construct another

invariant group by using the following relations:

x ◦ y = ypxy−p, f(x) = qxq−1

where p is a fixed integer, and q is the fixed group element. The proof is quite
analogous to the previous one.

Another way to construct an invariant group is the following:

x ◦ y = yx−1y, f(x) = qxq−1

or

x ◦ y = yx−1y, f(x) = qx−1q.
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18.3.2 The colouring invariant

The idea of colouring invariant is very simple. We take a presentation of
some finite quandle Q′ (say, obtained from a finite group G′) by generators
a1, . . . , ak and relations.

More precisely, the following lemma holds.

Lemma 18.2. Let Q′ be a virtual quandle. Then the set of homomorphisms
Q(L)→ Q′ is an invariant of link L.

This claim is obvious.
Now, let us prove the following lemma.

Lemma 18.3. For each finite virtual quandle Q′ the number of homomor-
phisms Q(L)→ Q′ is finite for each link L.

Proof. Indeed, consider a link L and a proper diagram L̄ of it. In order to
construct a homomorphism h : Q(L)→ Q′ we only have to define the images
h(ai) of those elements of Q(L) that correspond to arcs. Since the number of
arcs is finite, the desired number of homomorphisms is finite.

The two lemmas proved above imply the following theorem.

Theorem 18.4. Let Q′ be a finite virtual quandle. Then the number of ho-
momorphisms Q(L)→ Q′ is an integer–valued invariant of L.

The sense of this invariant is pretty simple: it is just the proper colouring
number of arcs of L by elements of Q′; the colouring is proper if and only if
it satisfies the virtual quandle condition.

How do we construct finite virtual quandles? Let us generalise the ideas
for ordinary quandle construction from [Mat1] for the virtual case. Here are
some examples.

Let G be a finite group, g ∈ G be a fixed element of it, and n be an
integer number. Then the set of elements x ∈ G equipped with the operation
x ◦ y = ynxy−n, f(x) = gxg−1 is a virtual groupoid.

Another way for constructing virtual groupoids by using groups is as fol-
lows: for a group G with a fixed element g ∈ G, we set x ◦ y = yx−1y, f(x) =
gxg−1.

These examples give two series of integer–valued virtual link invariants.
For further reading see [KM1, Car12].

18.4 The V A-polynomial

In the present section we give a generalisation of the Alexander module.
This module leads to the construction of the so–called V A–polynomial that
has no analogue in the classical case.
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Consider a module R over the ring of Laurent polynomials in the variable
t over Q.

Remark 18.6. Here we take the field Q (instead of the ring Z as in the
classical case) in order to get a graded Euclidean ring of polynomials. In our
case degP = length(P ) where length means the difference between the leading
degree and the lowest degree.

For any two elements of this module we can define the operation ◦ as
follows:

a ◦ b = ta+ (1− t) b. (18.7)

Obviously, this operation is invertible; the inverse operation (denoted by “/”)
is given by the formula

a/b =
1

t
a+

(
1− 1

t

)
b. (18.8)

Clearly, a ◦ a = a. The self–distributivity of (18.7) can be easily checked.
Thus, having a classical link diagram we can define a module over the ring

of Laurent polynomials by the following rule: the generator system of this
module consists of elements ai, corresponding to arcs of the diagram; at each
classical crossing we write down a relation (18.2), where the operation ◦ is
taken from (18.7).

Remark 18.7. In the sequel, all modules are right–left modules; i.e., one can
multiply elements of the module by an element of the ring on the right or left
hand; thus one obtains the same result.

Thus, the defined module is a link invariant. However, this module allows
us to extract a more visible invariant, called the Alexander polynomial. This
can be done as follows.

For a diagram of a classical link, the system of relations defining this
module is a linear systems of n equations on n variables ai, i = 1, . . . , n. Thus,
we get an n × n matrix of relations. It is also called the Alexander matrix
M(L). Hence for each equation the sum of the coefficients equals zero, the
rows of this matrix are linearly–dependent, and thus the determinant of this
matrix equals zero.

It is not difficult to prove that all minors of order n − 1 of this matrix
are the same up to multiplying by ±tk. The Alexander polynomial is just this
minor (defined up to ±tk). The complete proof of invariance for the classical
Alexander polynomial can be read, in e.g., [Man’2].

Remark 18.8. Note that ±tk are precisely all invertible elements in the ring
of Laurent polynomials.

Now, let us generalise the Alexander approach for the case of virtual knots.
We shall use the same ring of Laurent polynomials over t. Fortunately, this is
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quite easy. Indeed, to define the virtual Alexander module, we need to find a
“good” presentation for the function f , such that

f (a ◦ b) = f (ta+ (1− t) b) = tf (a) + (1− t) f (b) . (18.9)

Here we can just set f(a) ≡ a + ε, where ε is a new vector (it is the fixed
vector in the new module). More precisely, consider a module R over the ring
of polynomials of t, t−1 (say, with rational coefficients) and set

∀a, b, c ∈ R : a ◦ b = ta+ (1− t) b, f(c) = c+ ε. (18.10)

In this case, the formula (18.10) follows straightforwardly.
Thus, having a virtual link L diagram, we can define the virtual dia-

gram Alexander module M(L) over the Laurent polynomial ring taking arcs
of the diagrams as generators and (18.2), (18.4), (18.5) as relations (in the
form (18.10)). In this module there exists a fixed element denoted by ε.

This definition together with Theorem 18.2 implies the following Theorem.

Theorem 18.5. The pair consisting of the virtual Alexander module together
with the fixed element (M(L), ε) is a virtual link invariant.

Now, let us see what happens with the Alexander polynomial.

Remark 18.9. For the sake of simplicity, we shall think of arcs of the diagram
as elements of the Alexander module (i.e. we shall not introduce any other
letters).

Let L be a proper virtual link diagram with m crossings. Thus, it has pre-
cisely m long arcs; each of the long arcs is divided into several arcs. According
to the operation f(·), we see that if two arcs p and q belong to the same long
arc, they satisfy the relation

p = q + rε.

For each long arc, choose an arc of it. Since we have m long arcs, we can
denote chosen arcs by b1, . . . , bm. All other arcs are, hence, equal to bi + pijε,
where pij ∈ Z.

Now, we can write down the relations of the Alexander polynomial. For
each classical crossing v we just write the relation (18.2) in the form (18.7).
Thus, we obtain anm×mmatrix, where rows correspond to classical crossings,
and columns correspond to long arcs. Thus, the element of the j–th column
and i–th string is something like P (t) · (bj + pjiε), where P (t) is a polynomial
in t.

Now, we can take all terms containing ε and move them to the right part.
Thus we obtain an equation

(A) b = cε, (18.11)

where b is the column (b1, . . . , bm)∗, c is the column (c1, . . . cm)∗ of coefficients
for ε, and A is a matrix.
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The system (18.11) completely defines the virtual Alexander module M
together with the element ε ∈M .

As in the classical case, A is called the Alexander matrix of the diagram
L. It is easy to see that in both the classical and in the virtual case A is
degenerate: for the vector x = (1, . . . , 1)∗ we have

Ax = 0.

However, unlike the classical case, here we have a non–homogeneous sys-
tem (18.11) of equations.

Since A is degenerated, it has rank at most m − 1. Thus, the equa-
tion (18.11) implies some condition on ε: since strings of A are linearly–
dependent, so are c1ε, . . . , cmε. This means that our Alexander module might
have a relation V (t)ε = 0, where V (t)ε = 0. Here we write “might have”
because it can happen that V (t)ε = 0 implies V (t) = 0.

The set of all i ∈ R such that iε = 0 forms an ideal I ⊂ R. The ring R
is Euclidean, thus the ideal I is a principal ideal. It is characterised by its
minimal polynomial V A ∈ I that is defined up to invertible elements of R.

Definition 18.5. The minimal polynomial V A(t) ∈ R of the ideal I is called
the V A–polynomial of the virtual link diagram L.

Remark 18.10. Obviously, V A is defined up to invertible elements of R; i.e.,
up to ±tk.

The polynomial V A(L) depends only on the module M(L) with the se-
lected element ε.

Thus, we obtain the following theorem.

Theorem 18.6. The polynomial V A (defined up to invertible elements of R)
is a virtual link invariant.

Now, let us calculate the value of the V A–polynomial on some virtual
knots.

Exercise 18.5. Consider the “virtual trefoil knot”. Let us calculate the virtual
quandle of it. In Fig. 18.2, rightmost picture, we have two classical vertices:
I and II. They give us a system of two relations:

I : (a+ ε)t+ b(1− t) = b+ ε

II : bt+ (b + ε)(1− t) = a,

or:

at− bt = ε(1− t)
b− a = ε(t− 1).



340 Knot Theory

c-ε

b+ε

a-ε

a
b

c

d+ε

d

III

IV

II

I

FIGURE 18.14: One way to construct K#K
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FIGURE 18.15: Another way to construct K#K

Multiplying the second equation by t and adding it to the first one, we get:
0 = ε(t− 1)(1− t). Thus, V A(K) = (1 − t)2.

Having two oriented virtual knots K1 andK2, one can define the connected
sum of these knots as follows. We just take their diagrams, break each of
them at two points close to each other and connect them together according
to the orientation. This construction is well known in the classical case. In
the classical case, the product is well defined (i.e., it does not depend on the
broken point).

Let us see what happens in the virtual case. For example, let us take the
two copies of one and the same knot K (shown in Fig. 18.2) and attach them
together in two different ways as shown in Figs. 18.14 and 18.15.

We have two systems of equations. The first knot gives:

I : a− b = tε

II : −ta+ tc = ε

III : −tc+ td = (1− 2t)ε

IV : tb+ (1 − t)c− d = −tε.

The zero linear combination is t2(I) + t(II) + (III) + t(IV ) = 0. Thus,
the V A–polynomial equals t2(t) + t(1) + (1− 2t) + t(−t) = (t− 1)2(t+ 1).

The second knot gives:
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I : a− b = tε

II : −ta+ tc = (1− t)ε

III : tb+ (1 − t)c− d = 0

IV : (1− t)b − c+ dt = −tε.

The linear combination is (t3−t2+t)(I)+(t2−t+1)(II)+t2(III)+t(IV ) =
0. Thus, the V A–polynomial equals (t− 1)2(t2 + 1).

These two polynomials are not proportional with invertible coefficient λtk.
Thus, the two connected sums are not equivalent.

Definition 18.6. By an oriented long virtual knot diagram we mean an im-
mersion of the oriented line R1 into R2 with double crossing points, endowed
with crossing structure at each intersection point (classical or virtual). We also
require that outside an interval the image coincides with the line Ox where
the abscissa increases while walking along the line according to its orientation.

Definition 18.7. By an oriented long virtual knot we mean an equivalence
class of oriented long virtual knot diagrams modulo Reidemeister moves.

A long virtual knot can be obtained from an ordinary virtual knot by
breaking it at a point and taking the free ends to infinity (say, +∞ and −∞
along Ox). It is well known that the theory of classical long knots is isomorphic
to that of classical ordinary knots; i.e. the long knot isotopy class does not
depend on the choice of the break point.

The two examples shown above demonstrate that there exist two long
virtual knots K1,K2 shown in Fig. 18.16 and obtained from the same virtual
knot K1 which are not isotopic. This fact was first mentioned in [GPV].

Indeed, if K1 and K2 were isotopic, the virtual knot shown in Fig. 18.14
would be isotopic to that shown in Fig. 18.15. The latter claim is however not
true. The long knots K1 and K2 can be distinguished also by the long quandle
invariant, see Section 20.2.

Thus, long virtual knot theory differs from ordinary virtual knot theory.

18.4.1 Properties of the V A–polynomial

Theorem 18.7. For each virtual knot K the polynomial V A(K) is divisible
by (t− 1)2.

Proof. Let K̄ be a virtual knot diagram. Choose a classical crossing V1 of it.
Let X be a long arc outgoing from V1, and let x be the first arc of X incident
to V1. Denote this arc by a1. By construction, all arcs belonging to X are
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FIGURE 18.16: Two different long virtual knots coming from the same knot

associated with a1 + kε, k ∈ N. Let the last arc of X be marked by a1 + k1ε.
Denote the final point of it by V2. Now, let us take the first arc outgoing
from V2 and associate a2 + k1ε to it. Then, we set the labels a2 + kε for all
arcs belonging to the same long arc. Let the last arc have the label a2 + k2ε
and have the final point at V3. Then, we associate a3 + k2ε with the first arc
outgoing from V3, and so on.

Finally, we shall come to V1. Let us show that the process converges; i.e.
the label of the arc coming in V1 has the label aj+1+0 · ε, where j is the total
number of long arcs.

Indeed, let us see the ε–part of labels while walking along the diagram from
V1 to V1. In the very beginning, it is equal to zero by construction. Then, while
passing through each virtual crossing, it is increased (or decreased) by one.
But each virtual crossing is passed twice; thus each +ε is compensated by −ε
and vice versa. Thus, finally we come to V1 with 0 · ε.

Note that the process converges if we do the same, starting from any arc
with an arbitrary integer number as a label.

In this case, each relation of the virtual Alexander module has the right
part divisible by ε(t− 1): the relation

(ai + pε)t+ (aj + qε)(1− t) = (ak + pε)

is equivalent to

ait+ aj(1− t)− ak = (t− 1)(q − p)ε. (18.12)

This proves that V A(K) is divisible by (t− 1).
Denote the summands for the i–th vertex in the right part of (18.12) by

qi and pi, respectively.
Let us seek relations on rows of the virtual Alexander matrix. Each relation

holds for arbitrary t, hence for t = 1.
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FIGURE 18.17: Labels of K̄ and K̄ ′

Denote rows of M by Mi, i = 1, . . . , n. So, if for the matrix M we have∑n
i=1 ciMi = 0 then

∑n
i=1 ci|t=1Mi|t=1 = 0.

The matrixM(K̄)|t=1 is very simple. Each row of it (as well as each column
of it) consists of 1 and −1 and zeros. The relation for rows of this matrix is
obvious: one should just take the sum of these rows that is equal to zero. So,
∀i, j = 1 . . . , n : ci|t=1 = cj |t=1.

Each relation for ε looks like (
∑n

i=1 ci(qi − pi)) (t− 1) = 0.
Since we are interested in whether this expression is divisible by (t−1)2, we

can easily replace ci with ci|t=1. Thus, it remains to prove that
∑n

i=1(qi−pi) =
0 for the given diagram K̄.

Let us prove it by induction on the number n of classical crossings.
For n = 0, there is nothing to prove.
Now, let K̄ be a diagram with n classical crossings, and K̄ ′ be a diagram

obtained from K̄ by replacing a classical crossing by a virtual one.
Consider the case of the positive classical crossing X (the “negative” case

is completely analogous to this one); see Fig. 18.17.
Denote the lower–left arc of both diagrams by a, and other arcs by b and

c, d (for K̄ we have a = d); see Fig. 18.17. Assign the label 0 to the arc a of
both diagrams. Let us calculate

∑
(qi − pi) for K̄ ′ and K̄. By the induction

hypothesis, for K̄ ′ this sum equals 0.
Denote the label of b for the first diagram by lb1 and that for the second

diagram by lb2.
The crossing X of K̄ has q = lb1, p = 0, thus, its impact is equal to lb1.
The other crossings of K̄ (classical or virtual) are in one–to–one correspon-

dence with those of K̄ ′. Let us calculate what the difference is between the p’s
and q’s for these two diagrams. The difference comes from classical crossings.
Their labels differ only in the part of the diagram from d to b. While walking
from d to b, we encounter classical and virtual crossing. The total algebraic
number is equal to zero. The algebraic number of virtual crossings equals −q.
Thus the algebraic number of classical crossings equals q. Each of them im-
pacts −1 to the difference between K̄ and K̄ ′. Thus, we have q− q = 0 which
completes the induction step and hence, the theorem.

The following theorem can be proven straightforwardly.
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Theorem 18.8. The invariant V A is additive. More precisely, for any con-
nected sum K = K1#K2 of two links K1 and K2 there exist invertible elements
λ, µ ∈ R : V A(K) = λV A(K1) + µV A(K1).

One should also mention that the V A–polynomial can be defined more
precisely (up to ±tk) if we consider the ring R. However, this approach works
for knots when the corresponding ideal over R is a principal ideal.

18.5 Multiplicative approach

18.5.1 Introduction

Here we are going to use a construction quite analogous to the previous
ones; however, instead of an extra “additive” element ε added to the module
we shall add some “multiplicative” elements to the basic ring.

Throughout the section, we deal only with oriented links. In the sequel,
we deal only with proper diagrams.

18.6 The two–variable polynomial

Below, we construct two invariant polynomials of virtual links ([Man9], for
a short version see [Man11]). In this section, the first one (in two variables)
will be constructed. The second one, which will be described in Section 18.7,
deals with coloured links: with each n–component coloured link we associate
an invariant polynomial in n + 1 variables. The first invariant can be easily
obtained from the second one by a simple variable change.

Let L̄ be a proper diagram of a virtual link L with n classical crossings.
Let us construct an n×n–matrixM(L̄) with elements from Z[t, t−1, s, s−1]

as follows.
First, let us enumerate all classical crossings of L by integer numbers from

one to n and associate with each crossing the outgoing long arc. Each long
arc starts with a (short) arc. Let us associate the label one with this arc. All
other arcs of the long arc will be marked by exponents sk, k ∈ Z, as follows;
see Fig. 18.18. While passing through the virtual crossing, we multiply the
label by s if we pass from the left to the right (assuming that the arc we pass
by is oriented upwards) or by s−1 otherwise.

Since the diagram is proper, our labelling is well defined. Consider a classi-
cal crossing Vi with number i. It is incident to some three arcs p, q, r, belonging
to long arcs with numbers i, j, k; whence the number j belongs to the arc pass-
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FIGURE 18.18: Symbols sk on arcs
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FIGURE 18.19: Arcs incident to classical crossings

ing through Vi. Denote the exponent of s of the label corresponding to q by
aij , and that of the label corresponding to r by aik; see Fig. 18.19.

Let us define the i–th row of the matrix M(L̄) as the sum of the following
three rows y1, y2, y3 of length n. Each of these rows has only one non-zero
element. The i–th element of the row y1 is equal to one. If the crossing is
positive, we set

y2k = −saikt, y3j = (t− 1)saij ; (18.13)

otherwise we set

y2k = −saikt−1, y3j = (t−1 − 1)saij . (18.14)

Let ζ(L̄) be equal to detM(L̄). Obviously, ζ(L̄) does not depend on the
enumeration of rows of the matrix.

Theorem 18.9. For each two diagrams L̄ and L̄′ of the same virtual link L
we have ζ(L̄) = tlζ(L̄′) for some l ∈ Z.

Proof. Note that purely virtual moves do not change the matrix M(L̄) and
hence ζ do not change.

While applying the semivirtual third Reidemeister move, we multiply one
row of the matrix by s±1 and one column of the matrix by s∓1. Indeed, let
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FIGURE 18.20: Invariance under the semivirtual move

I be the number of the classical crossing, the semivirtual move is applied to.
Then we have the following two diagrams, L and L′; see Fig. 18.20.

For the sake of simplicity, let us assume that arcs labelled by si, sj and sk

correspond to long arcs numbered 2, 3, and 4.
In order to compare the elements of the matrices M(L) and M(L′) in the

p–th row and q–th column, one should consider the labels of (short) arcs of
the q–th long arc incident to the p–th crossing. There are four different cases.
In the simplest case p 6= 1 and q 6= 1, the labels of the two arcs are the same.
If p = 1 and q = 1 they are the same by definition: they both equal s0. The
first row p = 1, q 6= 1 can be considered straightforwardly: we have at most
three non-zero elements in this row. Finally, if q = 1, p 6= 1, then we deal with
the long arc outgoing from the first crossing. Consider the domain D of the
semivirtual Reidemeister move, shown in Fig. 18.20. In the case of L, the first
long arc leaves this domain with label s−1 on some (short) arc, and in the
case of L′ it leaves this domain with label s0. So, all further labels of this long
arc (e.g. all those containing crossings except the first one) will be different.
Namely, the label for L′ will be equal to that for L multiplied by s.

This allows us to conclude the following.
The two matrices M(L) and M(L′) will both have 1 on the place (1, 1)

and the same elements except for (1, p) or (q, 1) for p 6= 1 and q 6= 1.
In the case p 6= 1 we have M(L′)p1 = s ·M(L)p1 and for q 6= 1 we have

M(L′)1q = s−1M(L)1q.
Thus, the semivirtual move does not change the determinant either.
Now let us consider classical Reidemeister moves. We begin with the first

move Ω1. Suppose we add a loop dividing some arc labelled by si of the first
long arc into two long arcs. One of them lies “before” the loop of the move,
the other one lies “after” the loop. These parts correspond to some columns
in the matrix M . Denote these columns by A and B, respectively.

After performing this move, we obtain one more row and one more column
in the matrix. The row will correspond to the added vertex. Let us renumber
vertices by j → j + 1, and associate the number one with the added vertex.
This row will contain only two non-zero elements on places 1 and 2. Besides
this, instead of columns A and B we have columns A and s−i · B because,
according to our rules, the part corresponding to B will start not from si but
from s0 = 1.
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FIGURE 18.21: The second move

So, in each of the four cases of the first Reidemeister move, our transfor-
mation will look like this:

(
A+ B ∗

)
→
(

x siy 0
Bs−i A ∗

)
.

Here x and y are some functions depending only on t. Indeed, consider the two
arcs of the diagram with curl. If the first arc is incident to the first crossing
once, then the element x equals 1, and y equals −1: it will be the sum of two
elements −t and (t − 1) or − 1

t and (1t − 1). If the first arc is incident twice,
we may have two different possibilities: x = t, y = −t, or x = 1

t , y = − 1
t .

Now, it can be checked straightforwardly that in each of the four cases the
determinant will either stay the same or be multiplied by t±1.

Let us now consider the move Ω2. We shall perform all calculations just
for the one case shown in Fig. 18.21.

This move adds two new crossings (they are numbered by one and two,
and all other numbers are increased by two). Let us look at what happens
with the matrix.

Assume that the initial diagram has n crossings. Denote the first two
columns of the first matrix by A and B+C, where B and C have the following
geometric meaning. The column B + C corresponds to the long arc; i.e., to
all crossings of the arc. After performing the second Reidemeister move, this
long arc breaks at some interval, thus, all its incidences with crossings can be
divided into two parts: those before and those after. Accordingly, the column
will be decomposed into the sum of two columns which are denoted by B and
C.

Thus, the first matrix looks like:

(A B + C ∗) .

In right part of Fig. 18.21, we have a (n + 2) × (n + 2)–matrix. The matrix
will look like:




1 −t (t− 1)si 0 0 . . . 0

0 1
(
1
t − 1

)
si − sj

t 0 . . . 0
Cs−j 0 A B ∗


 .
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FIGURE 18.22: The third Reidemeister move

We only have to show that the initial and the transformed matrices have equal
determinants.

We shall do this in the following way, transforming the second matrix.
First, we add the second column multiplied by si

(
t−1
t

)
to the third one.

Thus, the elements (1, 3) and (2, 3) vanish. We get:




1 −t 0 0 0 . . . 0

0 1 0 − sj

t 0 . . . 0
Cs−j 0 A B ∗


 .

Now, let us add the first column multiplied by sj to the fourth one. We get:




1 −t 0 sj 0 . . . 0

0 1 0 − sj

t 0 . . . 0
Cs−j 0 A B + C ∗


 .

Finally, we add the second column multiplied by sj

t to the fourth one. We
obtain the matrix




1 −t 0 0 0 . . . 0
0 1 0 0 0 . . . 0

Cs−j 0 A B + C ∗


 .

The determinant of this matrix obviously coincides with that of the first ma-
trix.

Now, it remains to prove the invariance of ζ under Ω3. As before, we are
going to consider only one case. We shall perform explicit calculation for the
case, shown in Fig. 18.22.

The three crossings are marked by Roman numbers I, II, III, so one can
uniquely restore the numbers of outgoing arcs and their labels. All the other
long arcs are numbered 4, 5, 6 with labels si, sj , sk at their last arcs.
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We have two matrices M1 and M2:

M1 =




1
(
1
t − 1

)
0 − si

t 0 0 0 . . . 0
0 1 0 0 sj(t− 1) −tsk 0 . . . 0
− 1

t 0 1 0 sj
(
1
t − 1

)
0 0 . . . 0

0 0 0
...

...
... ∗

0 0 0




M2 =




1 0 0 − si

t sj
(
1
t − 1

)
0 0 . . . 0

0 1 0 0 sj(t− 1) −tsk 0 . . . 0
− 1

t 0 1 0 0 sk
(
1
t − 1

)
0 . . . 0

0 0 0
...

...
... ∗

0 0 0



.

To show that these two matrices have equal determinants, we shall perform
the following operations with rows and columns (by using only the first three
rows having zeros at positions ≥ 7 and only the six columns (the first of them
has zeros at positions ≥ 4).

First, let us transform the first matrix as follows. Add the first column
multiplied by sj(1− t) to the fifth column, and the first column multiplied by
sk(t− 1) to the sixth column. We get the matrix

M ′
1 =




1
(
1
t − 1

)
0 − si

t sj (1− t) sk(t− 1) 0 . . . 0
0 1 0 0 sj(t− 1) −tsk 0 . . . 0
− 1

t 0 1 0 0 sk
(
1
t − 1

)
0 . . . 0

0 0 0
...

...
... ∗

0 0 0



.

We see that all elements of M ′
1 and M2, except for those lying in the first

row, coincide. Now, it can be easily checked, that if we add the second row of
M2 multiplied by

(
1
t − 1

)
to the first row of M2, we obtain just the first row

of M ′
1. Thus, detM1 = detM ′

1 = detM2, which completes the proof.

Let m,M be the leading and the lowest exponents of t in monomials of

ζ(L). Define ξ(L) = t−(
m+M

2 )ζ(L). By construction, ξ is a virtual link invari-
ant.

The following properties of ξ hold.

Theorem 18.10. For a virtual link L isotopic to a classical one, we have
ξ(L) = 0.
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FIGURE 18.23: A modified Conway triple

Proof. For a diagram L̄ of L having no virtual crossings, arcs coincide with
long arcs; hence all labels equal s0 = 1. Thus, the matrixM has the eigenvector
(1, . . . , 1︸ ︷︷ ︸

n

) with zero eigenvalue. Thus detM(L̄) = 0.

Theorem 18.11. For any Conway triple L+, L−, L0 there exist p, q ∈ Z such
that tpξ(L+)− tqξ(L−) = (1 − t)ξ(L0).

Proof. In view of Theorem 18.9, we can slightly modify the Conway triple by
performing the first Reidemeister move, and then check the conditions of the
theorem for triples of diagrams locally looking as shown in Fig. 18.23.

Here we enumerate crossings by Roman letters. We also mark by labels and
numbers the arcs not starting from selected crossings. Such a “coordinated”
enumeration is possible always when all arcs represented in the picture are
different. This is the main case when each diagonal element of the matrix
is equal to one. In the other case, the labelling shown in Fig.18.23 may not
apply; the statement, however remains true.

Denote the matrices corresponding to the three diagrams in Fig. 18.23 by
M+,M−,M0. As before, we shall restrict our calculations to small parts of
the matrices. In this case, these matrices differ only in rows 1 and 2. In these
rows, all elements but those numbered 1, 2, 3, and 4 are equal to zero. So, we
shall perform calculations concerning 2× 4 parts of M+,M−,M0.

Initially, these parts are as follows:

M+ →
(

1 t− 1 0 −tsj
0 1 −si 0

)
;

M− →
(

1 0 0 −sj
1
t − 1 1 − si

t 0

)
;

M0 →
(

1 0 −si 0
0 1 0 −sj

)
.

Let us add the second row of the first matrix to the first row of it. For the
second matrix, let us multiply the first row by t and then add the second row
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multiplied by t to the (modified) first row. For the third matrix, let us add
the second row multiplied by t to the first row.

After performing these operations, we obtain three matrices M ′
+, M

′
−, M

′
0

with common first rows. The submatrices 2× 4 we work with are as follows:

M ′
+ →

(
1 t −si −tsj
0 1 −si 0

)
;

M ′
− →

(
1 t −si −tsj

1
t − 1 1 − si

t 0

)
;

M ′
0 →

(
1 t −si −tsj
0 1 0 −sj

)
.

Obviously, det(M ′
+) = det(M+), det(M

′
0) = det(M0), det(M

′
−) = t · det(M−).

Now, for the matrix M ′
−, let us add the first row multiplied by (1− 1

t ), to
the second row. We obtain the matrix M ′′

− such that detM ′′
− = detM ′

−. The
matrices M ′

+,M
′′
−,M

′
0 differ only in the second row. Their second rows look

like:
p = (0, 1,−si, 0, 0, . . . , 0),

q = (0, t,−si, (1 − t)sj , 0, . . . , 0),
r = (0, 1, 0,−sj, 0, . . . , 0).

Taking into account that p−q = (1−t)r, one obtains the claim of the theorem.

The polynomial ξ allows us to distinguish some virtual links that can-
not be recognised by the Jones polynomial V introduced in [Kau3] (e.g. the
trivial two–component link and the closure of the two–strand virtual braid
σ1ζ1σ

−1
1 ζ1) and the V A–polynomial (the disconnected sum of the “virtual

trefoil” with itself and with the unknot).

18.7 The multivariable polynomial

The multivariable polynomial is constructed quite analogously to the pre-
vious one, see [Man9, Man10]. Let L be a k–component link. Let L̄ be a
proper link diagram with n classical crossings representing L. Let us associate
with each component Ki, i = 1, . . . , k, of L the letter si. Consider a compo-
nent K̄i of L̄ and let us mark its arcs by monomials which are products of
s1, . . . , sk, s

−1
1 , . . . , s−1

k . As above, each long arc of Ki starts with a (short)
arc. Let us associate the label 1 with the latter. All other arcs of the long arc
will be marked by monomials as follows. While passing through the virtual
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FIGURE 18.24: The third move in the multivariable case

crossing with j–th component we multiply the label by sj if we pass from the
left to the right or by s−1

j otherwise.
As before, we construct the n × n matrix according to the same rule. In

this case, elements of the matrix belong to Z[t, t−1, s1, . . . , sk, s
−1
1 , . . . , s−1

k ].
The matrix M will be constructed just as in the case of the 2–variable

polynomial. To define it, we just modify formulae (18.13) and (18.14) by re-
placing exponents of s by monomials in si. Let us define χ(L̄) = detM(L̄).
Obviously, χ(L̄) does not depend on the enumeration of rows of the matrix.

Theorem 18.12. The polynomial χ is invariant under all generalised Reide-
meister moves but the first classical one. The first classical Reidemeister move
either does not change the value of χ or multiplies it by t±1.

Proof. First, it is evident that purely virtual moves do not change the matrix
at all.

Let us consider the case of the semivirtual move shown in Fig. 18.20. Let
m be the number of the component that takes part in the semivirtual move
and has two virtual crossings with the other components.

Thus, after applying the semivirtual move, the first row of the matrix is
multiplied by s±1

m , and the first column is multiplied by s∓1
m . The proof of this

fact is quite analogous to that in the case of Theorem 18.9. One should just
look at Fig. 18.20 and consider the labels shown in it. In the multivariable
case, the arbitrary arcs will have labels P,Q,R instead of si, sj , sk, where all
P,Q,R are some monomials in s1, s2 . . . , sk.

The remaining part of the proof (of the invariance under classical Reide-
meister moves) repeats that of Theorem 18.9. One should just replace arbitrary
powers of s by some monomials Tp in many variables si.

Here we consider only the most interesting case; i.e., the third Reidemeister
move. Let us consider the move shown in Fig. 18.24.

In this case, we have the following two matrices:
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1
(
1
t − 1

)
0 −P

t 0 0 0 . . . 0
0 1 0 0 Q(t− 1) −Rt 0 . . . 0
− 1

t 0 1 0 Q
(
1
t − 1

)
0 0 . . . 0

0 0 0
...

...
... ∗

0 0 0




and




1 0 0 −P
t Q

(
1
t − 1

)
0 0 . . . 0

0 1 0 0 Q(t− 1) −Rt 0 . . . 0
− 1

t 0 1 0 0 R
(
1
t − 1

)
0 . . . 0

0 0 0
...

...
... ∗

0 0 0



.

Consider the first matrix. Adding the first column multiplied by Q(1− t)
to the fifth one, and the first column multiplied by R(t− 1) to the sixth one,
we get




1
(
1
t − 1

)
0 −P

t Q(1− t) R(t− 1) 0 . . . 0
0 1 0 0 Q(t− 1) −Rt 0 . . . 0
− 1

t 0 1 0 0 R
(
1
t − 1

)
0 . . . 0

0 0 0
...

...
... ∗

0 0 0



.

The same matrix can be obtained if we replace the first row of the second
matrix with the sum of the first row and the second row of the second matrix
by
(
1
t − 1

)
to the first row of it.

One can also prove the analogue of Theorem 18.10 for the polynomial χ.
Also, the normalization for χ can be done in the same manner as that for
ζ. Namely, let m,M be the leading and the lowest powers of t in monomials

of χ(L). Define η(L) = t−(
m+M

2 )χ(L). By construction, η is a virtual link
invariant.

Theorem 18.13. For a virtual link L isotopic to a classical one, we have
η(L) = 0.

�

The following statement follows from the construction.

Statement 18.1. For any k–component link L, we have

η(L)|s=s1=···=sk = ξ(L).



354 Knot Theory

FIGURE 18.25: A link for which ξ(L) = 0.

This shows that η(L) is at least as strong as ξ. In fact, it is even stronger.
Consider the link L shown in Fig. 18.25.
It is not difficult to calculate that for this link L, the polynomial η(L) is

divisible by (s2 − s1) and is not equal to zero. Thus, ξ(L) = 0, so η is strictly
stronger than the invariant ξ.



Chapter 19

Generalised Jones–Kauffman

polynomial

In the present chapter, we are going to give a generalisation of the Jones–
Kauffman polynomial for virtual knots by adding some “extra information”
to it, namely, some objects connected with curves in 2–surfaces (for a short
version see [Man8]). In the second part of the chapter, we are going to con-
sider the minimality aspects in virtual knot theory and give a proof of the
generalised Murasugi theorem (short version in [Man12]).

Note that unlike all invariants constructed before and valued in rings of
(Laurent) polynomials, the invariant constructed here is valued in pictures,
thus containing a substantial amount of information about the diagram of the
initial knot.

This picture-valued invariant due to the author [Man8] was one of the first
incidences of picture-valued invariants of virtual knots.

This theme was later developed by using parities [Man22, Man30, MN,
IMN3], Kuperberg brackets [KM2, KM3].

By just looking at a polynomial invariant we can make some numerical
estimates of the complexity of diagrams: crossing number, virtual crossing
number etc. As for the shape of the diagram, we can judge about it quite
implicitly.

However, when dealing with picture-valued invariants, we can make con-
jectures of the form:whatever the diagram D of a given knot K is, it it will
contain a subdiagram of a certain shape.

This immediately results in various consequences about many previously
known invariants. In particular, by using picture-valued invariants the author
has proved that virtual crossing number of virtual knots may have quadratic
growth with respect to classical crossing number.

19.1 Introduction. Basic definitions

Virtual equivalence and classical equivalence for classical knots coincide
[GPV] and the set of all classical knots is a subset of the set of all virtual knots.
Thus, each invariant of virtual links generates some invariant of classical links.

355
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FIGURE 19.1: A virtual link with trivial Jones–Kauffman polynomial

In the previous chapter, we described some virtual link polynomials vanishing
on classical links.

Below, we shall construct an invariant polynomial of virtual links that
equals the classical Jones–Kauffman polynomial on classical links.

Let us first recall how one defines the classical Jones–Kauffman polynomial
[Kau3] for the case of virtual links. Let L be an oriented virtual link diagram
with n classical crossings. Denote by |L| the diagram obtained from L by
“forgetting” the orientation.

Just as in the classical case, for the non–oriented virtual link diagram |L|,
one can “smooth” each classical crossing of |L| in two possible ways, called

A : → and B : → .
After such a smoothing of all classical crossings, one obtains a non–oriented

diagram that does not contain classical crossings. Hence, this diagram gener-
ates the trivial virtual link.

Recall that a state of |L| is a choice of smoothing type for each classical
crossing of |L|. Thus, |L| has 2n states. Each state s has the following three
important characteristics: the number α(s) of smoothings of type A, the num-
ber β(s) = n − α(s) of smoothings of type B, and the number γ(s) of link
components of the smoothed diagram.

The Jones–Kauffman polynomial for virtual links [Kau3] is given by

X(L) = (−a)−3w(L)
∑

s

aα(s)−β(s)(−a2 − a−2)γ(s)−1. (19.1)

Here the sum is taken over all states of |L|; w(L) is the writhe number of L.
In [Kau3], Kauffman shows the invariance of X under generalised Reide-

meister moves. However, he indicates a significant disadvantage of X : this
polynomial is invariant under the virtualisation move shown in Fig. 18.10
which is not an isotopy.

Thus, the Jones–Kauffman polynomial does not distinguish the trivial two–
component virtual link and the virtual link Λ shown in Fig. 19.1.

Let us construct now a modification of the Jones–Kauffman invariant. Let
S be the set of all pairs (M,γ) whereM is a smooth orientable surface without
boundary (possibly, not connected) and γ is an unordered finite system of
unoriented closed curves immersed in M .

Let us define the equivalence on S by means of the following elementary
equivalences:
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−→

−→

FIGURE 19.2: Local structure of the surface M ′

1. Two pairs (M,γ), (M ′, γ′) are equivalent if there exists a homeomor-
phism M →M ′ identifying γ with γ′.

2. For a fixed manifold M , if the set γ is homotopic to the set γ′ in M
then the pairs (M,γ) and (M,γ′) are equivalent.

3. Two pairs (M,γ) and (M,γ′) are said to be equivalent if γ′ is obtained
from γ by adding a curve bounding a disk and not intersecting all other curves
from γ′.

4. Pairs (M,γ) and (N, γ) should be equivalent, if N is a manifold obtained
fromM by cutting two disks not intersecting the curves from γ, and attaching
a handle to boundaries of these disks.

5. Finally, for any closed compact orientable 2–manifold N , pairs (M,γ)
and (M ⊔N, γ) are equivalent.

Here ⊔ means the disjoint sum of M (with all curves of γ lying in it) and
N without curves.

Denote the set of equivalence classes on S by S. There are several algo-
rithms to distinguish elements of this set; the first follows from B. L Reinhart’s
work [Rein].

The basic idea of this invariant is the construction of a SZ[a, a−1]–valued
invariant function on the set of virtual links; values of this function should be
linear combinations of elements from S with coefficients from Z[a, a−1].

Let L be a virtual link diagram. Let us construct a 2–manifold M ′ as fol-
lows. At each classical crossing of the diagram we draw a cross (the upper
picture of Fig. 19.2), and at each virtual crossing we set two non-intersecting
bands (the lower picture). Connecting these crosses and bands by bands go-
ing along link arcs, we obtain a 2–manifold with boundary. This manifold is
obviously orientable.

One can naturally project the diagram of L toM ′ in such a way that arcs of
the diagram are projected to middle lines of bands; herewith classical crossings
generate crossings in “crosses”. Thus, we obtain a set of curves γ ⊂ M ′.
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Attaching discs to boundary components of M ′, one obtains an orientable
manifold M =M(L) together with the set γ of circles immersed in it.

Now, each state of the diagram L can be considered directly onM because
to each local neighbourhood of a classical crossing of L, there corresponds an
intersection point of one or two curves from γ. Thus, to each state s of L there
corresponds the set Γ(s) of “smoothed” curves in M . The manifold M with
all curves belonging to γ ⊔ Γ(s) generates some element of p(s) ∈ S.

Now, let us define Ξ(L) as follows.

Ξ(L) = (−a)−3w(L)
∑

s

p(s)aα(s)−β(s)(−a2 − a−2)γ(s)−1. (19.2)

Theorem 19.1. The function Ξ(L) is invariant under generalised Reidemeis-
ter moves; hence, it is a virtual link invariant.

Proof. It is obvious that purely virtual Reidemeister moves and the semivir-
tual move applied to L do not change Ξ(L) at all: by construction, all terms
of (19.2) stay the same.

The proof of the invariance of Ξ(L) under the first and the third clas-
sical Reidemeister moves is quite analogous to the same procedure for the
classical Jones–Kauffman polynomial; one should accurately check that the
corresponding elements of S coincide.

In fact, if L and L′ are two diagrams obtained one from the other by
some first or third Reidemeister move, then for the diagrams |L| and |L′|,
the corresponding surfaces M ′ are homeomorphic, and the behaviour of the
system of curves γ for M(L) and M(L′) differs only inside the small domain
where the Reidemeister moves take place.

For the first move, the two situations (corresponding to the twisted curls
with local writhe number +1 or −1) are considered quite analogously. Let L
be a diagram and L′ be the diagram obtained from L by adding such a curl.
To each state s of |L| there naturally corresponds two states of |L′|. Fix one
of them and denote it by s′. Let L ⊔© be the disconnected sum of L and a
small circle. Then we have:

p(s) = p(s′).

Indeed, both surfaces for |L| and |L′| are the same and the only possible
difference between corresponding curve systems is one added circle (elemen-
tary equivalence No. 3, see page 357). So, we have to compare terms with the
same coefficients from S. The comparison procedure coincides with that for
the classical Jones–Kauffman polynomial.

Now, if we consider two diagrams L and L′ obtained one from the other
by using the third Reidemeister move, we see again that their surfaces M
coincide. Let us select the three vertices P,Q,R of the diagram L and the
corresponding vertices P ′, Q′, R′ of the diagram L′, as shown in the upper
part of Fig. 19.3.

So, the diagrams L,L′ differ only inside a small disc D in the plane. The
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FIGURE 19.3: Diagrams and lines after smoothings

FIGURE 19.4: Parts of diagrams KX ,KY ,KZ

same can be said about the system of curves corresponding to some states of
them: they differ only inside a small disc DM in M . Thus, one can indicate
six points on the boundary ∂D such that all diagrams of smoothings (in M)
of L,L′ pass through these and only these points of ∂D.

Consider the three possibilities X,Y, Z of connecting these points shown
in the lower part of Fig. 19.3. In fact, there are other possibilities to do it but
only these will play a significant role in the future calculations.

Let |LX |, |LY |, |LZ | be the three planar diagrams of unoriented links coin-
ciding with |L| outside D and coinciding with X,Y, and Z inside D, respec-
tively.

We shall need the following three elements fromS represented byKX ,KY ,
and KZ ; see Fig. 19.4. The element KX contains the three lines of the third
Reidemeister move (with fixed six endpoints) inside DM . It also contains X .
Analogously, KY contains the three lines and Y , and KZ contains the three
lines and Z. The only thing we need to know about the behaviours ofKX ,KY ,
and KZ outside DM is that they coincide.

We have to prove that Ξ(L) = Ξ(L′). Obviously, we have w(L) = w(L′).
So, we have to compare the terms of (19.2) for |L| and |L′|. With each state of
L, one can naturally associate a state for L′. For each state of |L| having the
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crossing P in position A, the corresponding state of |L′| gives just the same
contribution to (19.2) as |L| since diagrams |L| and |L′| after smoothing P in
position A coincide.

So, we have to compare all terms of (19.2) corresponding to the smoothing
of P in position B. We shall combine these terms (for |L| and |L′|) in fours
that differ only in the way of smoothing the vertices R and S. Now, let us fix
the way of smoothing for A and A′ outside D and compare the corresponding
four terms. If we delete the interior of the disc D and insert there X,Y, or Z,
we obtain a system of curves in the plane. Denote the numbers of curves in
these three systems by νX , νY , and νZ , respectively.

Now, the four terms for |L| give us the following:

aKX(−a2 − a−2)(νX−1) + a−1(KZ(−a2 − a−2)(νZ−1)

+KX(−a2 − a−2)νX ) + a−3KX(−a2 − a−2)(νX−1) =

= a−1(−a2 − a−2)(νZ−1)KZ .

Analogously, for |L′| we have a similar formula with terms containing KZ and
KY . The latter terms are reduced, so we obtain the same expression:

a−1(−a2 − a−2)(νZ−1)KZ .

Let us now check the invariance of Ξ under the second classical Reide-
meister move. Let L′ be the diagram obtained from L by applying the sec-
ond classical Reidemeister move adding two classical crossings. Obviously,
w(L) = w(L′).

Consider the manifold M(L). The image of L divides it into connected
components. We have two possibilities. In one of them, the Reidemeister move
is applied to one and the same connected component. Then M(L′) is homeo-
morphic to M(L), and curves from the set γ get two more crossings. In this
case the proof of the equality Ξ(L) = Ξ(L′) is just the same as in the classical
case (the reduction here treats not polynomials but elements from S with
polynomial coefficients). Moreover, the proof is even simpler than that for the
third move: we have to consider the sum of four summands for |L| and |L′|.
In each case, three of them vanish, and the remaining ones (one for |L| and
one for |L′|) coincide. Taking into consideration that w(L) = w(L′), we get
the desired result.

Finally, let us consider the case of the second Reidemeister move, where
M(L′) is obtained from M(L) by adding a handle. On this handle, two extra
points P and Q appear; see Fig. 19.5.

Consider all states of the diagram |L′|. They can be split into four
types depending on smoothing types of the crossings P and Q. Thus, each
state s of |L| generates four states s++, s−−, s−+, and s+− of |L′|. Note
that p(s) = p(s+−) (this follows from handle removal; see Fig. 19.5), and
p(s++) = p(s−−) = p(s−+).
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P

Q

FIGURE 19.5: Adding a handle while performing Ω2

Besides, for each s, we have the following equalities:

α(s) − β(s) = α(s+−)− β(s+−), γ(s) = γ(s+−),

γ(s++) = γ(s−−) = γ(s−+)− 1.

Thus, all terms of (19.2) for L′ corresponding to s−−, s++, and s−+ will
be reduced because of the identity a2 + a−2 + (−a2 − a−2) = 0. The terms
corresponding to s+− give just the same as (19.2) for L.

We can mention many other “ehnancements” of Jones–Kauffman polyno-
mial: Miyazawa [Miy], magnetic [IKK], arrow polynomial [DK2, DK3], etc.

19.2 An example

Let P ∈ S be the element represented by the sphere without curves. It
is obvious that for each classical link L, Ξ(L) = P · V (L). So, for the two–
component unlink L we have Ξ(L) = P · (−a2 − a−2).

It is known that the two–component unlink L and the closure Λ shown in
Fig. 19.1 have the same Jones polynomial.

Consider the following two elements from S (for the sake of simplicity, we
shall draw the elements of S); see Fig. 19.6. Here we consider the torus as the
square with identified opposite sides.

The element Q ∈ S is initially represented by the same diagram shown in
Fig. 19.6 with two additional circles that can be removed by equivalence No.
3, see page 357.

Let us show that Q 6= P,R 6= P and Q 6= R in S. Actually, Q 6= P
because Q has two curves with non-zero intersection (+2 or −2 according to
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Q = R =

FIGURE 19.6: Two elements from S

the orientation); thus, none of these curves can be removed by the equiva-
lences described above. So, R 6= P either. Besides, R 6= Q because R contains
three different curves on the torus (in coordinates from Fig. 19.6 they are
(0, 1), (1, 0), and (2, 1)); each two of them have a non-zero intersection. Thus,
none of them can be removed. So, the simplest diagram of [R] in S cannot
have less than three curves.

Now, for the link Λ, we have

Ξ(Λ) = Qa2 + 2R(−a2 − a−2) +Qa−2 = (2R−Q)(−a2 − a−2).

Thus, Ξ(Λ) 6= Ξ(L).

19.3 Atoms and virtual knots. Minimality problems

In this section, we shall not distinguish virtual diagrams that can be ob-
tained from each other by using only purely virtual and semivirtual moves.
Such diagrams are called strongly equivalent; they have the same Gauss dia-
gram. Furthermore, equivalent diagrams are thought to be different if in order
to show their equivalence one needs some classical Reidemeister move. In this
sense, a virtual knot can be completely generated by the setup of its classical
crossings and lines connecting them (in the one-component case this means
that the Gauss diagrams coincide).

Like classical links, virtual links may or may not be oriented. The com-
plexity of a virtual diagram is the number of its classical crossings. Obviously,
diagrams of complexity zero generate unlinks. We are interested in the min-
imality (in the sense of the absence of diagrams with smaller complexity) of
diagrams realizing the given link.

In Chapter 7 we formulated the Kauffman-Murasugi theorem that was
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proved in Chapter 16. We are going to generalise this result for the case of
virtual links. The notions of primitivity and splitting point are well known in
the classical case (see Definition 2.10 in page 22 and page 89). Their virtual
analogues will be defined later.

In order to prove Theorem 7.5, K. Murasugi used some properties of the
Jones polynomial. Let K be a virtual diagram and let X be a crossing of K.
Now, ρX(K) is the diagram where the small neighbourhood of the crossing X
is transformed as shown in Fig. 18.10 (this transformation is called the twist
move). It is easy to see that if we apply the twist move twice to the same
crossing, we get the initial diagram (in the sense that the obtained diagram is
strongly equivalent to the initial one). Denote the set of all diagrams obtained
from K by arbitrary twists ρ, by [K].

Definition 19.1. By a splitting point of a virtual diagram L we mean a
classical crossing X of it such that for any diagram L′ strongly equivalent to
L, the removal of the small neighbourhood of the corresponding crossing X ′

divides the diagram.

Definition 19.2. A virtual diagram L is said to be non-primitive if for some
diagram L′ strongly equivalent to it, there exists a closed simple curve sep-
arating some non-empty set of classical crossings of L′ from the remaining
non-empty set of classical crossings, and intersecting the diagram L′ precisely
in two points. In this case the virtual diagram L′ can be represented as a
connected sum of two virtual diagrams.

Analogously, a virtual diagram L is called disconnected if there exists a
diagram L′ that is strongly equivalent to L such that L′ can be divided into
two parts L′

1⊔L′
2 such that L′

1 and L
′
2 lie inside two open non-intersecting sets

on the plane. All diagrams we shall deal with, are thought to be connected.
There are exactly two (up to combinatorial equivalence) ways for embed-

ding a primitive diagram of a classical link into the sphere with respect to the
opposite outgoing edge structure. These two embeddings coincide up to the
orientation of the sphere.

A virtual link L′ is called quasi-alternating if there exists a classical alter-
nating diagram L such that L′ ∈ [L].

One of the main results of the present chapter is the following

Theorem 19.2. Any quasi-alternating diagram without splitting points is
minimal.

An analogue of the minimality theorem was proved for the case of knots
in RP 3, see [Dro].

Let us first prove the analogue of the Murasugi theorem (on the Jones poly-
nomial) for the case of virtual links. In the proof, we use the techniques pro-
posed in [Man’2] (which differ from the original Murasugi techniques, [Mur1]).

Theorem 19.3. Let L be a connected virtual diagram of complexity n. Then
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span(V (L)) ≤ n. Moreover, the equality span(V (L)) = n holds only for virtual
diagrams representing a connected sum of some quasi-alternating diagrams
without splitting points.

Consider formula (19.1). We are interested in the states that give the
maximal and the minimal possible degree of monomials in the sum (19.1). It
is easy to check the fact that the maximal state gives the maximal possible
degree, and the minimal state gives the minimal possible degree.

In order to estimate these degrees, we shall need the notions of atom and d–
diagram. Recall that an atom is a two–dimensional connected closed manifold
without boundary together with an embedded graph of valency four (frame)
that divides the manifold into cells that admit a chessboard colouring. Atoms
are considered up to the natural equivalence. An atom (more precisely, its
equivalence class) can be completely restored from the following combinato-
rial structure: the frame (four–valent graph), the A–structure (dividing the
outgoing half–edges into two pairs according to their disposition on the sur-
face), and the B–structure (for each vertex, we indicate two pairs of adjacent
half–edges that constitute a part of the boundary of black cells). A height
(vertical) atom (see Definition 16.2) is an atom whose frame is embeddable
in R2 with respect to the A–structure. Note that the Turaev genus (i.e. atom
genus) of a height atom can be greater than 0.

In the case of an arbitrary atom one should replace embeddings by regular
immersions. There might be many immersions for a given frame. The point
is that having some A–structure (1, 3), (2, 4) at some vertex, there can be
two different dispositions of this order on the place: 1, 2, 3, 4 or 1, 4, 3, 2
(counterclockwise).

Obviously, the obtained knot diagrams are defined up to strong equivalence
and (possibly) twist moves (see Fig. 18.10) at some classical crossings.

First, let us consider the case of primitive diagrams. Consider the maximal
and the minimal states of the diagram L̄. Let us define the numbers of link
components corresponding to them by γmax and γmin, respectively. Thus, the
length of the Kauffman bracket 〈L̄〉 is going to be l = 2n+2(γmax+γmin−2).
The diagram L̄ has intrinsic A–structure of some atoms: having it, one can
construct an atom with γmax black cells, γmin white cells thinking of the
circles of minimal and maximal states to be boundaries of the 2–cells to be
attached. The Euler characteristic of the constructed manifold equals n−2n+
γmin + γmax. Since it does not exceed two, we see that l ≤ 4n.

The equality can take place only in the case when the obtained surface is
a sphere. In this case the B–structure of L̄ corresponds to some planar atom.

These structures correspond to an embedding of the frame. These struc-
tures correspond to embeddings of the frame in S2 with respect to the A–
structure. There are only two such embeddings; they correspond to alternat-
ing diagrams. Thus, the diagram L̄ has one of these two B–structures. So, it
can differ from an alternating diagram only by virtualisations and hence, it is
quasi-alternating.
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If the diagram is not primitive, it is sufficient to decompose it into a con-
nected sum and apply the multiplicativity of the Jones polynomial.

Thus we have proved Theorem 19.3. Theorem 19.2 is just a simple corollary
of it.





Chapter 20

Long virtual knots and their invariants

20.1 Introduction

Long virtual knots and their invariants first appeared in [GPV]. The
present chapter consists of the author’s results. The two main arguments that
can be taken into account in the theory of “long” virtual knots and could not
be used before, are the following:

1. One can indicate the initial and the final arcs (which are not compact)
of the quandle; the elements corresponding to them are invariant under
generalised Reidemeister moves.

2. One can take two different quandle–like structures of the same type
at vertices depending on which arc is “before” and which is “after”
according to the orientation of a long knot.

As shown in the previous chapter, the procedure of breaking a virtual
knot is not well defined: breaking the same knot diagram at different points,
we obtain different long knots. Moreover, a “virtual” unknot diagram broken
at some point can generate a non-trivial long knot diagram. The aim of this
chapter is to construct invariants of long virtual knots that feel “the breaking
point”.

Remark 20.1. Throughout the chapter, we deal only with long virtual knots,
not links.

Remark 20.2. We shall never indicate the orientation of the long knot, as-
suming it to be oriented from the left to the right.

Throughout this section, R will denote the field of rational functions in
one (real) variable t: R = Q(t).

Let us recall the definitions of virtual long link.

Definition 20.1. By a long virtual knot diagram we mean a smooth immer-
sion f of the oriented line Lx, x ∈ (−∞,+∞) in R2, such that:

1. outside some big circle, we have f(t) = (t, 0);

367
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FIGURE 20.1: Transforming a diagram into a long diagram

2. each intersection point is double and transverse;

3. each intersection point is endowed with a classical or virtual crossing
structure.

Definition 20.2. A long virtual knot is an equivalence class of long virtual
knot diagrams modulo generalised Reidemeister moves.

Long virtual knots admit a well–defined concatenation operation: for
K1#K2 we just put a diagram of K2 after a diagram of K1.

Thus, we can define the semigroup W of virtual knots where the long
unknot plays the role of the unit element.

An arc and a long arc of a long virtual knot diagram are just the same as
in the ordinary case.

Obviously, having a virtual knot diagram, we can break it at some “inte-
rior” point in order to get a long virtual knot diagram; see Fig. 20.1.

It is known that in the classical case the result (i.e. the isotopy class of the
obtained long knot) does not depend on the choice of the break point.

We shall give one more proof that in the virtual case this is not so. We are
going to present an invariant of long virtual knots by using the ideas of the
previous paragraph.

20.2 The long quandle

Definition 20.3. A long quandle is a set Q equipped with two binary oper-
ations ◦ and ∗ and one unary operation f(·) such that (Q, ◦, f) is a virtual
quandle and (Q, ∗, f) is a virtual quandle and the following two relations hold:

∀a, b, c ∈ Q : (a ◦ b) ∗ c = (a ∗ c) ◦ (b ∗ c),
∀a, bc ∈ Q : (a ∗ b) ◦ c = (a ◦ c) ∗ (b ◦ c)
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(new distributivity relations) and

∀x, a, b ∈ Q : xα(a ◦ b) = xα(a ∗ b)

∀x, a, b ∈ Q : xβ(a/b) = xβ(a//b),

where α and β are some operations from the list ◦, ∗, /, //.
The inverse operation for ◦ is / and the inverse operation for ∗ is //.

Remark 20.3. It might seem that the last two relations hold only in the case
when ◦ coincides with ∗. However, the equation (a◦b) = c has the only solution
in a, not in b!

Consider a diagram K̄ of a virtual long knot and arcs of it. Let us fix the
initial arc a and the final arc b.

Now, we construct the long quandle of it by the following rule. First, we
take all arcs of it including a and b and consider the free long quandle, just by
using formal operations ◦, ∗, /, //, f factorised only by the quandle relations
(together with the new relations).

After this, we factorise by relations at crossings. At each virtual crossing,
we do just the same as in the case of a virtual quandle. At each classical cross-
ing we write the relation either with ◦ or with ∗, namely, if the overcrossing is
passed before the undercrossing (with respect to the orientation of the knot)
then we use the operation ◦ (respectively, /); otherwise we use ∗ (respectively,
//).

After this factorisation, we obtain an algebraic object M equipped with
the five operations ◦, /, ∗, //, and f and two selected elements a and b.

Definition 20.4. Denote the obtained object by QL(K̄).

Call QL(K̄) the long quandle of K.
Obviously, for the long unknot U (represented by a line without crossings)

we have for a, b ∈ QL(U) : a = b.

Theorem 20.1. The quandle QL together with selected elements a, b is in-
variant with respect to generalised Reidemeister moves.

Proof. The proof is quite analogous to the invariance proof of the virtual
quandle. Thus, the details will be sketched. The invariance under purely vir-
tual moves and the semivirtual move goes as in the classical case: we deal
only with f and one of the operations ∗ or ◦. Only one of ∗, ◦ appears when
applying the first or the second classical Reidemeister move.

So, the most interesting case is the third classical Reidemeister move. In
fact, it is sufficient to consider the following four cases shown in Fig. 20.2
(a,b,c,d).

In each of the four cases everything the relations hold for p and q (p does
not change and q is operated on by p in the same manner on the right hand
and on the left hand). So, one should only check the transformation for r.
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FIGURE 20.2: Checking the move Ω3

In each picture, at each crossing we put some operation α, β or γ. This
means one of the operations ◦, ∗, /, // (that will be applied to the arc below
to obtain the corresponding arc above).

Consider the case a. We have: each α, β, γ is a multiplication ◦ or ∗.
Thus, at the upper left corner we shall have: (rγq)αp in the left picture and

(rαp)γ(qβp). But, by definition, (rγq)αp = (rαp)γ(qαp). The latter expression
equals (rαp)γ(qβp) according to the “new relation” (because both β and α
are multiplications).

Now, let us turn to the case b. Here γ is multiplications and α, β are divi-
sions. Thus, the same equality holds: (rγq)αp = (rαp)γ(qαp) = (rαp)γ(qβp).

The same equation is true for the cases shown in pictures c and d: the only
important thing is that α and β are either both multiplications (as in the case
c) or both divisions (as in the case d). The remaining part of the statement
follows straightforwardly.

As an example of a long quandle (see [Man15]) one can consider the ring
Zm and operations in it:





a ◦ b = pa+ (1− p)b,
a ∗ b = qa+ (1− q)b,
f(a) = ka,

(20.1)

where k, p, q are invertible elements in the ring, and (1 − p)(p − q) = (1 −
q)(p− q) = 0. The axioms of a quandle are checked straightforwardly.

Let us call long quandles of such type linear long quandles. As it turns out
one can recognize non-triviality of some long knots having the trivial closure
with the help of linear long quandles.
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Let R be a ring with a unit, and p and q be two fixed invertible elements
satisfying the equation (p−1)(q−1) = (q−1)(p−q) = 0. Let k be an invertible

element also. For a long virtual knot K, denote by M̃(K) the module over R
generated in the way described above (the generators are arcs, the relations
at crossings are (20.1)) with two distinguished elements corresponding to the
initial and final arcs.

20.3 Colouring invariant

Let us consider one example: the colouring function. Namely, let
QL(K, a1, a2) be the long virtual quandle of the long K, with operations
f, ◦, ∗, /, //, where a1 and a2 are the elements of Q corresponding to the ini-
tial and the final arc, respectively.

Let G be a finite virtual quandle. Let g1, g2 be two elements of G. Then
the following theorem holds.

Theorem 20.2. The number of homomorphisms from Q(K) to G such that
Q(g1) = a1 and Q(g2) = a2 is finite; besides, it is an invariant of the long
knot K.

The proof of this theorem is obvious. However, it allows us to emphasise
the following effect: for long links, each finite virtual quandle G generates
not only one colouring function, but a matrix of colouring functions. Namely,
we enumerate elements of G by integers 1, . . . , n and set Mij to be the total
number of proper colourings such that the initial arc has colour i and the
final arc has colour j. Denote the obtained matrix for a long virtual knot K
by M(K).

The following theorem is obvious by construction.

Theorem 20.3. For any two long virtual knots K1,K2 we have
M(K1#K2) =M(K1) ·M(K2).

This means that each finite virtual quandle defines a representation of the
semigroup W.

20.4 The V–rational function

Two arcs of each long knot diagram are special: those containing the two
infinite points.

Consider a diagram K̄ of a long knot K. Let us construct the virtual



372 Knot Theory

Alexander module of it. For the sake of simplicity, we shall preserve the previ-
ous notation. This module (which is now a linear space over R) will be denoted
byM.

Suppose we have n+1 long arcs (this case corresponds to n long arcs in the
classical case). Each of the two infinite long arcs has one infinite arc. Denote
the arc containing −∞ by a1, and that containing +∞ by an+1.

For each of the remaining n−1 long arcs, choose an arc of it. Denote these
chosen arcs by a2, . . . , an.

Now, let us construct the linear space over R. First, consider the (n+ 2)–
dimensional space S generated by a1, . . . , an+1, ε.

Now, let us define M as the factor space obtained from S by factoriz-
ing it by relations just as in the classical case. We get the invariant triple
M, a1, an+1. Obviously, an+1 − a1 = k · ε. By definition, this k is a long knot
invariant. Denote it by V(K).

Obviously, the V polynomial has the following property.

Theorem 20.4. For any long classical knot L we have V(L) = 0.

Now, let us consider the following example. In [Man4] it was shown that if
we break the virtual trefoil in two different ways (see Fig 20.1), we obtain two
different long virtual knots. This fact was proved by using the V A polynomial
of connected sums of virtual knots. Let us prove this fact now by using V.

For the knot K1 we have:

a1(1− t) + a2t− a3 = ε(1− 2t)

a1t+ a3(1 − t)− a2 = εt.

Multiplying the second equation by t and adding it to the first one, we get

V(K1) =
a3 − a1

ε
= − (t− 1)2

t2 − t+ 1
.

For K2 we have:

ta1 + (1− t)(a3 + ε)− a2 = 0

t(a2 + ε) + (1− t)a3 − (a3 + ε) = 0.

Multiplying the first equation by t and adding it to the second equation, we
get

V(K2) = −
(t− 1)2

t2
.

Thus, we see that V distinguishes long virtual knots, corresponding to one
and the same (ordinary) virtual knot.

The connected sum # of long virtual knots is well defined. Obviously, the
following theorem is true.
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a b

FIGURE 20.3: Two long virtual knots obtained by breaking the unknot

Theorem 20.5. For any two long virtual knots K1 and K2 we have
V(K1#K2) = V(K1) +V(K2).

20.5 Virtual knots versus long virtual knots

We have already given some examples that show that when breaking
the same virtual knot diagram at different points, we obtain different (non-
equivalent) long virtual knots. The simplest and, probably, most interesting
example is the Kishino knot (Fig. 17.10). The (non–trivial) virtual knot rep-
resented there is the connected sum of two unknots. In particular, this means
that the corresponding long virtual knots are not trivial.

Consider the unknots shown in Fig. 20.3, a and b. Let us show that they
are not isotopic to the trivial knot. To do this, we shall use the presentation
of the long virtual quandle to the module over Z16 by:

a ◦ b = 5a− 4b, a ∗ b = 9a− 8b

f(x) = 3 · x.
It can be readily checked that these relations satisfy all axioms of the long
quandle.

Let us show that for none of these two knots a = b. Indeed, for the first
knot (Fig. 20.3.a), denote by c the next arc after a. Then we have:

9a− 8 · (3c) = c, 5b− 4 · (3c) = c =⇒ b = 9a.

For the second knot (Fig. 20.3.b), denote by c the upper (shortest) arc. We
have:

5 · (3b)− 4a = c, 9 · (3a)− 8b = c =⇒ b = 9a.

As we can see, in none of these cases does a = b. Besides, the expressions
of b via a are different. Thus, none of the two long knots shown in Fig. 20.3.a
and Fig. 20.3.b are trivial.
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20.6 The question about commutative of long knots

It is known (see, e.g. [CF]) that classical long knots commute. Moreover,
the following theorem is true.

Theorem 20.6. Let a long knot K have no virtual crossings. Then for any
long virtual knot K ′ the commutative property K#K ′ = K ′#K holds.

Proof. Indeed, let us make a diagram of K very small and start pulling it
through a diagram of K ′. When pulling it through the virtual crossings we
shall use the detour move; see Fig. 20.4, and when we have a pulling through
classical crossings, we shall use the classical Reidemeister moves.

As a result, we have the desirable equivalence.

Remark 20.4. This proof does not work in the case when the knot K has
virtual crossings, since in this case we cannot draw K through arcs of K ′

consisting of classical crossings. We should have used the forbidden move; see
Fig. 17.4.

Let us show that there are long virtual knots which do not commute with
each other. This fact was first discovered in [Man15].

Example 20.1. Let us consider the long virtual knots K1 and K2 depicted
in Fig. 20.5.

Consider the linear long quandle with the ring R = Z112·192 and the pa-
rameters p = 20+121 ·19, q = 20, k = 70. Thus, in M̃(K) the operations look
like a ∗ b = 20a− 19b, a ◦ b = (20 + 121 · 19)a − (122 · 19)b and f(a) = 70a.

One note that in the module M̃ for the knot K1#K2 the initial arc must be
divided by 121, while for the module corresponding to the knot K2#K1 there
exists a homomorphism to the ring Z112·192 under which the initial arc is sent
to 11 · 192.

Namely, for the knot K1 (see upper part of Fig. 20.5) we have the following

relations in the linear quandle M̃(K1): a∗(70c) = c = b◦70c; the first relation
means that 20a = (19 · 70 + 1)c = 1331c; since the element 20 is invertible in
the ring Z112·192 , the elements a is divided by 121.

For the knot K2 (see the lower part in Fig. 20.5) we have: (70x) ∗ y = z =
(70y) ◦ x. It means that we can set x = 11 · 192, y = 0 (the coefficient in x in

the expression (70x) ∗ y− (70y) ◦ x is divided by 11); i.e. we can map M̃(K2)
to the linear quandle Z112·192 with the same operations. Further, in the knot
K2#K1 we can set all remaining arcs (belonging to the long knot K1) equal
to zero; this can be done since y = 0 (the value z is calculated).

The other way to formulate the arguments above is: The set of homomor-
phisms H from QL(K1#K2) to the linear quandle which is the ring Z112·192
with the operations (20.1) and p = 20 + 121 · 19, q = 20, k = 70 such that
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FIGURE 20.4: A classical long knot commutes with any long knot.
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FIGURE 20.5: Labeling the knots K1 and K2.
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H(a1) is not divided by 121, is empty, and for QL(K2#K1) the set of such
homomorphisms is not empty.

Therefore, these knots do not commute, this fact confirms their difference,
non-triviality, and also the fact that each of them is not equivalent to a classical
knot.

M.W. Chrisman [Chr] showed that two different nonclassical prime long
virtual knots never commute.



Chapter 21

Virtual braids

Just as classical knots can be obtained as closures of classical braids, virtual
knots can be similarly obtained by closing virtual braids. Virtual braids were
suggested by Vladimir V. Vershinin, [Ver].

21.1 Definitions of virtual braids

As well as virtual knots, virtual braids have a purely combinatorial defini-
tion. Namely, one takes virtual braid diagrams and factorises them by virtual
Reidemeister moves (all moves with the exception of the first classical and the
virtual moves; the latter moves do not occur).

Definition 21.1. A virtual braid diagram on n strands is a graph lying in
[1, n]×[0, 1] ⊂ R2 with vertices of valency one (there should be exactly 2n such
vertices with coordinates (i, 0) and (i, 1) for i = 1, . . . , n) and a finite number
of vertices of valency four. The graph is a union of n smooth curves without
vertical tangent lines connecting a point on the line {y = 1} with those on the
line {y = 0}; their intersection makes crossings (four–valent vertices). Each
crossing should be either endowed with a structure of over– or undercrossing
(as in the case of classical braids) or marked as a virtual one (by encircling
it).

Definition 21.2. A virtual braid is an equivalence class of virtual braid dia-
grams by planar isotopies and all virtual Reidemeister moves except the first
classical move and the first virtual move.

Like classical braids, virtual braids form a group (with respect to juxta-
position and rescaling the vertical coordinate). The generators of this group
are:

σ1, . . . , σn−1 (for classical crossings) and ζ1, . . . , ζn−1 (for virtual crossings).

The inverse elements for the σ’s are defined as in the classical case. Obvi-
ously, for each i = 1, . . . , n − 1 we have ζ2i = e (this follows from the second
virtual Reidemeister move).

One can show that the following set of relations [Ver] is sufficient to gen-
erate this group:

377
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1. (Braid group relations):
σiσj = σjσi

for |i− j| ≥ 2;
σiσi+1σi = σi+1σiσi+1;

2. (Permutation group relations):

ζiζj = ζjζi

for |i− j| ≥ 2;
ζiζi+1ζi = ζi+1ζiζi+1;

ζ2i = e;

3. (Mixed relations):
σiζi+1ζi = ζi+1ζiσi+1;

σiζj = ζjσi

for |i− j| ≥ 2.

The proof of this fact is left to the reader.

21.2 Burau representation and its generalisations

In [Ver], the following generalisation of the Burau representation is given.
The virtual braid group V B(n) is represented by n × n matrices where the
generators σi, ζi are represented by block–diagonal matrices with the only
nontrivial block on lines and columns (i, i− 1). The block for σi’s is just as in
Chapter 9. For ζi we use simply permutations, namely, the matrix

(
0 1
1 0

)
.

The proof that it really gives a representation is left to the reader as an
exercise.

However, this representation is rather weak. It is easy to check that
for the non–trivial virtual two–strand braid represented by the word b =
(σ2

1ζ1σ
−1
1 ζ1σ

−1
1 ζ1)

2 we have f(b) = f(e).
The generalisation of this Burau representation is the following: we take

polynomial matrices in two variables, t and q, and construct the following 2×2
blocks: the same for σ and
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(
0 q
q−1 0

)

for ζ.
Denote the map, defined above on generators of the braid group, by R.

Theorem 21.1. The map R can be generated as a representation of the braid
group.

Proof. Obviously, the matrix R(σi) is invertible, and for the matrix R(ζi) we
have (R(ζi))

2 = e.
Furthermore, the relations of the braid group for the σ’s can be easily

checked as in the case of the “weaker” Burau representation.
So, we only have to check the relations R(ζiζi+1ζi) = R(ζi+1ζiζi+1) and

R(ζiζi+1σi)
= R(σi+1ζiζi+1).

They can be checked straightforwardly by direct calculation with 3 × 3
matrices.

Now, we can prove the following theorem.

Theorem 21.2. The group Br(3) is naturally embedded in the virtual braid
group V B(3).

Proof. Actually, let β1, β2 be some braid–words written in σ1, σ2, σ
−1
1 , σ−1

2 .
Suppose they represent the same braid in V B(n). Then their Burau matrices
coincide. Hence the Burau representation of the classical braid group is faithful
for the case of three strands, and we conclude that β1 and β2 represent the
same word in Br(n).

21.3 Invariants of virtual braids

In this section, we are going to present an invariant of virtual braids pro-
posed by the author in [Man’3] and show that the classical braid group is a sub-
group of the virtual one. For an elementary proof of this fact see [Man’5]. More
precisely, we give a generalisation of the complete braid invariant described
before for the case of virtual braids. The new “virtual invariant” is very strong:
it is stronger than the Burau representation, the Jones–Kauffman polynomial.
A simple computer program written by the author recognises all virtual braids
on three and four crossings, given by the author. The question of whether the
invariant is complete was answered negatively by O.Chterental [Cht1]. The
completeness of the multi-variable extension of the invariant (see [Man9]) is
unknown.
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ζ2σ1σ2σ1

FIGURE 21.1: A virtual braid diagram and the corresponding braid word

A virtual braid diagram is called regular if any two different crossings have
different ordinates.

Let us start with basic definitions and introduce the notation.

Remark 21.1. In the sequel, the number of strands for a virtual braid diagram
is denoted by n, unless otherwise specified.

Remark 21.2. In the sequel, regular (virtual) braid diagrams and correspond-
ing braid words (see definition below) will be denoted by Greek letters (possi-
bly, with indices). Virtual braids will be denoted by Latin letters (with indices,
maybe).

Remark 21.3. We shall also treat braid words and braids familiarly, saying,
e.g. “a strand of a braid word” and meaning “a strand of the corresponding
braid”.

Let us describe the construction of the word by a given regular virtual braid
diagram as follows. Let us walk along the axis Oy from the point (0, 1) to the
point (0, 0) and watch all those levels y = t ∈ [0, 1] having crossings. Each
such crossing permutes strands #i and #(i + 1) for some i = 1, . . . , n− 1. If
the crossing is virtual, we write the letter ζi, if not, we write σi if overcrossing
is the “northwest–southeast” strand, and σ−1

i otherwise.
Thus, we have got a braid word by a given regular virtual braid diagram;

see Fig. 21.1.
Thus the main question is the word problem for the virtual braid group:

How to recognise whether two different (regular) virtual braid dia-
grams β1 and β2 represent the same braid b1. One can apply the virtual

1The recognition problem for virtual braids was solved by O.Chterental [Cht2].
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braid group relations to one diagram without getting the other and one does
not know whether he has to stop and say that they are not isomorphic or he
has to continue.

A partial answer to this question is the construction of a virtual braid
group invariant; i.e., a function on virtual braid diagrams (or braid words)
that is invariant under all virtual braid group relations. In this case, if for
an invariant f we have f(β1) 6= f(β2) then β1 and β2 represent two different
braids.

Here we give the generalisation of the complete classical braid group in-
variant, described in Chapter 9 for the case of virtual braids.

Let G be the free group in generators a1 . . . , an, t. Let Ei be the quotient
set of right residue classes {ai}\G for i = 1, . . . , n.

Definition 21.3. A virtual n–system is a set of elements {e1 ∈ E1, e2 ∈
E2, . . . , en ∈ En}.

The aim of this subsection is to construct an invariant map (non–
homomorphic) from the set of all virtual n–strand braids to the set of virtual
n–systems.

Let β be a braid word. Let us construct the corresponding virtual n–system
f(β) step–by–step. Namely, we shall reconstruct the function f(βψ) from the
function f(β), where ψ is σi or σ

−1
i or ζi .

First, let us take n residue classes of the unit element of G: 〈e, e, . . . , e〉.
This means that we have defined

f(e) = 〈e, e, . . . , e〉.
Now, let us read the word β. If the first letter is ζi then all words but ei, ei+1

in the n–systems stay the same, ei becomes equal to t and ei+1 becomes t−1

(here and in the sequel, we mean, of course, residue classes, e.g. [t] and [t−1].
But we write just t and t−1 for the sake of simplicity).

Now, if the first letter of our braid word is σi, then all classes but ei+1

stay the same, and ei+1 becomes a−1
i . Finally, if the first letter is σ−1

i then
the only changing element is ei: it becomes ai+1.

The procedure for each next letter (generator) is the following. Denote
the index of this letter (the generator or its inverse) by i. Assume that the
left strand of this crossing originates from the point (p, 1), and the right one
originates from the point (q, 1). Let ep = P, eq = Q, where P,Q are some
words representing the corresponding residue classes. After the crossing of all
residue classes but ep, eq should stay the same.

Then if the letter is ζi then ep becomes P · t, and eq becomes Q · t−1. If
the letter is σi then ep stays the same, and eq becomes QP−1a−1

p P . Finally,

if the letter is σ−1
i then eq stays the same, ep becomes PQ−1aqQ. Note that

this operation is well defined.
Actually, if we take the words alpP, a

m
q Q instead of the words P,Q, we get:

in the first case alpPt ∼ Pt, amq Qt−1 ∼ Qt−1, and in the second case we obtain
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alpP ∼ P, amq QP
−1a−l

p a−1
p alpP = amq QP

−1a−1
p P ∼ QP−1a−1

p P . In the third

case we obtain alpPQ
−1a−m

q a−1
q amq P = alpPQ

−1a−1
q Q ∼ PQ−1a−1

q Q, amq Q ∼
Q.

Thus, we have defined the map f from the set of all virtual braid diagrams
to the set of virtual n–systems.

Theorem 21.3. The function f , defined above, is a braid invariant. Namely,
if β1 and β2 represent the same braid β then f(β1) = f(β2).

Proof. We have to demonstrate that the function f defined on virtual braid
diagrams is invariant under all virtual braid group relations. It suffices to
prove that, for the words β1 = βγ1 and β2 = βγ2 where γ1 = γ2 is a relation
we have proved, we can also prove f(β1) = f(β2). During the proof of the
theorem, we shall call it the A–statement.

Indeed, having proved this claim, we also have f(β1δ) = f(β2δ) for arbi-
trary δ because the invariant f(β1δ) (as well as f(β2δ)) is constructed step–
by–step; i.e., knowing the value f(β1) and the braid word δ, we easily obtain
the value of f(β1δ). Hence, for braid words β, δ and for each braid group re-
lation γ1 = γ2 we prove that f(βγ1δ) = f(βγ2δ). This completes the proof of
the theorem.

Now, let us return to the A–statement.
To prove the A–statement, we must consider all virtual braid group rela-

tions. The commutation relation σiσj = σjσi for “far” i, j is obvious: all four
strands involved in this relation are different, so the order of applying the
operation does not affect on the final result. The same can be said about the
other commutation relations, involving one σ and one ζ or two ζ’s.

Now let us consider the relation ζ2i = e which is pretty simple too.
Actually, let us consider a braid word β, and let the word β1 be defined

as βζ2i for some i. Let f(β) = (P1, . . . , Pn), f(β1) = (P ′
1, . . . , P

′
n). Let p and

q be the numbers of strands coming to the crossing from the left side and
from the right side. Obviously, for j 6= p, q we have Pj = P ′

j . Besides, P
′
p =

(Pp · t) · t−1 = Pp, P
′
q = (Pq · t−1) · t = Pq.

Now let us consider the case β1 = β · σi · σ−1
i (obviously, the case b1 =

βσ−1
i σi is quite analogous to this one).
As before, denote f(β) by (. . . Pi . . . ), and f(β1) by (. . . P ′

i . . . ), and the
corresponding strand numbers by p and q. Again, we have: for j 6= p, q : P ′

j =
Pj . Moreover, Pp = P ′

p by definition of f (since the p-th strand makes an
overcrossing twice), and P ′

q = (PqP
−1
p a−1

p Pp)P
−1
p apPp = Pq.

Now let us check the invariance under the third Reidemeister move. Let
β be a braid word, β1 = βζiζi+1ζi, and β2 = βζi+1ζiζi+1. Let p, q, r be the
global numbers of strands occupying positions n, n + 1, n + 2 at the bottom
of b.

Denote f(β) by (P1, . . . , Pn), f(β1) by (P 1
1 , . . . , P

1
n), and f(β2) by

P 2
1 , . . . , P

2
n . Obviously, ∀i 6= p, q, r we have Pi = P 1

i = P 2
i . Direct calcula-

tions show that P 1
p = P 2

p = Pp · t2, P 1
q = P 2

q = Pq and P 1
r = P 2

r = Pr · t−2.
Now, let us consider the mixed move by using the same notation:
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β1 = βζiζi+1σi, β2 = σi+1ζiζi+1. As before, P 1
j = P 2

j = Pj for

all j 6= p, q, r. Now, direct calculation shows that P 1
p = Ppt

2, P 1
q =

Pqt
−1, P 1

r = Prt
−1(Pqt

−1)−1a−1
q (Pqt

−1) = PrPqa
−1
q Pqt

−1 and P 2
p =

Ppt
2, P 2

q = Pqt
−1, P 2

r = PrP
−1
q a−1

q Pq.
Finally, consider the “classical” case β1 = βσiσi+1σi, β2 = βσi+1σiσi+1;

the notation is the same. Again ∀j 6= p, q, r : P 1
j = P 2

j = Pj . Besides this,

since the p–th strand forms two overcrossings in both cases then P 1
p = P 2

p =
Pp. Then, P 1

q = PqP
−1
p a−1

p Pp, P
1
r = (PrP

−1
p a−1

p Pp) · (PqP
−1
p a−1

p Pp)
−1a−1

q

(PqP
−1
p a−1

p Pp) = PrP
−1
q a−1

q PqP
−1
p a−1

p Pp and P 2
q = PqP

−1
p a−1

p Pp, P
2
r =

PrP
−1
q a−1

q PqP
−1
p a−1

p Pp.
As we see, the final results coincide and this completes the proof of the

theorem.

Thus, we have proved that f is a virtual braid invariant; i.e., for a given
braid the value of f does not depend on the diagram representing b. So, we
can write simply f(b).

Remark 21.4. In fact, we can think of f as a function valued not in
(E1, . . . , En), but in n copies of G: all these invariances were proved for the
general case of (G, . . . , G). The present construction of (E1, . . . , En) is con-
sidered for the sake of simplicity.

As well as classical knots, classical braids (i.e., braids without virtual cross-
ings) can be considered up to two equivalences: classical (modulo only classical
moves) and virtual (modulo all moves). Now, we prove that they are the same
(as in the case of classical knots). This fact is not new. It follows from [FRR].
An elementary proof was given in [Man’5].

Theorem 21.4. Two virtually equal classical braids b1 and b2 are classically
equal.

Proof. Since b1 is virtually equal to b2, we have f(b1) = f(b2). Now, taking
into account that f is a complete invariant on the set of classical braids, we
have b1 = b2 (in the classical sense).

As in the case of virtual knots, in the case of virtual braids there exists a
forbidden move, namely, X = σiσi+1ζi = ζi+1σiσi+1 = Y . Now, we are going
to show that it cannot be represented by a finite sequence of the virtual braid
group relations.

Theorem 21.5. A forbidden move (relation) cannot be represented by a finite
sequence of legal moves (relations).

Proof. Actually, let us calculate the values f(σ1σ2ζ1) and f(ζ2σ1σ2). In the
first case we have:

(e, e, e)→ (e, a−1
1 , e)→ (e, a−1

1 , a−1
1 )→ (e, a−1

1 t, a−1
1 t−1).

In the second case we have:
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(e, e, e)→ (e, t, t−1)→ (e, t, t−1a−1
1 )→ (e, ta−1

1 , t−1a−1
1 ).

As we see, the final results are not the same (i.e., they represent different
virtual n–systems); thus, the forbidden move changes the virtual braid.

Remark 21.5. If we put t = 1, the results f(X) and f(Y ) become the same.
Thus that is the variable t that ”feels” the forbidden move.

Definition 21.4. For a given braid diagram β and two numbers 1 ≤ i < j ≤ 2
let us define the linking coefficient (see, e.g. [GPV]) li,j(β) as follows. Let us
watch all those crossings where the i–th strand is the undercrossing, and the j–
th strands is the overcrossing, and take the algebraic sum of all these crossings
(−1 if the crossing is negative, and 1 if it is positive).

We shall show now that this function can be calculated by using only f(β),
thus, it is a braid invariant.

Now consider a braid b and the value f(b). It consists of n terms
(e1, . . . , en). For 1 ≤ p 6= q ≤ n let fpq be the algebraic number of entrances of
aq in ep. All numbers fpq are well–defined from f : each element ei is defined
up to multiplication by ai from the left side; such a multiplication does not
change fij for j 6= i.

Thus, ∀1 ≤ p 6= q ≤ n the function fpq is a virtual braid invariant.

Theorem 21.6. The invariant fpq coincides with the linking coefficient −lpq
of strands p and q.

Proof. Actually, let us consider a braid word β and let us construct f(β)
step–by–step. Note that fpq demonstrates the “abelinisation” of the invariant
f : instead of multiplication of generators, we just add them and watch the
corresponding coefficients. Let us study the subject more precisely. Now we
begin to prove the statement of the theorem using induction on the length of
β. For the case of zero crossings everything is obvious. Now let us add a new
crossing and see what happens.

The case of a virtual crossing does not change the linking coefficient (which
is constructed by taking the algebraic sum for classical crossings). This letter
(crossing) does not change fij either: two elements ei, ej are multiplied by t±1,
but the number of entrances of ak, k = 1 . . . , n, stays the same. By adding
some letter σi, we change fkl, l = 1, . . . , n, as follows. Let p be the number of
strands coming to this crossing from the right side, and q be the number of
the strand coming from the left side. Then the only thing changing here is eq.
It is to be multiplied by e−1

p p−1ep. While calculating the algebraic number of
entrances of some letters, ep on the right hand cancels the effect of e−1

p on the
left hand. Thus, fqp becomes fqp − 1, the coefficient lqp becomes lqp + 1, and
all other coefficients lxy, fxy stay the same. The same thing happens with the
linking coefficient lpq.

The case of σ−1
i can be considered analogously.
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~ ~

FIGURE 21.2: Pairs of diagrams not distinguished by the Kauffman poly-
nomial

We have proved the induction step and, thus, the theorem is proved.

So, we have shown that f is stronger than the well–known invariant, called
the linking coefficient.

Here we give two more examples showing the advantages of the invariant
f .

Consider the 3–strand braid b = ζ2σ
−1
2 ζ2σ1σ2ζ1σ1ζ1σ

−1
2 σ−1

1 . A computer
shows that for this braid f(b) 6= f(e). However, this braid is not distinguished
by the virtual Jones–Kauffman polynomial proposed in [Kau5]. More precisely,
consider the link L(b) obtained as a closure of b and the Kauffman polynomial
K(L(b)) of this link. It is well known that the Kauffman polynomial does not
distinguish links that differ as shown in Fig. 21.2.

Thus, it is easy to see that if for some braid we substitute σ±1
i for ζiσ

±1
i ζi

then the closures of both braids will have the same Kauffman polynomial.
So,

K(L(b)) = K(L(σ−1
2 σ1σ2σ1σ

−1
2 σ−1

1 )).

The transformed braid is trivial, so K(L(b)) = K(L(e)).
Now, we give another example of the strength of the invariant f . Consider

the Burau representation of the virtual braid group V B(n), see, e.g. [Ver],
more precisely, the representation of V B(2), generated by two matrices:

R(σ1) =

(
1− t t
0 1

)
, R(ζ1) =

(
0 1
1 0

)
.

It is easy to see that the matrix R(σ1) has the following eigenvalues: 1 and
−t. More precisely,

CR(σ1)C
−1 =

(
1 0
0 1− t

)

for

C =

(
0 1
1 −1

)
.

In this case,
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CR(ζ1)C
−1 =

(
1 t− 1
0 1

)
.

Now, let us write simply: ζ instead of CR(ζ1)C
−1 and σ instead of

CR(σ1)C
−1.

Thus we have: F (k, l,m) = σkζσlζσmζ is an upper–triangular matrix with
1 and −1 on the main diagonal if k+l+m = 0. Assume k = 2, l = −1,m = −1.
Then F (2,−1,−1)2 = e.

It is easy to check that for the non–trivial virtual braid b =
(σ2

1ζ1σ
−1
1 ζ1σ

−1
1 ζ1)

2 we have f(b) 6= f(e).
In this sense, the invariant f is stronger than the Burau representation

even for the case of two strands.

21.3.1 How strong is the invariant f?

As we have shown above, the new invariant is stronger than link coeffi-
cients, sometimes it recognises virtual braids, which cannot be recognised by
the Jones–Kauffman polynomial or by the Burau representation.

Besides this, the restriction of the invariant f for the case of classical
braids (also denoted by f) coincides with the complete classical braid group
invariant, described in Chapter 9.

The invariant f gives us an example of a map from one algebraic object
(braid group) to another algebraic object (n copies of a free group or n residue
classes in free groups). However, this map is not homomorphic.

Thus, in order to understand the strength of the invariant f , we are going
to establish some properties of this map.

Fortunately, there are some properties that make f similar to a homomor-
phic map. Namely, the following lemma holds.

Lemma 21.1. If f(b1) = f(b2) for some braids b1, b2 then for any two braids
a and c we have f(ab1c) = f(ab2c) (all braids are taken to have the same
number of strands).

Proof. We shall prove the lemma in two steps. The first step is to prove that
f(ab1) = f(ab2). The second step is to prove that if f(a1) = f(a2) then
f(a1c) = f(a2c). If we prove both statements, then, substituting ab1 for a1
and ab2 for a2, we obtain the statement of the theorem.

The second step is obvious, and it was already proved while proving The-
orem 21.3 as the A–statement.

So, let us prove that if f(b1) = f(b2) then f(ab1) = f(ab2). Let us consider
some words α, β1, and β2 representing the braids a, b1, and b2, respectively.
We are going to apply the induction method on the length of α. If α has length
zero, then a = e, and then f(ab1) = f(ab2) by the main assumption.

Now, let us consider the case when α has length one; i.e., it is just a letter.
Suppose α = ζi. Then instead of the system of generators (a1, . . . , an, t)
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of the group G we can consider the system a1, . . . , ai−1, tai+1t
−1, t−1ait,

ai+2, . . . , an, t. Obviously, these n + 1 generators are independent and they
generate the same group G. Denote f(βj) by (P j

1 , . . . , P
j
n) for j = 1, 2 (P

without upper index concerns β without lower index).
Obviously, each P i

j depends on “the old generators”: P i
j = P i

j (a1, . . . , an, t).
Now let us, for a given function X(a1, . . . , an), define X

′ as the value

X(a1, . . . , ai−1, tai+1t
−1, t−1ait, ai+2, . . . , an),

i.e., just by substituting the new generators for the old ones. Now, we state
that ∀β f(αβ) = (P ′

1, . . . , P
′
i−1, tP

′
i , t

−1P ′
i+1, . . . , P

′
n).

This can be easily checked by using the induction method on the length of
β. But here the set of P ′

j depends only on the set of Pj and can be uniquely
restored from it (strictly speaking, one should also check that multiplying
some Pj by alj on the left side, all residue classes of Pk stay the same, but this
can be checked straightforwardly). This shows that the map f(β)→ f(αβ) is
well–defined and injective.

Thus, if f(β1) = f(β2) then f(αβ1) = f(αβ2).
The same reasons are true in the cases when α = σ±1

i . Here we just indicate
the way of transforming the Pi’s.

In the case of α = σi the generators are: a1, . . . , ai−1, aiai+1a
−1
i ,

ai, ai+2, . . . , an, f(αβ) = (P ′
1, . . . , P

′
i−1, P

′
i , a

−1
i P ′

i+1, . . . , P
′
n) (here and later

by P ′
i are meant the result of substituting the new generators for the old

ones).
In the case of α = σ−1

i the generators are: a1, . . . , ai−1, ai+1, a
−1
i+1aiai+1,

ai+2, . . . , an, f(αβ) = (P ′
1, . . . , P

′
i−1, ai+1P

′
i , P

′
i+1, . . . , P

′
n)

Thus, in the three cases described above the word f(αβ) can be uniquely
restored from α and f(β). Therefore f(αβ1) = f(αβ2).

So, we have established the induction basis. Suppose the statement is
true for any word with length less than k for some given k ≥ 1. Let α
be a word of length k. Then α = α′ψ, where ψ is the last letter of α
and α′ has length k − 1. Let β′

1 = ψβ1, β
′
2 = ψβ2. By the induction hy-

pothesis, f(β′
1) = f(β′

2). Applying again the induction hypothesis, we get
f(αβ1) = f(α′β′

1) = f(α′β′
2) = f(αβ2).

This completes the proof of the first step and the lemma. Combining it
with the second step (already proved), we obtain the desired result.

Corollary 21.1. If for some braid a we have f(a) = f(e) = (e, . . . , e) then
for any braid b: f(b−1ab) = f(e).

The next step is now to describe all possible values of the invariant f . In
the general case this problem is very difficult; we restrict ourselves only to the
case of n = 2 strands. We shall consider an even simpler problem, concerning
a simpler invariant.

Notation change: instead of generators a1, a2 we shall write a, b; instead
of σ1, ζ1 we write simply σ, ζ.
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Let F be an invariant, obtained from f by putting t = 1. Denote the free
group with generators a, b by G′, and let E′

1 = {a}\G,E′
2 = {b}\G.

In the case of two strands, F is a map from V B(2) to (E′
1, E

′
2) or, simply,

to (G′, G′).
For a braid α, denote F(α) by (P (α), Q(α)).
First, let us consider some examples of virtual two–strand braid words and

values of F on them:

1. for the trivial word we have (e, e);

2. for σ we have (1, a−1);

3. for σ−1 we have (b, 1);

4. for ζ we have (t, t−1).

It is not difficult to prove the following.

Theorem 21.7. Let β be a braid word. Then P (β)Q(β)−1 = akbl for some
k, l.

Proof. We shall use the induction method on the number of crossings. For zero
crossings there is nothing to prove. Now, let β be a braid with n crossings,
β′ = βα, whence α = ζ, σ or σ−1. Let P (β)Q(β)

−1
= anbm.

For α = ζ we have P (β′) = P (β)t, Q(β′) = Q(β)t−1, thus P (β′)Q(β′)−1
=

anbm.
For α = σ, the word β is even, and we have: P 7→ P,Q 7→

QP−1a−1P, PQ−1 7→ a−1PQ−1; for odd β:Q 7→ Q,P 7→ PQ−1b−1Q,PQ−1 7→
PQ−1b−1.

For α = σ−1, β is even: Q 7→ Q,P 7→ PQ−1bQ, PQ−1 7→ PQ−1b, for odd
β: P 7→ P,Q 7→ QP−1aP, PQ−1 7→ aPQ−1.

Thus, we have made the induction step that completes the proof of the
theorem.

The condition on PQ−1 is, indeed, quite natural. It means that ∃g ∈ G′ :
g ∈ [P ] ∈ E′

1 and g ∈ [Q] ∈ E′
2. Obviously, this element g is unique. Thus, g

can be considered as an invariant of the group V B(2).
Indeed, the situation in the group V B(2) is quite simple.
Obviously, for any braid b we have F(b) = F(bζ). Besides, for each even

virtual braid b in V B(2) there exist the unique braid bζ, corresponding to it.
Thus, it is actual to consider only the even subgroup EV B(2) of the group
V B(2).

Theorem 21.8. The invariant g (as well as the invariant F) of the virtual
braid group EV B(2) is complete.

It suffices to prove that g is complete. To prove this theorem, we shall need
an auxiliary lemma.
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Lemma 21.2. For any even two–strand braid words π, ρ we have g(πρ) =
g(ρ)g(π) and g(π)−1 = g(π−1), thus g is an antihomomorphism.

Proof. First, let us note that the group EV B(2) is a free group with two
generators α = ζσ and β = ζσ−1.

It can easily be checked that g(e) = e, g(α) = a, g(β) = b−1, g(α−1) = a−1,
g(β−1) = b.

It can also be checked straightforwardly that ∀ρ : g(ρα) =
g(α)g(ρ), g(ρβ) = g(β)g(ρ), g(ρα−1) = g(α−1)g(ρ), g(ρβ−1) = g(β−1)g(ρ).

Let us first prove that g(πρ) = g(ρ)g(π). We shall do it by using the
induction method on the length of ρ (by “length” we mean here the minimal
number of α, β, α−1 and β−1 in the decomposition of ρ). For ρ = e there is
nothing to prove.

For the word ρ having length one, it can be checked straightforwardly that:

∀α : g(ρα) = g(α)g(ρ), g(ρβ) = g(β)g(ρ),

g(ρα−1) = g(α−1)g(ρ), g(ρβ−1) = g(β−1)g(ρ).

Now, assume that the word ρ has length k + 1 > 1, and for each word ρ′

having length ≤ k we have g(πρ′) = g(ρ′)g(π). So, let ρ = ρ1ρ2, where ρ1 has
length 1 and ρ2 has length k.

Then,
g(πρ) = g(πρ1ρ2) = g((πρ1)ρ2)

by the induction hypothesis for ρ2

= g(ρ2)g(πρ1) =

again by the induction hypothesis for ρ1

= g(ρ2)g(ρ1)g(π) =

and again by induction hypothesis for ρ1

= g(ρ1ρ2)g(π) = g(ρ)g(p),

Q.E.D.

Now, since g(e) = e, we have:

e = g(e) = g(ρρ−1) = g(ρ)−1g(ρ),

and thus we obtain the second statement of the lemma.

Proof of the Theorem. The lemma shows that g is an antihomomorphic map
mapping the free group EV B(2) to the free group with generators a, b. This
map maps generators α, β to generators a, b−1. Thus, it has no kernel. So, g
is a complete invariant of EV B(2), and so is F .
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Certainly, f is a complete invariant of the group EV B(2) too. Besides,
this invariant “feels” multiplication by ζ on the right side, thus f recognises
all elements of V B(2) as well. In order to recognise whether a pair of elements
(e1 ∈ E1, e1 ∈ E1) is a value of the invariant f on some braid, we just factorise
them by t, take the pre-image b of the obtained couple (e′1, e

′
2) under F , and

see whether f(b) = (e1, e2) or f(bζ) = (e1, e2).
Certainly, the group V B(2) is simple to recognise: it is just a free product

of Z (generator σ) and Z2 (generator ζ).
So, the simplest example of (e1 ∈ E1, e2 ∈ E2) that is not a value of f on

a virtual braid is (b, a). In this case PQ−1 = ba−1 which is not equal to akbl

for any integer numbers k, l.

21.3.2 A 2n-variable generalization

Problem. Understand the geometrical meaning of this invariant similar to
< · · · >.

Here < · · · > is the usual Hurwitz action — Artin invariant on the free
group

This invariant was invented by the author soon after the paper [Cht1] was
published; however, the definition remained unpublished since the invariant
of (n+ 1) variables itself was conjecturally complete.

Once Oleg Chterental in the first arxiv version of < ... > showed the
incompleteness, the author pointed out to him the existence of this invariant.

So, the first instance of < ... > appeared in Chterental’s paper.
Now, we formulate the following.

Conjecture 21.1. <> is complete.

21.4 Virtual links as closures of virtual braids

Analogously to classical braids, virtual braids admit closures as well; see
Fig. 21.3. The obtained virtual link diagram will be braided with respect to
some point A.

The closure of a virtual braid is a virtual link diagram. Obviously, isotopic
virtual braids generate isotopic virtual links. Furthermore, all virtual link
isotopy classes can be represented by closures of virtual braids.

Exercise 21.1. Construct the analogues of the Alexander and Vogel algo-
rithms.
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FIGURE 21.3: Closure of a virtual braid

21.5 An analogue of Markov’s theorem

In [KamS1], Seiichi Kamada proved an analogue of Markov’s theorem for
the case of virtual braids. Namely, he proved the following.

Theorem 21.9. Two virtual braid diagrams have equivalent (isotopic) clo-
sures as virtual links if and only if they are related by a finite sequence of the
following moves (VM0)–(VM3).

(VM0) braid equivalence;

(VM1) a conjugation (in the virtual braid group);

(VM2) a right stabilisation (adding a strand with additional positive, negative
or virtual crossing) and its inverse operation;

(VM3) a right/left virtual exchange move; see Fig. 21.4.

The moves (VM0)–(VM2) are analogous to those in the classical case. The
“new” move has two variants: the right one and the left one.

The necessity of the moves listed above is obvious; it is left for the reader
as a simple exercise, see also [Man29]. For sufficiency, we refer the reader to
the original work [KamS1].
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FIGURE 21.4: The virtual exchange move



Chapter 22

Khovanov homology of virtual knots

22.1 Introduction

In the present chapter, we construct the Khovanov homology for virtual
knots. The main difficulty is algebraic: for virtual knots which do not admit
source-sink structure (“orientable atoms”), the differential complex defined
“in a natural way”, does not satisfy ∂2 = 0. To overcome this difficulty, we
introduce twisted coefficients (see Section 22.7.2).The results of this chapter
are due to the author [Man18, Man19]. We follow closely Chapter 5 of the
book [MI].

Since the Khovanov homology theory for virtual knots appeared, it was
natural to look for Lee–Rasmussen’s theory.

Note that when we restrict ourselves to virtual knots with oriented atoms
and a special sort of cobordism where all sections are virtual knots with ori-
ented atoms, the results of Chapter 7 can be extended verbatim. For general
virtual knots, there are two generalisations of Lee–Rasmussen theory which
give bounds for slice genus estimates. The theory due to Dye, Kaestner and
Kauffman [DKK] is based on the result of the present section.

The theory due to William Rushworth relies on another complex called
double Khovanov complex, see [Rush].

Recall that the Khovanov chain complex (for classical knots) is defined by
the axioms:

[[∅]] = (0→ Z→ 0) , [[©K]] = V ⊗ [[K]],

[[ ]] = F
(
0→ [[ ]]

d→ [[ ]]{1} → 0
)
.

Here V is a vector space of graded dimension q+ q−1 , the operator {1} is the
operation of grading shift by 1, F is the flatten operation which sets a double
complex to a single complex by taking direct sums along diagonals, and d is
a differential. The Khovanov invariant is the homology of a renormalization
of the Khovanov complex. The Khovanov invariant is indeed a link invariant
and its graded Euler characteristic is the unnormalised Jones polynomial.

This passage from polynomials to (bi)graded complexes is also called cate-
gorification: Complexes form a category in which there are natural morphisms
generated, for example, by cobordisms.

393
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This theory has many generalisations and led to solutions of many prob-
lems in classical knot theory (for example, a simple proof of Milnor’s conjecture
about the Seifert genus of torus links, Chapter 8).

An important generalisation in the theory of extraordinary homology of
links was the construction of categorification for a set of polynomials of type
HOMFLY, made by Khovanov and Rozansky [KhR1, KhR2]. Polynomials of
type HOMFLY have more complicated relations and the problem of cate-
gorification for them was elegantly solved by means of instruments of matrix
factorisations and Koszul complex. Khovanov and Rozansky [KhR3] devoted
their paper to the categorification of the so(N)-type Kauffman polynomial in
which virtual knots are also used besides matrix factorisations.

The Khovanov homology possesses important properties coming from alge-
braic topology: the (projective) functoriality. In the given case, the morphisms
are cobordisms of knots. Thus, the Khovanov homology is extended to invari-
ants of knot cobordisms representing two-dimensional surfaces with boundary
in R3×I. The projective functoriality (i.e. functoriality up to the overall minus
sign) was first established by Jacobsson [Jac], see also [BN6, CMW, McD].

The functoriality allows one to construct invariants of cobordisms of two-
dimensional surfaces in R4 from the Khovanov complex; a particular case of
cobordisms is the cobordism between two links consisting of an empty set of
components. In the case of projective functoriality, a cobordism invariant is
defined up to an inverse element of the main ring. In this case the Khovanov
construction gives an invariant of two-dimensional knots, and two-dimensional
surfaces embedded in R3× I ⊂ R4. The accurate functoriality was established
in [CMW], see also [Bla]. For Lee theory, such a functoriality is described
explicitly in Chapter 8.

One of the most natural problems in the theory of virtual knots is the
problem of generalisation of the Khovanov complex for virtual knots. An im-
mediate attempt to generalise the theory leads to an algebraic difficulty: By
writing down all necessary equations for the Khovanov complex to be invari-
ant, we conclude that the main ring of coefficients should be the two-element
ring. The indicated generalisation was done in [Man14]. Some difficulties of
the immediate approach can be avoided by using geometrical constructions
related to atoms (Chapter 16).

The main goal of this chapter is the construction of a chain complex for
a virtual diagram with the homology being invariant under the generalised
Reidemeister moves.

Note that the Khovanov homology for knots in thickened surfaces and in
bundles over surfaces Sg whose fiber is an interval (by using some additional
gradings for curves in a given surface) was also constructed by Asaeda, Przy-
tycki and Sikora [APS], see also [MN]. This homology does not lead to the
Khovanov homology for virtual knots, since it depends on a concrete surface
Sg and is not invariant under destabilisations and homeomorphisms of the
surfaces onto itself.

A further development of the Khovanov homology theory for virtual knots



Khovanov homology of virtual knots 395

representing a generalisation of the paper [APS], and the results of this chap-
ter, are given in [Man20, Man21], see also [DKM, MN]. In these papers topo-
logical and combinatorial coefficients at terms in the Kauffman bracket poly-
nomial are “lifted” to new gradings in the Khovanov homology.

Below, we shall first describe four ways of constructing the Khovanov com-
plex for virtual knots with some restrictions. First, we construct the Khovanov
complex for arbitrary virtual knots with coefficients in Z2; in the second case,
we show how one can construct the Khovanov complex for framed virtual links
(by means of double diagrams) with coefficients in an arbitrary ring; in the
third case, we construct the Khovanov complex of two-sheeted coverings over
virtual knots (in the sense of atoms) with coefficients in an arbitrary field. The
fourth way arises from the projective map, which sends all virtual knots to
knots with orientable atoms and does not change knots with orientable atoms.
This projective map allows one to “lift” all invariants defined for virtual knots
with orientable atoms to all virtual knots.

In the second part of the chapter with each diagram of a virtual link we
associate a complex with the homology being invariant under the generalised
Reidemeister moves (this construction first appeared in [Man18, Man19]).
Moreover, in the classical case, the complex has the same homology as the or-
dinary Khovanov complex, and the particular cases constructed in the present
chapter give the complexes with the homology being isomorphic to the homol-
ogy constructed for all virtual knots. The graded Euler characteristic of this
complex coincides with the Jones polynomial Ĵ of the virtual link. Proceeding
with this construction and using the parity arguments, we get the invariance
of the Khovanov homology of two-sheeted coverings over virtual knots with
coefficients from an arbitrary ring.

The main difficulty in constructing a Khovanov homology for virtual knots
is how to define the differential for complexes corresponding to arbitrary vir-
tual knots. Here one must consider many more cases than for classical knots
(the corresponding atoms are considered in Sec. 7.6.3). This difficulty is over-
come by means of a construction of a new complex having the same homology
as the usual Khovanov complex. The first key idea is to change the basis of
the Frobenius algebra representing the Khovanov homology of the unknot (it
is connected with a choice of a local orientation of the corresponding circle
originating from the crossing) as we pass from one crossing of the knot dia-
gram to another. The second key idea is to replace the usual tensor product
(corresponding to several circles in a given state) by the exterior product of
the corresponding graded spaces. This enables us to avoid the “artificial” pro-
cedure of transforming the commutative cube into an anticommutative one,
as was done in [BN1, Kho1] and in Chapter 7.

We mention some important properties of this construction.

1. The construction of the complex uses atoms. The complex is invariant
under virtualisation. This is proved in Lemma 22.5.

2. There is a natural map from the set of “twisted virtual knots” in the
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sense of Bourgoin and Viro [Bour, Vir2] (see below) to the set of virtual
knots modulo virtualisation. Therefore, our approach yields invariants of
twisted virtual knots. The set of twisted virtual knots (knots in oriented
thickenings of non-orientable two-dimensional surfaces up to stabilisa-
tion) contains all knots in the punctured three-dimensional projective
space. A particular case of this theory is the theory of knots in the three-
dimensional projective space RP 3. Note that the Kauffman bracket poly-
nomial for knots in RP 3 was constructed by Drobotukhina in [Dro].
Moreover, this theory admits different generalisations constructed for
the ordinary Khovanov homology: Lee’s theory [Lee1, Lee2], Wehrli’s
and Champanerkar–Kofman spanning tree expansion [ChKo, Weh], etc.

3. For the coefficient field Z2, our complex coincides with the complex
constructed in Sec. 22.3.

4. For orientable atoms (in particular, for classical knots), the homology of
our complex is the same as the homology of the complex constructed in
Sec. 22.4.

5. The proof of invariance of the homology is local. It repeats the proof of
the invariance in the classical case. The main difficulty is in defining the
differential: How can one choose signs that make the cube anticommuta-
tive? We overcome this difficulty by constructing a new complex which
is homotopy equivalent to Khovanov’s original complex.

Theorems 22.10 and 22.10 are the main results of this chapter.
In Section 22.9 we show that the approach using atoms can be applied for

the general Khovanov homology theory (Frobenius extensions) [Man16], and
we describe algebraic equations and structures which appear under the at-
tempt of generalising the universal theory of the Khovanov homology directly
(as opposed to the simplest (initial) Khovanov complex it turns out that this
theory is richer).

An important question in the theory of classical and virtual knots is the
problem of defining minimal diagrams of links, diagrams with minimal number
of classical crossings in a given class.

At the end of the chapter, we consider the construction of a spanning tree
for the Khovanov complex by the author [Man17], this construction literally
the same as one introduced for classical knots in Section 7.6.2. We show how
one can establish the minimality of link diagrams by using the Khovanov
complex. Different minimality theorem [Man’4, Man17] will be formulated
which are based on the Jones polynomial as well as the Khovanov complex.
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22.2 Basic constructions: The Jones polynomial Ĵ

In the sequel, we shall deal with bigraded complexes C =⊕i,j Ci,j, where
i is called the height, and j is called the (quantum) grading. The differential
in the complex does not change the grading and increases the height by one.
As before the height is also called the homological grading.

As usual, we make the substitution a =
√
(−q−1) in the Kauffman bracket.

Then, instead of the Jones polynomial we shall get its modified version J . Let
us consider the polynomial Ĵ = J · (q + q−1). More precisely, Ĵ is defined as
follows. LetK be an oriented virtual diagram, and let |K| be the corresponding
unoriented virtual diagram obtained from K by forgetting the orientation, let
n+ and n− be the numbers of positive and negative classical crossings of K,
and n = n+ + n− be the total number of crossings. We set:

Ĵ(K) = (−1)n−qn+−2n− [K],

where [K] is the modified Kauffman bracket defined according to the rule

[©] = (q + q−1), [K ⊔©] = (q + q−1) · [K], [ ] = [ ]− q[ ].

The polynomial Ĵ has the following conceptually important description in
terms of the state cube. Taking away the normalizing factor (−1)n−qn+−2n− ,
we get a (slightly modified) Kauffman bracket

∑
s(−q)β(s)(q + q−1)γ(s). This

means that we take the sum over all vertices of the cube, of the following
products (−q)h × (q + q−1)#©, where h is the height of the vertex, and #©
is the number of circles in the state corresponding to the given vertex of the
cube.

Thus, in order to compute the polynomial, one has to associate with every
circle the Laurent polynomial (q+ q−1), and then multiply these polynomials
taken with some coefficients of the form ±qk, and take the sum of the obtained
polynomials over all vertices of the cube.

Consequently, the Jones polynomial can be restored from the information
about the number of circles in each of the Kauffman states. If we also take into
account how these circles interfere when passing from one state to another,
we would be able to construct the Khovanov complex.

22.3 Khovanov homology with Z2-coefficients

Let K be an oriented diagram of a virtual link with n classical crossings.
Consider the bifurcation cube (see Definition 7.3) of K. As usual (see

page 94), with each circle in each state of the cube we associate the linear
space V over the field Z2 generated by two vectors v+ and v− having grading



398 Knot Theory

±1, resp. Thus, qdimV = (q + q−1). For each vertex s = {a1, . . . , an} of the
cube, we have a certain number of circles to be denoted by γ(s). With such
a vertex, we associate the vector space V ⊗γ(s){∑n

i=1 ai} obtained from the
tensor power of the space V by a grading shift.

Remark 22.1. In the sequel, we shall use the same notation V for the two-
dimensional free module generated by the elements v+, v− of grading ±1 con-
sidered over an arbitrary ring of coefficients.

Remark 22.2. In this section of the chapter, we consider the symmetric
tensor product for which for elements xi ∈ Vi, i = 1, . . . , n, the following
equality xσ(1)⊗· · ·⊗xσ(n) = x1⊗· · ·⊗xn holds for any arbitrary permutation σ.
We shall also call this product unordered. In Section 22.7, we shall consider the
tensor product where the sign is the sign of the permutation when identifying
products in different orders (this is also called signed tensor product).

We have defined the chain groups of our graded complex. This yields
that whatever differentials we take for this complex (provided that ∂2 = 0),
the Euler characteristic of this complex will not depend on them. Namely,
χ(Kh(K)) = Ĵ(K), where Kh(K) denote the bigraded homology of the com-
plex we are going to construct.

As in Chapter 7, define the partial differentials between the chain groups,
acting along the edges of the cube according to the edge directions; i.e. from
a smoothing of type A to a smoothing of type B, in the following way. Let an
edge of the bifurcation cube correspond to a passage from a state s to a state
s′ in such a way that l circles are not incident to the crossing in question.
These circles do not change when passing from s to s′. At the crossing of |K|,
corresponding to the edge either one circle splits into two circles or two circles
merge into one. In the first two cases, we shall define the partial differential
as it was defined in the case of classical knots [BN5], namely, on an edge
increasing the number of circles we set ∆⊗ Id⊗l{1} and on an edge decreasing
the number of circles we set m ⊗ Id⊗l{1}. Here the identical mapping Id is
referred to the circles which are not incident to the crossing in question, and
the maps m : V ⊗ V → V and ∆: V → V ⊗ V are defined by formulas (7.1)
and (7.2).

For those chains corresponding to the fixed vertex of the cube, the differ-
ential ∂ is a sum of all partial differentials (each to be denoted by ∂′, possibly,
with an index indicating to the edge along which the partial differential acts)
along all edges emanating from the given vertex of the cube (oriented in a
way increasing the sum of coordinates).

In the general case, the main problem is to define the differential of type
(1 → 1) in a way compatible with differentials of types (1 → 2) and (2 → 1)
to make the cube anticommutative. For coefficients from Z2 this difficulty is
easy to overcome.

Namely, in the case of bifurcation of type (1 → 1) we define the partial
differential on the edge as the map taking the whole space to zero. Thus, we get
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∆ m

0 0

1

2

FIGURE 22.1: The commutativity check for a 2-face of the cube.

the bifurcation cube, where in comparison with the state cube we additionally
indicate how the partial differentials ∂′ act. Denote the obtained set of the
bigraded groups (the cube) by [[K]]. In order for the differential to be well
defined, the cube has to be anticommutative, i.e. for every two-dimensional
face of the cube, the composition of the maps corresponding to one pair of
consecutive edges is equal to minus the composition of the maps corresponding
to the other pair of consecutive edges connecting the same pair of points. Note
that in this case (for the field Z2) the anticommutativity and commutativity
are the same.

Let us define the differential ∂ as the sum of all differentials ∂′.

Lemma 22.1. The cube [[K]] defined above is commutative.

This statement is verified by a routine check analogous to that from Chap-
ter 7. It is left to the reader as an exercise. Namely, we check the anticommu-
tativity for every face of the cube.

Here we give an example of such a check (the most interesting one); see
Fig. 22.1.

Later on, we shall see (Secs. 22.4 and 22.7.2) that every 2-face of the cube
generates a certain atom.

In the present case (Fig. 22.1), it is necessary to check that the map m ◦
∆: V → V takes the whole space V to zero. Indeed, for such a map we have:
v− 7→ v− ⊗ v− 7→ 0, v+ 7→ v+ ⊗ v− + v− ⊗ v+ 7→ 2v− = 0 over Z2.

Note that this case is the only essential “non-classical” case where a bifur-
cation of type 1→ 1 takes place. Indeed, from the parity arguments it follows
that on every 2-face of the cube the number of 1 → 1-bifurcations is either
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equal to zero or it is at least two. For more details see Sec. 22.7.2. If there are
no such bifurcations, then the problem is reduced to one of the classical cases
(all such cases were considered in Chapter 7).

If we consider the case when there are two or four such bifurcations, then
in the 2-face of the cube in question,

V ⊗a{1} s−→ V ⊗b{2}
r ↑ ↑ t
V ⊗c p−→ V ⊗d{1},

either each of the compositions t◦p and s◦r contains a zero map corresponding
to 1→ 1-bifurcation (for example, in the case a = b, c = d the maps p and s
are both zero) or the above case takes place.

We set (cf. [Kho1]), C(K) = [[K]]{n+− 2n−}[−n−]. In this case C(K) is a
well-defined chain complex. Denote the homology groups of the complex C(K)
by Kh(K) (or by KhZ2(K) in the case when we have to emphasise that the
Khovanov complex is considered over the field Z2).

Theorem 22.1 ([Man14, Man’4]). The graded homology Kh(K) is an invari-
ant of the link K; the graded Euler characteristic χ(Kh(K)) is equal to the
Jones polynomial.

The second statement of the theorem follows from the fact that the Euler
characteristic defined as the alternating sum of (graded) dimensions of homol-
ogy groups is equal to the alternating sum of the graded dimensions of chain
spaces.

The proof for the homology to be invariant under the Reidemeister moves
just repeats the proof for the case of classical links (see Theorem 7.8).

Definition 22.1. Recall that the height h(Kh(K)) of the Khovanov homology
of a virtual link K is the difference between the leading and lowest non-zero
quantum gradings of non-zero Khovanov homology of K (cf. Definition 7.6).

By construction it is clear that

h(Kh(K))− 2 >
span〈K〉

2
.

Note that the complex C(K) splits into the direct sum of two complexes:
the complex with an even grading and the complex with an odd grading (recall
that the differential preserves the grading).

We get two types of the Khovanov homology: the even one Khe and the
odd one Kho.

They correspond to monomials of the Jones polynomial, having degrees
congruent to two modulo four (Kho), and monomials the degrees of which are
divisible (congr≡ 0 mod 4) by four (Khe). A classical (or even virtual; i.e.
virtual link having a diagram with orientable atom) link has only one of these
two types, more precisely, the following theorem holds.
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FIGURE 22.2: A virtual knot with orientable atom with genus 2.

Theorem 22.2. For a classical (and even virtual) link with even number of
components the isomorphism Kho ∼= 0 holds. For a classical link with odd
number of components the isomorphism Khe ∼= 0 holds.

This theorem is completely analogous to Theorem 7.4 about degrees of
monomials occurring in the Jones polynomial.

Moreover, it is easy to check that this theorem is true not only for classical
links but also for virtual links having a diagram with orientable atom.

Example 22.1. Let us consider the diagram K depicted in Fig. 22.2 (left).
The chord diagram corresponding to the leading state of the Kauffman

bracket polynomial is depicted in the picture on the right. In this state there
exists one circle, and in any of four crossings this circle can be transformed
into one circle by using the corresponding dashed chord (with framing 1).

We assert that this link has no diagrams with orientable atoms. Indeed, for
the given diagram both complexes Kho and Khe (with coefficients in Z2) have
non-trivial homology. Actually, the A-state of the diagram with one circle with
a label 1 gives a non-trivial cycle (since all differentials coming from the A-
state to neighboring states are zero). Further, in states where one crossing is
B-smoothed and the other three crossings are A-smoothed there exists exactly
one circle. Let us consider the chain equal to the sum of chains having label
1 at each of these four states. It is easy to check that this chain is a cycle.
Further, it cannot be a boundary, since all chains in the A-state are cycles.

Thus, there are two homology groups, whose quantum gradings differ by 1,
therefore, the link has no diagram with orientable atoms.

In particular, we have shown that the atom genus (the Turaev genus) of
the link (see Chapter 16) is equal to one.

Note that this fact cannot be revealed by using the Kauffman bracket poly-
nomial. Indeed, in the A-state (as well as in the B-state) there exists exactly
one circle, at each state with one (or three) crossing A-smoothed we have one
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circle, and if we have two A-smoothed crossings and two B-smoothed cross-
ings, then in two cases we shall have one circle and in the remaining four
cases we shall have two circles. Therefore, the Kauffman bracket polynomial
of K looks like:

〈K〉 = a4 + 4a2 + 2 + 4(−a2 − a−2) + 4a−2 + a−4 = a4 + 2 + a−4.

All terms of this Kauffman bracket polynomial have degrees congruent to each
other modulo four. Therefore, in the given case the Khovanov homology is more
sensitive to non-orientability of atoms than the Kauffman bracket polynomial.

Note that the constructed Khovanov complex with coefficients in Z2 is
completely defined by the structure of the bifurcation cube and the numbers
n+, n−. Therefore, the Khovanov Z2-homology does not change under the
virtualisation of the given link.

In the next section, we shall give another approach to the construction of
the Khovanov complex (for framed links) which is sensitive to the virtualisa-
tion. The Khovanov complex given here coincides with the general Khovanov
complex with coefficients in Z2 in the classical case; in this case it is easy to
overcome the difficulty with bifurcations of type 1 → 1. Later on, we shall
construct the Khovanov complex for not all diagrams of virtual links but
only for “right” virtual diagrams, which have no partial differentials of type
1 → 1 on the cube. As we shall see later, “right” virtual diagrams are those
diagrams which orientable atoms correspond to. Then we shall construct a
“right” virtual diagram for each virtual diagram by some invariant way and
see how the Khovanov homology of the corresponding “right” virtual diagram
changes under the generalised Reidemeister moves applied to the initial di-
agram (not necessarily “right”). In the next section we shall construct the
Khovanov complex for framed links where the double diagram plays the role
of a “right” diagram.

Example 22.2. Let us take the virtual knot diagram considered in Exam-
ple 18.2 (see Fig. 18.11). This knot can be reduced to the unknot with virtuali-
sations and generalised Reidemeister moves. Thus, the Khovanov Z2-homology
of the knot depicted in Fig. 18.11 coincides with the Khovanov Z2-homology
of the unknot.

22.4 Khovanov homology of double knots

In the next three sections, we shall use the construction connecting atoms
with virtual knots. Recall this construction given in Chapter 16 which assigns
to a height atom a classical link. This construction is as follows. We embed
the frame of an atom in the plane with its A-structure preserved, and each
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crossing is equipped with the over/undercrossing structure according to the
B-structure of the atom.

Let an arbitrary atom be given. Let us immerse its frame in the plane with
the A-structure preserved, construct a virtual diagram K from the atom in
the way given in Chapter 16.

The equivalence class of K is well defined up to virtualisations.
Let K be a virtual diagram with an orientable atom.
Define the complex C(K) as follows. Fix a ring R of coefficients and two-

dimensional free module V over this ring such that qdimV = q + q−1.
The chain space of our complex is the same as in the case of coefficients

from Z2. After that a differential is defined as the sum of partial differentials
with signs, and partial differentials are defined with the maps m and ∆.

In the case of coefficients from the field Z2 the commutativity of each face
is equivalent to its anticommutativity. In the case of coefficients from Z one
can make an anticommutative cube from a commutative cube in the following
way.

As in Chapter 7, assign to all edges of the cube {0, 1}n sequences consisting
of elements from {0, 1, ∗} and having length n and one element ∗. Each such
edge connects two vertices obtained by replacing ∗ by one and zero.

Thus, if we denote the map corresponding to an edge ξ by ∂′ξ, then the
differential looks like:

∂r =
∑

{|ξ|=r}
(−1)ξ∂′ξ.

Now we have to explain what the sign (−1)ξ means and define the map
∂ξ. To well define the operator ∂ such that the property ∂ ◦ ∂ = 0 holds, it is
sufficient to show that partial differentials ∂′ξ on two-dimensional faces of the
cube are anticommutative diagrams.

Now, we slightly reformulate the conventions from Chapter 7. A commuta-
tive cube can be transformed to an anticommutative cube as follows. First, we
have to construct maps on edges such that each two-dimensional face is a com-
mutative diagram, and then we shall equip partial differentials ∂′ξ with signs.
A sign is defined by the following rule. Vertices of the cube are ordered (the
homology will not depend on an order). To each vertex of the cube we assign
the numbers of all its unit coordinates in the increasing order: i1, i2, . . . , ik
and the formal exterior product xi1 ∧ xi2 ∧ · · · ∧ xik . For example, for n = 3
we assign to the vertex {1, 0, 1} the exterior product x1 ∧ x3.

Each edge of the cube, increasing some jth coordinate, can be treated as
the exterior multiplication on the right by xj . If as a result of application
of this exterior multiplication to a “lower” vertex we get an exterior product
assigned to an “upper” vertex, we put the sign “plus” on the edge, and the
sign “minus” otherwise. For example, for the edge {1, ∗, 1} we have the sign
minus since (x1 ∧ x3) ∧ x2 = −x1 ∧ x2 ∧ x3.

Thus, we got a collection of chain groups [[K]] with the differential ∂.
From Exercise 16.1, it follows that if the atom corresponding to a virtual
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diagram is orientable, then there is no bifurcation of type 1→ 1 in the bifur-
cation cube corresponding to the diagram. Indeed, let us consider the frame
Γ of the corresponding atom. Each state of the diagram is an atom having
the frame Γ. Circles of the state serve for pasting black cells to the frame Γ.
According to Exercise 16.1, the new atom is also orientable. Therefore, this
atom cannot have a black cell approaching to itself in the non-orientable way
(the way the smoothing at the crossing where this cell touches itself, does not
change the number of circles).

Thus, bifurcation cubes are well defined for virtual diagrams with ori-
entable atoms, namely, all bifurcations have the following types 1 → 2 and
2→ 1; partial differentials are defined by the maps m and ∆; the differential
is defined as the sum of partial differentials with signs, and the statement that
∂2 = 0 is checked analogously to the classical case.

Note the following two important lemmas.

Lemma 22.2. Let K be a virtual diagram with an orientable atom. Then the
collection of the groups [[K]] together with the differential ∂ gives a complex;
i.e. ∂2 = 0.

Proof. We have to check that each two-dimensional face of the cube [[K]] is
anticommutative. This is equivalent to the verification of the commutativity
of two-dimensional faces before putting the signs ±1.

Each two-dimensional face of the cube [[K]] represents the atom with two
vertices. Each two-dimensional face of the cube corresponds to a smoothing
of some (n − 2) classical crossings of the diagram K; see Fig. 22.11. The
remaining two crossings can be smoothed arbitrarily; four possibilities of such
a smoothing correspond to vertices of the two-dimensional face.

In these four states there are some number of common circles not being
incident to the two crossings under consideration. After deleting these circles,
we get an atom with two vertices.

Thus, we have to check that each two-dimensional face which can corre-
spond to some atom with two vertices represents an anticommutative diagram.

Since the atom corresponding to K is orientable, then the atom corre-
sponding to any two-dimensional face of the corresponding complex is also
orientable (according to Remark 16.4).

Let us now use the theorem from [Man2] which tells us that all orientable
atoms with two vertices are height atoms.

This means that each atom corresponding to a two-dimensional face of the
bifurcation cube corresponding to an orientable atom occurs in the classical
case. All such two-dimensional faces are sorted out in [BN1] and for them the
commutativity of the corresponding diagrams is proved (before placing signs
in differentials).

After that the proof follows line-by-line the proof in the classical case (see,
e.g. [BN1]) and from the verification of properties of the maps m and ∆.

Thus, we have shown that the collection of chains [[K]] with the differential
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∂ represents an anticommutative cube. Therefore, the complex C(K) is well
defined.

Denote the homology of the complex by Kh(K).

Lemma 22.3. Let K, K ′ be two virtual diagrams with orientable atoms, here-
with K ′ differs from K by applying a detour move or one of the three classical
Reidemeister moves. Then there exists an isomorphism of the Khovanov ho-
mology Kh(K) ∼= Kh(K ′).

Proof. By applying the detour move, the structure of classical crossings does
not change. Thus, the state cube does not change either, and, therefore, the
complex does not change.

In the case of the classical Reidemeister moves we use the same proof
based on the cancellation principle which was earlier used for the Khovanov
homology of classical links. It is local; i.e. it uses only the local structure
of Reidemeister moves (not depending on the fixed part of the link under
the move). Therefore, the proof passes verbatim for virtual knots under the
condition that all complexes are well defined.

Exercise 22.1. Let K be a diagram of a virtual link. Then the atom corre-
sponding to the double diagram D2(K) is orientable.

Taking into account Exercise 22.1 and Lemma 22.2 we conclude that the
Khovanov complex for cables D2n(K) is well defined for any ring of coeffi-
cients. The map K 7→ D2n(K) is almost invariant (it is invariant under all
combinations of Reidemeister moves which do not change the writhe number).
Therefore, it is natural to expect that the homology of the Khovanov complex
for double diagrams of a knot is an invariant of framed links. Namely, the
following statement is true.

Exercise 22.2. Let K, K ′ be two diagrams of equivalent framed virtual links.
Then there exists a collection of diagrams D2(K) = K0, K1, . . . ,Kn = D2(K

′)
such that :

1 all atoms corresponding to the diagrams Ki are orientable;

2 for each i = 0, . . . , n− 1 the diagram Ki+1 is obtained from the diagram
Ki by applying one of the generalised Reidemeister moves.

Note that it suffices to consider only classical Reidemeister moves, since
the detour move does not change an atom.

So, let us consider all classical Reidemeister moves.
If diagrams K and K ′ differ by applying the first or third Reidemeister

move, then the local source–sink structure for the diagram K is in one-to-one
correspondence with the local source–sink structure for K ′ such that outside
the domain of the application of the move these diagrams coincide. Here the
source–sink structure of lines depicted by dashed lines is defined as opposite
to “thick” lines joining to them; see Fig. 22.3.
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FIGURE 22.3: Labeling for the doubling moves Ω1 and Ω3.

Admissible variant of the second Reidemeister move 

Inadmissible variant of the second Reidemeister move 

FIGURE 22.4: Labeling for the doubling move Ω2.

The second Reidemeister move has two principal different cases, depicted in
Fig. 22.4. In the first case (the upper picture), we have two opposite directed
arcs (according to the orientation of the source–sink structure), and in the
second case we have two arcs going in the same direction.

In the first case, it is mentioned how the local labeling and the source–sink
structure change.

The second case is not possible; i.e. it can lead to the fact that after
applying the second Reidemeister move the atom becomes non-orientable.

Thus, the (increasing) second Reidemeister move is the only move from the
classical Reidemeister moves which can violate the orientability of the atom.
All moves from Exercise 22.2 do not violate the orientability.

Remark 22.3. One can consider the set of diagrams of virtual knots with
orientable atoms and the set of moves on it consisting of all Reidemeister
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moves not violating the property of orientability (i.e. the detour move, the
first and third classical Reidemeister moves and the “orientable” version of
the second classical Reidemeister move).

This set was investigated by Kamada under the name alternating virtual
links.

In particular, from the arguments given above (Lemma 22.3), it follows
that the Khovanov complex is well-defined over any ring of coefficients and
invariant in the category of orientable virtual links.

Theorem 22.3. Let n be a natural number. Then Kh(D2n(K)) is an invariant
of framed virtual links.

Proof. According to Exercise 22.1, C(D2n(K)) is a well-defined complex. Let
K, K ′ be two diagrams of equivalent framed virtual links. Then by virtue
of Exercise 22.2, there exists a collection of virtual diagrams D2n(K) =
K0, . . . ,Km = D2n(K

′) corresponding to orientable atoms such that the di-
agram Ki+1 is obtained from the diagram Ki by applying generalised Rei-
demeister moves. By Lemma 22.2 for each of the diagrams Kj the homol-
ogy Kh(D2n(Kj)) is well defined. The invariance of the homology Kh under
the detour move is obvious by construction. Thus, by virtue of Lemma 22.3
(which asserts the invariance under the classical Reidemeister moves), we get
Kh(D2n(K)) = Kh(K1) = · · · = Kh(D2n(K

′)).

Note that the double diagram of K and the double diagram of K ′ obtained
from K by virtualizing one crossing, have different state cubes. Thus the
complex constructed in the section can a priori distinguish framed virtual
diagrams obtained from each other by virtualisation.

However, the “double” Khovanov complex constructed in this section es-
sentially differs from the “general” Khovanov complex for classical knots. In
the classical case as well as in the virtual case we have to double and after
that we have to calculate the Khovanov homology.

It is natural to raise the question whether the “general” Khovanov ho-
mology Kh(K) is invariant in the case of diagrams with orientable atoms.
The positive answer to this question will be given (with some restrictions) in
the next section and (completely) in the sections devoted to the Khovanov
homology for virtual links.

22.5 Khovanov homology of two-sheeted coverings and
atoms

The main goal of this section is the construction of the Khovanov homology
by means of two-sheeted coverings. This will lead us to the following
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Statement 22.1. Let F be a field, and let K, K ′ be two equivalent virtual
diagrams with orientable atoms. Then there exists an isomorphism of graded
homology KhF(K) ∼= KhF(K

′).

Note that the general assertion about the invariance of this homology with
arbitrary coefficients follows from the parity arguments (see below) and from
the explicit construction of the Khovanov homology for virtual knots.

The main construction is as follows. For each virtual diagram K one can
consider the atom At(K) corresponding to it. Later on, we shall use the tech-
niques of orientable covering. Namely, if the atom At(K) is orientable, we

consider two copies of At(K); if it is not, then we consider the atom Ãt(K)
which is the orientable two-sheeted covering over the atom At(K). It is defined
as the two-sheeted covering over the corresponding surface; here, the preim-
age of the frame is a graph which we consider as the frame, the preimage of
a black cell is a pair of black cells, and the preimage of a white cell is a pair
of white cells. The atom obtained in such a way can be either two-component
or one-component, and it depends on the orientation of the initial atom.

Denote the virtual diagram corresponding to the atom Ãt(K) by K̃.
If we apply a classical Reidemeister move Ωi to the initial diagramK, then

the move Ωi will be applied to the diagram K̃ in two places; here in the case
of the move Ω2, the admissible variant of the second Reidemeister move will
be applied to K̃ twice.

This construction can be treated as follows: We consider two sets of vertices
of the atom with the A-structure at them and connect vertices by edges.

Thus, for each virtual knot we can consider its “covered version”:

K → At(K) 7→ Ãt(K) 7→ KhF(K̃).

In terms of a knot diagram, this construction is described as follows. Let a
virtual diagram K be given; this diagram has n classical crossings v1, . . . , vn.
These crossings are connected with each other in some way. Thus, we have
a graph Γ immersed in the plane. Each crossing vi has four (adjacent) ends
vi1, vi2, vi3, vi4 enumerated, for example, in clockwise manner, with crossings
connected by branches of the diagram which edges of the atom correspond to.
Let an edge ej connect the ends vj1j2 and vj3j4 , where j2, j4 ∈ {1, 2, 3, 4}.

The diagram K̃ is constructed as follows. It contains 2n crossings
v′1, . . . , v

′
n, v

′′
1 , . . . , v

′′
n, which are connected by edges. Each edge ej of the ini-

tial diagram has two preimages: e1j and e2j . Each of two edges eij connects an

end v′j1j2 or v′′j1j2 with an end v′j3j4 or v′′j3j4 . For each edge e1j we have to choose
which ends are connected (v′ or v′′). Here we have an ambiguity. The matter
is that before describing edges we have not had a natural ordering of vertices:
Which of the vertices v′i or v′′i is the “first” and which one is the “second”?
To overcome this difficulty let us choose some spanning tree T for Γ and say
that all edges e1j corresponding to edges of this graph connect ends v′j1j2 with

v′j3j4 (thereby edges e2j connect ends v′′j1j2 and v′′j3j4).
Another choice of the tree will correspond to some change of notation:
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v′j and v′′j swap places in some pairs. After that the rule for connecting the

remaining ends by edges e1i and e2i follows. In order to indicate which pairs of
ends are connected by an edge eαi , we shall either connect them by the edge e1i
or e2i : the “symmetric” pair of ends corresponding to it obtained by swapping
v′ ←→ v′′ will also be connected by an edge. Henceforth, for constructing a
virtual diagram it is not important for us to remember the notation for these
edges.

We shall not pay attention to how we place edges eαi on the plane. The
resulting class of virtual link will not depend on it (by construction, diagrams
will differ from each other by applying a finite sequence of detour moves).

So, we have fixed a maximal tree T ⊂ Γ. Each edge ej not belonging to
this tree represents the minimal cycle on the subgraph T ∪ ej ⊂ Γ. In the
case when this cycle is good (see below), we connect the ends v′j1j2 and v′j3j4
by the edge e1j , and the ends v′′j1j2 and v′′j3j4 by the edge e2j . In the case of a

bad cycle we connect the ends v′j1j2 and v′′j3j4 by the edge e1j , and the ends

v′′j1j2 and v′j3j4 by the edge e2j . The notion of good and bad edges goes back
to orientable and non-orientable cycles on the corresponding atom. An edge
is called good if the corresponding cycle is orientable. Under the covering of
the atom, orientable cycles are taken to cycles, and non-orientable cycles are
sent to paths (with some ends in v′k, v

′′
k ). Let us define the notion of a good

edge (for edges not belonging to T ), and the notion of a good (orientable)
cycle in terms of a diagram of the virtual link. For this we consider all edges
of the given cycle ej1 , ej2 , . . . , ejk , ejk+1

= ej1 , where edges eji , eji+1 meet at
a vertex (indices i are taken modulo k) and let us try to define locally the
source–sink structure along them. Let us orient the edge ej1 in some way.
Further, if the edge ej2 is opposite to the edge ej1 at a vertex, then we orient
ej2 such that either both edges ej1 and ej2 come into the vertex, or both edges
emanate from it; in the case when the edges are not opposite, we shall make
one of them come into the vertex and the other emanate from it. Further, we
do the same for the orientation of ej3 , ej4 , . . . . If the process converges; i.e.
we have the orientation of eji+1 = ej1 coincides with the initial one, we call
the cycle good, and bad otherwise. Namely, a cycle is called good (orientable)
if the number of its transversal passages through classical crossings, vertices
of the atom, is even.

Remark 22.4. For a plane diagram the parity of the number of trans-
verse passages through classical crossings coincides with the parity of passages
through virtual crossings (all these passages are transverse).

It is easy to check that this definition of a good cycle coincides with the
definition of an orientable cycle on the atom defined by the A-structure. Set-
ting successively orientations of edges according to the source–sink structure,
we define orientations of black cells approaching (locally) to these edges. The
first vector of the basis is directed along the orientation of the edge, and
the second one is directed inward the black cell. If we return to the initial
edge with the same orientation, then this means that we have traveled along
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an orientable cycle, and a non-orientable cycle otherwise. Indeed, if we pass
through a classical crossing, then orientations of neighboring cells defined in
such a way, are opposite to each other. Thus, getting a compatible orientation
means precisely that our path goes transversely evenly many times.

So, we have defined the notion of a good (orientable) cycle and a good
edge (for edges not belonging to the tree T ). Therefore, we have completely

constructed the virtual diagram K̃. Note that the definition of a good cycle
does not depend (up to detour moves) on the choice of the tree T .

Moreover, from the atom Ãt(K) the knot corresponding to the two-sheeted
covering is restored up to virtualisations; we have already mentioned the ex-
plicit way of constructing the diagram K̃ with the diagram K; it corresponds
to some immersion of the frame of the atom Ãt(K) (with preserving the A-
structure).

It is easy to see that the detour move in the initial diagram K of the link
induces some combinations of the detour moves on the diagram K̃. Moreover,
the following lemma takes place.

Lemma 22.4 ([MI]). By applying one of the classical Reidemeister moves

to a diagram K the diagram K̃ will change in the following way: The same
Reidemeister move is applied to it in two places. Herewith, the atom corre-
sponding to the “middle” diagram obtained from K̃ by applying the second
Reidemeister move in one place (any of two places) is orientable.

Exercise 22.3. Prove the lemma.

According to Lemma 22.2, the homology Kh(K̃) is well defined.
Therefore, by Lemma 22.3 the Khovanov homology of a “covered” link

does not change under applying the Reidemeister move to the initial knot.
This leads us to the following

Theorem 22.4. The map K 7→ Kh(K̃) gives a well-defined invariant of
virtual links.

Remark 22.5. Note that only the second Reidemeister move Ω2 can change
the type of the corresponding atom (i.e. it can convert a non-orientable atom
to an orientable one and vice versa). If, for example, we have an orientable

atom At(K) and two components of the atom Ãt(K), then the application of
the second Reidemeister move (non-admissible version) to K can “connect”
these components into one (this corresponds to the fact that after applying the
second Reidemeister move, the atom may become non-orientable).

Herewith the moves Ω1, Ω3 preserve the orientability of the atom.

Now let the atom corresponding to a diagram K be orientable. Then K̃
consists of two copies of the atom corresponding to K. Since F is a field, we
have KhF(K̃) = KhF(K)

⊗2
.

Therefore, the homology Kh(K) is obtained from the invariant homology

Kh(K̃) by “extracting of the tensor square root”. In the case when the ring of
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coefficients is a field, we have the Poincaré polynomial P in two variables with
all integer non-negative coefficients. From this polynomial we have to extract
the “square root”; i.e. to find the Laurent polynomial Q in the same two
variables with integer non-negative coefficients (coefficients are non-negative
since they are the ranks of Khovanov homology groups) such that the equality
Q2 = P holds. It is obvious that if we can do this, then it can be done uniquely.
Since this operation is unique, if it exists, we get the claim of Theorem 22.1.

Moreover, from these discussions we get the following

Theorem 22.5. Let F be a field, and let for a virtual diagram K the graded
homology KhF(K̃) cannot be represented as the tensor square. Then K has no
diagram with an orientable atom. In particular, the virtual link generated by
K is not classical.

It is natural that the Khovanov complex constructed in this section cannot
detect non-triviality of the virtual knot depicted in Fig. 18.11, since this knot
is obtained from the unknot by generalised Reidemeister moves and virtuali-
sations.

The question about whether two non-isotopic classical links can be ob-
tained from each other by a finite sequence of generalised Reidemeister moves
and virtualisations is an important and interesting conjecture (virtualisation
conjecture). Note that the virtualisation conjecture is true for the unknot (i.e.
if a classical diagram of a knot is obtained from a diagram of the unknot
by applying a finite sequence of the generalised Reidemeister moves and the
virtualisation, then the classical diagram represents the unknot), since the
Khovanov homology detects the unknot, see [KrMr4]. The Khovanov complex
gives a partial answer to this question.

From Theorem 22.1 and the invariance of the Khovanov homology under
virtualisation, we have the following theorem.

Theorem 22.6. If a classical link is obtained from a classical link by applying
generalised Reidemeister moves and virtualisations, then these links have the
same Khovanov homology with coefficients from any preassigned field.

Later in this chapter we shall show that this theorem is true for arbitrary
coefficients (e.g. from the ring Z), see Theorems 22.11 and 22.12.

22.6 Khovanov homology and parity

Assume there exists a map f̃ sending the set of diagrams of virtual knots
into itself and having the following properties:

1. for each virtual diagram K the diagram f̃(K) is a virtual diagram with
an orientable atom;
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2. if a diagram K has an orientable atom, then f̃(K) = K;

3. if two diagrams K and K ′ are equivalent by means of Reidemeister
moves, then f̃(K) and f̃(K ′) are equivalent by means of Reidemeister

moves, where all intermediate diagrams connecting the diagrams f̃(K)

and f̃(K ′) have orientable atoms.

Theorem 22.7. The map K 7→ Kh(f̃(K)) is an invariant of virtual links.

22.7 Khovanov homology for virtual links

22.7.1 Atoms and twisted virtual knots

Bifurcations of types 2→ 1 and 1→ 2 in the Khovanov complex will (see
Section 22.7.2) correspond to partial differentials ∂′; the differential ∂ consists
of (see below); the bifurcation of type 2→ 1 corresponds to the multiplication
m, and the bifurcation of type 1→ 2 corresponds to the comultiplication ∆.

The complete information about the number of circles in states of the
diagram can be extracted from the corresponding atom. In other words, the
state cube can be completely restored from the atom.

An actual problem is the problem of finding the the minimal genus of
atoms corresponding to diagrams of the virtual link. Classical link diagrams
of genus zero are the connected sums of alternating diagrams.

This genus is called the virtual link genus or the Turaev genus due to [Tur1],
cf. Definiton 16.1. It turned out [Low] that this genus had an important sig-
nificance in studying Heegaard–Floer homology of classical knots.

We shall construct the Khovanov complex starting with a given virtual
link diagram. As we shall see, the homology of the complex constructed in this
way really depends only on the corresponding atom. Thus the homology will
be invariant under virtualisation. This supports the virtualisation conjecture
mentioned above.

Twisted virtual knots [Bour, Vir2] are close relatives of virtual knots. They
are represented by knots in oriented thickenings of not necessarily orientable
surfaces modulo stabilisation/destabilisation.

A particular case of the theory of twisted virtual knots is the theory of
knots in RP 3 (cf. Chapter 23).

Definition 22.2. An orientable thickening of a two-dimensional surfaceM is
an orientable three-dimensional I-bundle over M , where I is a segment.

Let us consider a non-orientable surface S and construct the canonical
oriented I-bundled over it. It represents a three-dimensional manifold S×̃I
with boundary.
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A B A B

FIGURE 22.5: A branch AB forms overcrossing in the left picture and
undercrossing in the right picture.

A nice example of such a thickened surface is RP 2×̃I, which is homeo-
morphic to RP 3\{∗}. Thus, by constructing the Khovanov homology for such
knots, we shall get the Khovanov homology theory for knots in RP 3.

Given a surface M and its thickening M×̃I, then links in M×̃I can be
considered by means of their diagrams: projections on M .

There are two types of stabilisation/destabilisation of such thickening sur-
faces: along orienting cycles and along non-orienting cycles. In the second case,
we add/remove a thickened Möbius band.

In general position, a projection is a framed 4-graph. In order to restore
the link, one should indicate for each crossing how the two branches behave
in a neighbourhood of this crossing. In the orientable case, one just indicates
which branch should be over, and which branch should be under. However,
in the non-orientable case this indication is relative. While walking along a
non-orienting circuit, the direction upwards changes to the direction down-
wards. So, for example, knots in RP 3\∗ = RP 2×̃I can be represented by
diagrams in RP 2 such that all crossings lie inside the disc D2 ⊂ RP 2; when
passing the boundary of the disc the direction changes; see Fig. 22.5. To han-
dle this, we choose an affine chart such that the complement to this chart
in S is one-dimensional. For this chart we have a well-defined notion of an
over/undercrossing.

Note that links in such surfaces are well described by atoms. Indeed, fix
(once for all) an orientation on M×̃I. Now, for a link diagram in M , we
already have the frame of the atom: a framed 4-graph.

Now, the way for attaching black cells is the following (see Fig. 22.6).
For a vertex v, we take two emanating non-opposite half-edges a and b. The
corresponding virtual link contains two points projected in the vertex v, one
of which is incident to the edge corresponding to a, and the other one is
incident to the edge corresponding to b. In a neighbourhood of v, denote by
c the small vector going from a point on the edge a to a point on b. If the
basis (a, b, c) is positively oriented in our three-dimensional manifold, then the
angle between half-edges a and b is decreed to be white, as well as the opposite
angle. Otherwise they are both black.
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FIGURE 22.6: Constructing the atom from a diagram.

Note that this choice does not depend on the ordering of the pair (a, b),
nor on their directions.

In the case of general virtual links which are a particular case of twisted
virtual links, the way of pasting black cells described above is agreed with the
way described in Chapter 16.

This leads to the following theorem.

Theorem 22.8. There is a well-defined map from the set of twisted virtual
knots to the set of virtual knots modulo virtualisation.

Knots in such surfaces were considered by Asaeda, Przytycki and Sikora
in [APS], and Viro [Vir2] (Bourgoin first considered stabilisations that led to
twisted virtual knots). In [APS] a Khovanov homology theory for such surfaces
was constructed by using an additional topological information coming from
surfaces. See also [MN].

From Theorem 22.8 and the invariance of the Khovanov homology un-
der virtualisation (Lemma 22.5, see below), it follows immediately that the
Khovanov homology constructed below can be generalised for twisted virtual
knots.

22.7.2 Khovanov complex for virtual knots

Our aim is to define a homology theory for virtual knots (with arbitrary
atoms) over an arbitrary ring in such a way that:

1. the homology we are defining is invariant under the (generalised) Rei-
demeister moves;

2. for the case of virtual knots with orientable atoms (also known as al-
ternatible virtual knots) this homology theory coincides with the one
constructed in the previous sections;

3. the tensor product of the complex with Z2 coincides with the theory
constructed in Sec. 22.3;
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4. the graded Euler characteristic of the complex which will be constructed
coincides with the Jones polynomial.

The invariant of Rushworth [Rush] violates the last condition.

Remark 22.6. The coefficient ring might be an arbitrary abelian group with
unit, for example, Z.

For the sake of simplicity we shall sometimes abuse the notation and call
modules over rings “linear spaces”, not depending on whether the ring is a
field or not.

If no 1 → 1-bifurcations occur, we may construct the Khovanov cube by
using the standard differentials, the multiplication m (for 2→ 1-bifurcations)
and the comultiplication ∆ (for 1→ 2-bifurcations).

The situation with the 1→ 1-bifurcation (the essential phenomenon of the
theory of virtual knots appearing because of the existence of non-orientable
atoms) makes the problem more complicated. Indeed, if we wish to construct
a grading-preserving theory without introducing any new grading, this partial
differential should be identically equal to zero because of the grading reasons
(there should be a map from V to V that lowers the grading by one). In the
space V , the basis consists of two elements with gradings +1 and −1. If we
set this partial differential to be equal to zero with all other differentials (m
and ∆) defined in the standard way, we get a straightforward generalisation
for the Z2 case.

Below we involve two additional structures: The basis change in the space
V corresponding to a circle and generated by {1, X} (the homology group
of the unknot) while passing from one crossing to another and the exterior
product of “circles” instead of their usual tensor products.

Notational agreement. Given an unordered set of vector spaces, enumerate
them arbitrarily: V1, . . . , Vn. We shall define a new space not depending on
the ordering of the spaces, which will be denoted1 by V1 ∧ V2 ∧ · · · ∧ Vn as
follows. Consider all possible tensor products of these spaces and identify them
according to the following rule. Let xi ∈ Vi, i = 1, . . . , n. We set xσ1 ⊗ · · · ⊗
xσn

= sign(σ)x1 ⊗ · · · ⊗ xn.
We shall denote such tensor product x1 ⊗ · · · ⊗ xn of elements xi ∈ Vi by

x1 ∧ x2 ∧ · · · ∧ xn. We call this space the ordered tensor product.

Remark 22.7. To avoid confusion, note that, in writing X ∧ X, we always
assume that the first X and the second X belong to different (but possibly
isomorphic) spaces; thus X ∧ X is not zero (unlike the wedge product of 1-
forms).

Let us consider a virtual diagram K.
To handle it and to make the whole cube anticommutative we have to add

two ingredients, sensitive to orientability of the atom.

1In the case of coincidence of the linear spaces V = V1 = · · · = Vn we shall use also the
notation V ∧n.
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1. With each circle C in each state we associate a vector space of graded
dimension2 equal to q+ q−1. Namely, given an orientation o of the circle
C; we associate with this circle the graded vector space generated by
elements 1 and XC,o of gradings 1 and −1, respectively. The orientation
change of the circle (passing to −o) leads to XC,−o = −XC,o.

2. Given a state s of a virtual link diagram K having l circles C1, . . . , Cl,
with this state, we associate an ordered tensor product V ∧l; as a basis of
this product we take the product (p1)Ca1

∧ (p2)Ca2
∧ · · · ∧ (pl)Cal

, where

(pi)Cai
represents an element from VCai

.

Thus, we have defined the chain space of the complex corresponding to
the virtual diagram K. We denote it by [[K]]. All the basis elements of this
space correspond to some states ofK with an additional choice of the elements
±1 or ±X . Let s be a state of K with the set of circles C1, . . . , Cl, whence
for these circles we have chosen elements γ1, . . . , γl, each of them being ±1
or ±X . Then these elements form a chain of the complex [[K]] having the
height h, where h is the number of B-smoothings of s, and the grading which
is equal to h + #1 − #X , where #1 is the number of elements of type ±1
among γ1, . . . , γl, and #X is the number of elements ±X among γ1, . . . , γl.

Our next goal is the description of the differential ∂ in this complex, which
increases the height by one and does not change the grading.

Set n+ = the number of crossings , n− = the number of crossings .
Denote by C(K) the complex obtained from [[K]] by the height shift and

the grading shift: C(K) = [[K]]{n+− 2n−}[−n−]; i.e. the height of each chain
decreases by n−, and the grading increases by (n+ − 2n−); all differentials
change respectively. Here we assume that [[K]] is a complex, this fact will be
proved below.

Whatever the differential ∂ is, from the construction of chains of the com-
plex C(K) follows Theorem 22.9.

Theorem 22.9. For any virtual diagram K we have χ(C(K)) = Ĵ(K).

We shall think of all classical crossings as oriented upwards: and .
Consider a state s of a diagram of an oriented virtual link. Choose a

classical crossing and consider all circles of the state s incident to this crossing.
There are one or two such circles. Fix orientations on these circles according
to the orientation of the edge emanating upwards to the right (and opposite
to the orientation of the edge incoming to the crossing from the bottom left;
see Fig. 22.7, upper part). As we shall see further, in the case of one circle,
these two orientations defined locally can be uncoordinated, but this case can
be treated easily.

2From now on, we have passes from the notation v+ and v− to the notation 1 and X

(before v+ play the role of unity). This leads to the same homology theory up to a grading
shift and a normalization. In the sequel we should not pay attention to these normalizations
and shifts, this agrees with [MI] in verbatim.
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FIGURE 22.7: Definition of a basis at a crossing.

Thus, the orientations of these circles of the state s locally agree with the
orientation of the edge emanating upwards to the right (as well as with the
edge incoming from the bottom-right) and disagree with the orientation on the
left side. We orient the half-edges as shown in the lower-left part of Fig. 22.7.
Thus, we have fixed a choice of the generator X for any circle incident to a
given crossing. Note that for another crossing for the same circle the choice of
X may differ from this one by a sign.

Differentials will be defined according to the orientations of circles at clas-
sical crossings and local orderings of components with the following rule.

The orientations described above are well defined unless the case when the
edge corresponding to the crossing of the diagram bifurcates one circle to one
circle. In such cases, we set the partial differential to be zero.

Assume we have a 1→ 2 or 2→ 1-bifurcation at a crossing.
If we deal with two circles incident to the crossing from the opposite sides,

we order them in such a way that the upper (respectively, left) circle is locally
first; the lower (respectively, right) one is thus, the second. In the sequel, when
defining partial differentials we assume that all circles are ordered in such a
way that the circles we deal with are in the very first position in our tensor
product; this can always be obtained by means of a permutation, which might
lead to a sign change. The map on the other circles is identical.

Let there be given an edge of the bifurcation cube where the number of
circles is changed by one. This bifurcation corresponds to a certain crossing;
we have two options 2→ 1 or 1→ 2. In those states when we have two circles
incident to the crossing, the circles are ordered. Moreover, all three circles are
oriented, thus, we have chosen a basis for the space corresponding to each of
these circles.
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FIGURE 22.8: Defining operations m and ∆.

Now we define the maps ∆: V → V ∧ V and m : V ∧ V → V locally
according to the prescribed choice of generators at the crossing and local
ordering (see Fig. 22.8):

∆(1) = 11 ∧X2 +X1 ∧ 12; ∆(X) = X1 ∧X2 (22.1)

and

m(11 ∧ 12) = 1; m(X1 ∧ 12) = m(11 ∧X2) = X ; m(X1 ∧X2) = 0. (22.2)

Note that the map m is surjective and the map ∆ is injective.
If we have some circles C1, . . . , Cl not incident to the crossing in question,

and elements γ1, . . . , γl on them, the formulae for the partial differentials ∂′

are written as:

∂′(1 ∧ γ1 ∧ · · · ∧ γl) = ∆(1)∧γ1 ∧ · · · ∧ γl
= 11 ∧X2 ∧ γ1 ∧ · · · ∧ γl +X1 ∧ 12 ∧ γ1 ∧ · · · ∧ γl,

(22.3)

∂′(X ∧ γ1 ∧ · · · ∧ γl) = ∆(X)∧γ1 ∧ · · · ∧ γl = X1 ∧X2 ∧ γ1 ∧ · · · ∧ γl



Khovanov homology of virtual knots 419

(in the case of a 1→ 2-bifurcation) and

∂′(11 ∧ 12 ∧ γ1 ∧ · · · ∧ γl) = m(11 ∧ 12) ∧ γ1 ∧ · · · ∧ γl
= 1 ∧ γ1 ∧ · · · ∧ γl,

∂′(X1 ∧ 12 ∧ γ1 ∧ · · · ∧ γl) = ∂′(11 ∧X2 ∧ γ1 ∧ · · · ∧ γl)
= m(X1 ∧ 12) ∧ γ1 ∧ · · · ∧ γl (22.4)

= m(11 ∧X2) ∧ γ1 ∧ · · · ∧ γl
= X ∧ γ1 ∧ · · · ∧ γl,

∂′(X1 ∧X2 ∧ γ1 ∧ · · · ∧ γl) = m(X1 ∧X2) ∧ γ1 ∧ · · · ∧ γl = 0

(in the case of a 2→ 1-bifurcation).
After that we define the differential ∂ on the chain space corresponding to

the state s as the sum of partial differentials acting on the state s.

Example 22.3. Thus, if we wish to comultiply the second factor X2 in X1 ∧
X2, we get X1 ∧X2 = −X2 ∧X1 → −X2 ∧X3 ∧X1 = −X1 ∧X2 ∧X3, where
X3 belongs to the newborn third component (under the condition that at the
crossing of splitting the circle X2 is locally first (i.e. upper and left), and the
circle X3 is locally second).

Given an oriented diagram K of a virtual link, we have constructed a set
of bigraded groups with the differential ∂. Denote the set of groups by [[K]].
The differential increases the height and does not change the grading.

Our goal is to prove the main theorem.

Theorem 22.10. The set of groups [[K]] together with the differential ∂ is a
well-defined bigraded complex, i.e. ∂2 = 0. Herewith the differential preserves
the grading and increases the height by one.

The complex C(K) is obtained from [[K]] by the height shift and grading
shift. From the constructions it will follow that the homology of the complex
C(K) coincides with the homology constructed for the case of virtual knots
with orientable atoms.

Further, from the proof of Theorem 22.10 the claim of Theorem 22.9 follows
by construction.

The complex with coefficients in Z2 coincides with the complex over Z2

described in Sec. 22.3.

Theorem 22.11. The homology of the bigraded complex C(K) is an invariant
of the virtual link K under generalised Reidemeister moves.

We first prove Theorem 22.10. After that, we shall prove Theorem 22.11; its
proof will be more technical and it will follow the standard scheme described
above some additional sign checks for partial differentials, appearing while
ordering and orienting the circles, will be needed. We shall also show that the
homology of C(K) coincides with the homology constructed for the case of
virtual knots with orientable atoms.



420 Knot Theory

We first prove two lemmas that establish some properties of our complex
C(K) and simplify further arguments.

Let K be a virtual diagram. Consider a classical crossing v of it. Let the
diagram K ′ be the diagram obtained from K by the virtualisation of v. Then
there exists a one-to-one correspondence between the sets of classical crossings
of the diagramsK andK ′. It generates a one-to-one correspondence φ between
the states (for the corresponding vertices we have either A-smoothings or B-
smoothings). Note that such a bijection does not change the number of circles
in the states; it follows from the fact that all states can be restored from the
atom, and the atom does not change under virtualisations. Let us orient circles
of corresponding states identically outside the crossing v. This identification
defines the map g : [[K]]→ [[K ′]] of the chain spaces according to the following
rule. For any state s and the corresponding state φ(s), the diagrams K and
K ′ look identical outside a neighbourhood of v. Thus, we can establish the
bijection between oriented circles of s and oriented circles of φ(s), that leads
to the definition of g. We shall use the same notation g for maps of vector
spaces (modules) corresponding to the circles in states s and φ(s).

Let Cs be the subspace of the space [[K]] associated with a state s of the
diagram K. Denote the corresponding space for K ′ by Cs′ .

Lemma 22.5. Let K, K ′ be two diagrams obtained one from another by the
virtualisation. Then there is a grading-preserving chain map f : [[K]]→ [[K ′]]
that maps Cs isomorphically to Cs′ and commutes with the local differentials.

In particular, if [[K]] is a well-defined complex, then so is [[K ′]]; herewith
their homology groups are isomorphic.

Proof. Suppose the diagram K ′ is obtained from the diagram K by the vir-
tualisation at a crossing v.

The map f is constructed according to the crossing type of v ( or ).
By construction, partial differentials of the complex [[K ′]] coincide with the
images of partial differentials of [[K]] under g, except, maybe, those partial
differentials corresponding to the crossing v. Furthermore, differentials corre-
sponding to v split our cube to the “lower subcube” and the “upper subcube”,
as shown in Fig. 22.9.

Now, the remaining partial differentials differ possibly by signs on edges
corresponding to the crossing v. Our goal is to show that they either all agree
or all differ by −1 sign, as shown in Fig. 22.9.

Indeed, the bases at all crossings but v agree forK andK ′. This leads to the
identification of chains of the corresponding complexes. For this isomorphism
for every circle C incident to v and the circle g(C) corresponding to it in the
corresponding state of the diagramK ′ we have g(XC,oK ) = −Xg(C),oK′

, where
oK and oK′ are the orientations of the circles C and C′ at the crossing v of
the diagrams K and K ′ chosen according to the rule depicted in Fig. 22.7.
The latter identity holds because in any state s the circle C that tends from
the upper-right to the crossing v of K, corresponds to the circle φ∗(C) in the
state φ(s) that tends to v from the upper-left, this corresponds to the change



Khovanov homology of virtual knots 421

FIGURE 22.9: The behaviour of the cube under the virtualisation.

X to −X in the local basis of spaces V corresponding to circles of the state
incident to the given crossing; see Fig. 22.7. If we dealt with the usual tensor
product case regardless of the circle ordering, the transformation X → −X
would leave m invariant and change ∆ to −∆.

Assume now that the crossing v is positive ( ). All maps of type m
corresponding to v, represent bifurcations of two circles (a left one and a right
one) into one circle. After the virtualisation, the circles interchange their roles;
see Fig. 22.10.

Globally we get a sign change for allm-type partial differentials. For partial
differentials of type ∆ we have one circle that bifurcates into two ones, the
upper one, and the lower one; the “up-down” position remains unchanged
under virtualisation, that preserves all ∆-type partial differentials. The first
component is shown locally by solid line, whence the second component is
shown by a dashed line.

Summing up (and recalling the sign change of the partial differential ∆
because of passing X → −X), we see that the virtualisation of a positive
crossing changes the signs of all partial differentials corresponding to this
crossing.

Now divide the chain space [[K]] and [[K ′]] into two parts each, according
to the smoothing of v; we call one part of the cube “upper”, the remaining
part being lower. Now set f : [[K]] → [[K ′]] as g for all elements from the
lower subcube and as −g for the upper subcube.

Evidently, this map commutes with partial differentials. Indeed, the com-
mutativity of the map f with partial differentials inside one of the subcubes
follows from the fact that the map g is anticommutative; therefore, the map
f commutes.

Thus if the initial cube were anticommutative, then the constructed map
would be an isomorphism in homology.

Similar arguments show that the virtualisation of a negative crossing does
not change the cube at all. The minus sign that appears on edges correspond-
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FIGURE 22.10: Virtualisation.

ing to ∆ is canceled by the minus sign caused by the permutation of circles
(the right one and the left one). This completes the proof of the lemma.

This lemma means that the homology of a virtual diagram with two clas-
sical crossings (if well defined) can be restored from an atom endowed with
an orientation of the link components.

Thus, to prove that the cube [[K]] anticommutes, we can make some pre-
liminary virtualisations for classical crossings of K and consider the analogous
question for the obtained diagram K ′.

To check the anticommutativity of the cube [[K]] we have to consider all
2-faces of it. Each 2-face is represented by fixing a way of smoothing some
(n − 2) classical crossings of K; see Fig. 22.11. The remaining two crossings
can be smoothed arbitrarily; the four possibilities correspond to the vertices
of the 2-face.

In Fig. 22.11 the bifurcation cube is shown in the left part and the 2-face
and the corresponding atom are shown in the right part. The atom can be
restored from a knot diagram, as described above in Chapter 16.

Now, for these four states, there are some “common” circles which do not
touch any of the two vertices in question (in the case depicted in Fig. 22.11
there are no such circles). After removing these circles, we get an atom with
two vertices.

What we actually have to check is that any face corresponding to any
possible atom with two vertices anticommutes.
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FIGURE 22.11: A 2-face generates an atom.

For the two vertices of such an atom, we have some local orientations of
the link at each of these vertices; they are needed to fix the local ordering of
components (see Fig. 22.7) when defining the differentials.

Note that globally these orientations might not agree on the circles; namely,
an edge of the atom with two vertices consists of several edges of the diagram
which might have opposite orientations; see Fig. 22.12.

It turns out, however, that these local orientations can be chosen arbitrar-
ily without losing the anticommutativity property and without changing the
homology.

Namely, fix an atom with two vertices. All possible occurrences of this
atom in the cube correspond to local orientations of edges at these vertices.
Fix an orientation for one crossing v1 and choose two distinct orientations for
the second crossing v2 that differ from each other by the clockwise π

2 -turn of
the arrows; see Fig. 22.13. Thus, we get two pictures and two two-dimensional
discrete cubes, Q1 and Q2. These cubes coincide as sets of linear spaces. Let
Vs and Vs′ be linear spaces of Q1 and Q2 corresponding to some fixed state s
and the state s′ corresponding to it.

Lemma 22.6. If Q1 is anticommutative, then so is Q2. Moreover, there exists
a grading preserving chain map f : Q1 → Q2 that takes Vs isomorphically to
Vs′ and commutes with partial differentials.

Proof. The proof of Lemma 22.6 is very much similar to that of Lemma 22.5.
A sketch of the proof goes as follows. After rotating all arrows at v2 in the

counterclockwise direction, we get the local sign change of X for all circles
incident to this crossing. Analogously to Lemma 22.5, we consider two com-
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FIGURE 22.12: Orientation for atom crossings.
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FIGURE 22.13: Q1 and Q2.
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plexes and identify their chain spaces by means of the map g (analogous to the
map g from Lemma 22.5) in such a way that the differentials corresponding
to any other crossing coincide.

After that we correct g, as in Lemma 22.5, to get a map f that commutes
with all partial differentials, which would yield the statement of the lemma.
If we dealt with the usual unordered tensor product, this would lead to the
sign change of all partial differentials of type ∆ corresponding to v2.

Furthermore, in the case of a positive crossing, all differentials of type m
corresponding to this crossing, change their sign, too.

In the case of negative crossings, partial differentials of type 2→ 1 do not
change, and 1→ 2-bifurcations change the sign again. Thus, we have the same
situation as in Lemma 22.5, which completes the proof of Lemma 22.6.

Let us continue the proof of Theorem 22.10.
Lemma 22.6 means that in order to check the anticommutativity of all

possible faces, it is sufficient to enumerate all atoms with two vertices and
check the anticommutativity for each of them. We first fix a representation of
such an atom in R2 (i.e. an immersion of its frame preserving the A-structure);
such immersions differ by a possible virtualisation which does not change
the complex (up to isomorphism) by Lemma 22.5; then we choose a local
orientation, which does not matter either by Lemma 22.6.

Note that among atoms with two vertices there are disconnected atoms;
i.e. those for which each edge connects some vertex with itself. For such atoms
in the case of ordinary tensor product we get by evident reasons commutative
2-faces. In the case of ordered tensor products the corresponding faces will
obviously anticommute.

Some (connected) atoms with two vertices are inessential in the following
sense. We have set the 1 → 1 differential to be zero. By parity reasons, in
the 2-face of any atom there might be 0, 2 or 4 such edges. The case when
we have no such edges is orientable. When we have four edges representing
differentials of type 1→ 1, then the proof follows from the identity 0 = 0. The
same takes place in the case when in the diagram, the anticommutativity of
which we prove, we have two compositions of maps and one of the maps at
each composition is zero.

There are some inessential atoms, where two vertices are not connected
to each other. For any of them, anticommutativity is obvious. There are six
essential connected atoms with two vertices, as shown in Fig. 22.14. All these
atoms except the first one are orientable.

For the first one, an accurate calculation corresponding to Fig. 22.15 shows
that both compositions give zero.

Indeed, the lower composition is zero. Substituting X into the upper com-
position, we get ±X ∧X at the first step and zero at the second step. If we
start with 1, we get 11,ov1 ∧ X2,ov1

+ X1,ov1
∧ 12,ov1 at the first step; here

the first index is the local number of the circle (the first circle is big and the
second one is small), and the second index is the name of the vertex. When
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FIGURE 22.14: Essential atoms with two vertices.

passing to the second vertex v2, the first and second circles change their roles:
The circle number 1 becomes the lower one and number 2 becomes the upper
one. Also, for the big circle, X changes to −X . Thus we get −X ∧ 1 + 1 ∧X
which is mapped by m to zero.

Let us now check orientable atoms. For any of them, we fix an orientation
as shown in Fig. 22.14. Such an orientation gives a coordinated orientation of
circles at two crossings which are under consideration in the sense of Fig. 22.7.
After that, we can fix the bases {1, X} for all circles at vertices according to
the rule shown in Fig. 22.7.

Now, the anticommutativity is checked as follows. If we dealt with the
usual (unordered) tensor product case, everything would commute. Now, the
enumeration of circles might cause minus signs on some edges. We have to
check that for any of these five atoms the total sign would be minus.

For instance, in Fig. 22.16 we have an oriented atom with two vertices.
The analogous check of the unordered tensor product case means the usual
associativity m ◦ (m ⊗ Id) = m ◦ (Id ⊗m), where the circles are enumerated
from the left to the right. In the left part of the figure, one pair of numbers of
the circles 1 and 2 is drawn upside down to underline which circle is assumed
to be locally the first (left); the other one is the second (right).

Here we have to take into account the global ordering of the components.
Note that for three components, we always have to apply m ∧ Id first, taking
those components to be multiplied with the first and second positions.

Thus, m ◦ (m ∧ Id) applied to A1 ∧ A2 ∧A3 gives us m(m(A1, A2), A3) =
−(A1 · A2 · A3); here · means the usual multiplication in Khovanov’s sense:
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FIGURE 22.15: The non-orientable atom.

X · X = 0; X · 1 = 1 · X = X ; 1 · 1 = 1. Here the minus sign appears
at the second crossing; we have two branches oriented downwards; thus, the
rightmost circle occurs to be locally the left one.

On the other hand, if we consider the second crossing first, we get A1∧A2∧
A3 = (A2 ∧A3)∧A1 = −(A3 ∧A2)∧A1 → −(A2 ·A3)∧A1 = A1 ∧ (A2 ·A3).
Applying m to that, we get A1 · A2 ·A3.

All other atoms are checked analogously. Note that our setup gives directly
an anticommutative cube, unlike the Khovanov original setup, where we got
an anticommutative cube from a commutative one by adding some minus
signs on edges. Thus, Theorem 22.10 is proven. Therefore, Theorem 22.9 is
also proven.

Let us prove Theorem 22.11.

Remark 22.8. Throughout the rest of the proof of Theorem 22.11, we shall
not care about height and degree shifts. The proof of their coincidence for
diagrams differed by Reidemeister moves repeats verbatim that in the classical
case.

Proof of Theorem 22.11. First, note that the complex C(K) itself does not
change at all if we perform the detour move. Therefore, the homology does
not change.

In the case of classical Reidemeister moves, the proof goes along the line
of the proof for classical links.

Let us be more specific. The case of the first Reidemeister move is evident
(see Theorem 7.8).

As in the case of the first Reidemeister move, the invariance under the sec-
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FIGURE 22.16: An orientable two-vertex atom.

ond Reidemeister move repeats the proof given in the classical case (see The-
orem 7.8).

In addition to the classical case, we should pay attention to orientations
of circles when we prove the invariance under the second Reidemeister move.
But for the second Reidemeister move, we can choose orientations of all circles
incident to a given crossing locally agreed (such that under passing along one
circle from one crossing to the other one the variable X does not change the
sign); see Fig. 22.17.

Let us now consider the third Reidemeister move shown in Fig. 7.5
(page 98).

It is well known (see, e.g. [Oht]) that any variant of the third Reidemeister
move can be obtained as a composition of Ω1, Ω2 and one prefixed version of
the third Reidemeister moves, in which a choice for over/undercrossing and
orientations of edges is chosen. Consider only one case, shown in Fig. 22.19,
with crossing smoothings as in Fig. 7.5.

At any crossing in Fig. 22.19 there is a local rule for orientations for all
edges incident to it, according to the rule shown in Fig. 22.7. If two crossings
are adjacent, the orientation might or might not be coordinated. We see that
the orientation (defined according to Fig. 22.7) in the third crossing (left
picture) does not agree with the orientations in the first and second crossings
analogously; for the right picture, the second crossing disagrees with the first
one and with the third one. Note that the rule in Fig. 22.7 does not depend
on types of crossings, but does depend on the orientations of branches.

Apply virtualisations to crossings 1, 2 of the first diagram and to the sec-
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FIGURE 22.17: Orientations of upper-right agrees for Ω2.
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FIGURE 22.18: The diagrams after the virtualisation.

ond crossing of the second diagram; after that, all local orientations (in the
sense of variable X) will be coordinated; see Fig. 22.18.

The positive smoothings at crossing 1 are the same (up to virtualisations)
for both diagrams. The negative smoothing of them gives rise to two pictures
obtained one from another by a sequence of (virtualisations and) two classical
Reidemeister moves.

Thus, the complexes of the two diagrams in question can be rearranged to
have coinciding bottom levels, and top levels having the same homology (in
both cases we applied Ω2).

The main thing to check is that the differentials going upwards agree for
these complexes; i.e. the “upwards” maps in both cases either coincide or differ
by a sign. These complexes are shown in Fig. 7.6.

In our situation, the only difference from the classical case which may
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FIGURE 22.19: Virtualizing crossings under Ω3 to make all bases agree.

occur is that they differ by a minus sign (because of ordered tensor products
taken instead of the usual tensor products).

In the classical case the final complexes (after factorising) have the form
shown in Fig. 7.6. In Fig. 7.6 the virtualisation applied by us in Fig. 22.19
is not designated. The picture shows only what circles are transformed, but
does not show what circle is the first at a crossing, and what circle is the
second (for this it is necessary to take into consideration the virtualisation in
Fig. 22.19.

Here v+ = 0 (in our case 1 = 0) in the left upper corner of Fig. 7.6 means
that the space corresponding to the given state is factorised by the subspace
where the small circle is marked by 1. Here τ1 and τ2 are not differentials; they
are chain maps taking an element to the element which is minus homologous
to the initial one.

To establish the isomorphism in homology, it is sufficient to show that
τ1 ◦d1∗01 = d2∗01 and d1∗10 = τ2 ◦d2∗10. In this case we shall show that all the
maps “upwards” in both complexes differ by a sign (since in both cases τi is
minus the identity in homology). After that the homotopy equivalence of the
two complexes corresponding to the third Reidemeister move is proved as in
Lemma 22.5: By means of a natural map that identifies lower subcubes and
minus that map that corresponds to the complex which the upper subcube is
reduced to.

The ordered tensor product case differs from the usual one, possibly, by
signs on edges.

Let us check that the signs agree in our setup. We shall show that τ1 ◦
d1∗01 = d2∗01 (the remaining case d1∗10 = τ2 ◦ d2∗10 is completely analogous).

Let us view Fig. 7.6 and take into account the virtualisation of the right and
left diagrams at crossings. The required identity will look like p = q ◦∆−1 ◦∆;
see Fig. 22.20.
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FIGURE 22.20: Checking the invariance under Ω3.

Here d1∗01 is a 1 → 2-bifurcation (we denoted it by ∆); τ1 = ν ◦ ∆−1,
where ν is a partial differential and ∆−1 is assumed as an operation inverse
to ∆ (note that the space in the upper-left corner in which the element β1
stays is factorised by 1 = 0; i.e. the space associated with the small circle
C, is one-dimensional with generator X). Then, the comultiplication map for
which C is a resulting circle becomes an isomorphism.

View Fig. 22.20. For each of the maps in the brackets the number of a
crossing is indicated which this map is applied to.

The maps p and q are just the usual local differentials, either both multi-
plications, or both comultiplications, or both zeros.

If p = q = 0, there is nothing to prove.
Consider the remaining cases. We have three fragments of circles α, β, δ.

In the very initial state (which the map p in the right picture and ∆ in the left
picture are applied to) they may belong to one, two or three different circles.
We shall first consider the case when all fragments containing α, β, δ belong
to three different circles.

For simplicity we denote the elements of the algebra V (of type 1 or ±X)
related to these circles, by the same letters as fragments α, β, δ.

In our case, both operations p and q are multiplications.
Starting with α ∧ β ∧ δ, we get on the right picture the map d2∗01:

p : α ∧ β ∧ δ → (α · β) ∧ δ,

where (α · β) means an ordinary product in the Frobenius algebra.
On the left picture we have:

α ∧ β ∧ δ = δ ∧ α ∧ β ∆→ δ ∧X ∧ α ∧ β.
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FIGURE 22.21: Checking the invariance under Ω3.

Here we applied the comultiplication to δ to get two circles at the crossing
number 1; the two resulting circles are denoted by δ (the upper one) and X
(the lower one).

Now, δ ∧X ∧ α ∧ β = −β ∧X ∧ α ∧ δ. We then perform ∆−1 at crossing
3. This map joins the two circles marked by β and X .

At this crossing the generatorX is related to the left circle, and β is related
to the right circle. Thus, we have

−β ∧X ∧ α ∧ δ = X ∧ β ∧ α ∧ δ ∆−1

→ β ∧ α ∧ δ.

Now, the operation q is the comultiplication at crossing 2, where the circle
marked by β is the first (upper), and the one marked by α is the second one
(lower). Thus, we get: (α · β) ∧ δ.

Now assume that α and β form one circle (in the initial state), and δ forms
a separate circle. Denote the mark (an element from V ) corresponding to the
first circle by A, and the mark corresponding to the second circle by δ.

The map p looks like:

A ∧ δ ∆→
∑

i

Ai,1 ∧ Ai,2 ∧ δ,

where
∑

iAi,1 ⊗Ai,2 is the result of application of the comultiplication to A
in the ordinary sense (in the case of unordered tensor product); see Fig. 22.21.

In the further proof for simplicity of writing we shall not use the sum sign∑
i.
In the left picture we have

A ∧ δ = −δ ∧ A→ −δ ∧X ∧ A
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(at the first crossing the marking δ corresponds to the upper circle and X
corresponds to the lower circle).

Then for the map ∆−1 at crossing 3 we have

−δ ∧X ∧ A = −X ∧ A ∧ δ → −A ∧ δ

(here X was on the left side, and A was on the right side).
Finally, the map q at crossing 2 gives us

−A ∧ δ → −Ai,1 ∧ Ai,2 ∧ δ.

Here Ai,1 corresponds to the locally upper component s at crossing 2, and
Ai,2 is locally lower component t. But, in the right picture they have opposite
ordering. More precisely, we have

−Ai,1,s ∧ Ai,2,t ∧ δ.

In the first case (the map p) we had

Ai,1,t ∧ Ai,2,s ∧ δ = −Ai,2,s ∧ Ai,1,t ∧ δ.

These two results coincide because of cocommutativity of ∆ in the ordinary
case.

One can consider the remaining cases analogously.
Suppose that α and δ belong to one circle (the corresponding element being

denoted by α), and β belongs to another circle. Then we have the following
maps.

In the simplest case (the map p) we have

α ∧ β → (α · β).

On the left picture we have

α ∧ β → α ∧X ∧ β = X ∧ β ∧ α→ β ∧ α→ (β · α).

Consider the case of multiplication when β and δ form one circle (the
corresponding element being denoted by β). We get:

α ∧ β → (α · β)

on the right picture (the map p) and

α ∧ β = −β ∧ α→ −β ∧X ∧ α = X ∧ β ∧ α→ β ∧ α→ (β · α)

on the left picture.
Finally, consider the case when at the beginning we have exactly one dia-

gram, we get two comultiplications:

A→ Ai,1,t ∧ Ai,2,s
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in the simplest case (the map p) and

A→ A ∧X = −X ∧A→ −A→ −Ai,1,s ∧Ai,2,t = Ai,2,t ∧Ai,1,s.

Thus, we have proved the equality τ1 ◦ d1∗01 = d2∗01. The proof of the
equality d1∗10 = τ2 ◦ d2∗10 is completely analogous.

Theorem 22.12. Let K be a virtual diagram for which the corresponding
atom is orientable. Then the homology Kh(K) coincides with the Khovanov
homology constructed in Lemma 22.2.

During the proof of this theorem, we denote our complex and our homology
by C(K) and Kh(K), respectively, and the ones constructed in Section 22.4
by C′(K) and Kh′(K) respectively.

Proof of Theorem 22.12. First we note that the shifts for C and C′ are per-
formed in the same manner. Thus, we can forget about additional normaliza-
tions of type [−n−]{n+ − 2n−}.

First, we assume the diagram of K is chosen in such a way that all X ’s
for all crossings and circles agree (that is, for a given state circle, while pass-
ing from one classical crossing P to another one Q, we get XC,oP = XC,oQ ,
not XC,oP = −XC,oQ). This is possible since the atom corresponding to K
is orientable. Indeed, since the atom corresponding to K is orientable, we
can globally define the orientation of all edges to be compatible with the
orientation of the circles in each state. At each crossing of K this orienta-
tion may agree or disagree with the local orientation of edges determined by
Fig. 22.7 (the orientation originates from the source–sink structure). Let us
apply the virtualisation to all crossings ofK where these orientations disagree.
By Lemma 22.5, the homology of the complex C(K) remains the same, and
the orientations of circles given locally at crossings according to the rule in
Fig. 22.7 become compatible.

After that, we should just care about signs of local differential and enu-
meration of circles for any crossing.

We construct a homology-preserving map between two cubes. Fix an enu-
meration of the classical crossings of K. Let us associate the spanning tree
for the cubes C(K) and C′(K) as follows. This tree consists of all edges of
the form (α1, . . . , αl, ∗, 0, . . . , 0), αj ∈ {0, 1}; i.e. an edge in the direction xl+1

belongs to this tree if all the coordinates of xl+2, . . . , xn vanish; see Fig. 22.22.
With each state s of the complex C(K) we associate the ordered tensor

power V ∧l, and with the corresponding state for the complex C′(K) we asso-
ciate V ⊗l, where l is the number of circles in the state s. Enumerate the circles
in the A-state in some way. Then the ordering determines a map between the
space corresponding to the A-state s in C(K) and the space corresponding to
some state g(s) of the complex C′(K). After that we can successively renum-
ber the circles at all vertices of the tree in order that the identification of the
chains in the corresponding states of the complexes C(K) and C′(K) commute
with the partial differentials acting along the edges of the spanning tree. Thus
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FIGURE 22.22: Choosing a spanning tree.

we have constructed a map between the whole chain space of C(K) and the
chain space of C′(K).

This map g commutes with all the partial differentials for the following
reasons. Let ∂′, ∂′′ be the partial differentials corresponding to the same edge
of the complexes C and C′. Then we have g ◦ ∂′ = ±∂′′ ◦ g.

If the compatibility holds for three of four edges of some two-dimensional
face, then it also holds for the fourth edge, since both complexes are anticom-
mutative and no one of the partial differentials is the identical zero.

To complete the proof, we note that all the edges of the cube can be
exhausted if we start from the spanning tree and successively add the missing
edges of the two-dimensional faces (add the fourth edge provided that we have
three).

As it was done in Definition 7.6 we call by the height h(Kh(K)) of the
Khovanov homology of a virtual link K the difference between the leading and
lowest non-zero quantum gradings of non-zero Khovanov homology groups of
the virtual link K. From Theorem 22.12 it follows that the definition given
in Sec. 22.3 (using Khovanov homology for orientable atoms) is agreed with
the definition for the ordinary case based on the construction of the present
section.

22.8 Spanning tree for Khovanov complex

Spanning tree decomposition for Khovanov homology considered in Chap-
ter 7 (Theorem 7.9) remains valid for virtual links.

Theorem 22.13. The non-normalised Khovanov complex of a diagram K of
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a virtual link is isomorphic to some complex whose chain group looks like
⊕

s∈V1

A[β(s) + w(Ks)]{β(s) + 2w(Ks)}, (22.5)

where A is the homology group of the unknot and V1 is the set of states with
one circle.

Note that in the proof of Theorem 22.13 we have not used the fact that
a link is classical. Therefore, everything can be generalised word by word for
virtual links in the case of the field on which the initial Khovanov complex is
well defined.

We assert that this proof fits for all models of the Khovanov complex of
virtual knots in those cases when this complex is well defined.

22.9 The Khovanov polynomial and Frobenius exten-
sions

The Khovanov theory of virtual knots described earlier in this chapter is
not unique to what one can get by looking at the Kauffman model and the
(anti)commutative state cube. The present section is devoted to a generalisa-
tion of the Khovanov theory which uses Frobenius extensions for classical and
virtual links.

Below, we show that Khovanov’s universal construction (A,R) (see
Sect. 7.6.3) works in the case of orientable atoms straightforwardly, and write
down the algebraic equations the partial differentials have to satisfy for the
case of arbitrary virtual links.

22.9.1 Geometrical generalisations by means of atoms

With each virtual link diagram having an orientable atom, the univer-
sal (R,A)-construction associates some bifurcation cube, the bigraded chain
space with partial differentials, whose homology leads to an invariant of virtual
links (after a normalization).

Here, with the state cube and the bifurcation cube we associate bigraded
complexes with tensor powers of the ring A over the ring R staying in vertices
of the cube; the tensor power corresponds to the number of circles in the given
state; partial differentials in these cubes are defined by using m and ∆, and
differentials are sums of partial differentials with signs.

From Khovanov’s theory [Kho2] it follows that there exists a local proof
of the invariance for the universal (R,A)-construction; i.e. there is a number
of algebraic steps (equivalences, analogous to the cancellation principle and
short exact sequences) which leads to the following.
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Let us fix a classical Reidemeister move Ωi. Then for any classical diagrams
K and K ′ which differ locally by a Reidemeister move Ωi, there exists, see
ahead, a consequence of algebraic transformations taking KhU (K) to KhU (K

′)
and not depending explicitly on the behaviour of partial differentials of the
Khovanov complexes for K and K ′ except for those whose explicit form (µ or
∆) follows from the structure of our Reidemeister move Ωi.

This argument leads to the fact that the universal (R,A)-construction
can be generalised for virtual diagrams with orientable atoms. Namely, given
a diagram K with an orientable atom, we can construct the corresponding
bifurcation cube with differentials, corresponding to the multiplication and
comultiplication operations (with signs) and calculate its homology. Further-
more, if two diagramsK, K ′ have orientable atoms and are obtained from each
other by some classical Reidemeister move Ωi, then according to the princi-
ple described above, there is an isomorphism between the graded homologies
KhU (K) ∼= KhU (L

′). Since the universal (R,A)-construction is tautologically
invariant under the detour move (the bifurcation cube does not change), the
following analogue of Lemma 22.3 holds.

Lemma 22.7. Let K, K ′ be two diagrams with orientable atoms such that K ′

differs from K by an application of a detour move or one of the three classical
Reidemeister moves. Then KhU (K) ∼= KhU (K

′).

This argument together with Lemmas 22.2, 22.4 yields that the universal
(R,A)-construction works for

• the construction of the Khovanov homology theory KhU for framed vir-
tual links by taking the 2l parallel copies;

• the construction of the Khovanov homology theory KhU for virtual knots
by taking two-sheeted orienting coverings over the corresponding atoms.

• the construction of the Khovanov homology theory KhU for virtual knots
obtained by taking parity projections, see [Man27].

More precisely, the following theorem holds.

Theorem 22.14. 1 Let l be a natural number. Then KhU (D2l(K)) is an
invariant of the framed virtual link K.
2 The map K 7→ KhU (K̃) gives a well-defined invariant for virtual links.

22.9.2 Algebraic generalisations

As we have shown above, for virtual knots with orientable atoms the Kho-
vanov homology with Z2-coefficients can be defined straightforwardly if we set
all partial differentials of type 1→ 1 to be zero.

Let us now consider the universal (R,A)-construction (see page 104), and
let us generalise it for the case of virtual knots.

Note that if with each knot we associate a well-defined complex, then
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the homology of this complex will be automatically invariant under classical
Reidemeister moves (according to the locality of the invariance proof) and the
detour move (there is nothing to prove in this case).

Thus, we have reduced the problem of finding an extension for the ring
A in order to construct the Khovanov homology theory for arbitrary virtual
link diagrams, to the following problem. Find an operator (a homomorphism
of R-modules) I : A → A corresponding to maps of type 1→ 1 in such a way
that for every virtual diagram the bifurcation cube with partial differentials
obtained from m, ∆, I, is anticommutative.

Thus, we require the commutativity of the cube in order to turn it into an
anticommutative cube (just as it was done in the usual case).

This problem is purely algebraic. In order to solve it, one has to consider
all possible 2-faces of the bifurcation cube for a diagram K; there are finitely
many such types (with each face, one associates some atom with two vertices).
For each face, one has to check some algebraic conditions for the maps I, ∆
and m.

For the space A, let us take the basis {1, X}, and for the space A⊗A we
take the basis {1⊗ 1, 1⊗X,X ⊗ 1, X ⊗X}.

Then in these bases the maps ∆ and m are represented by the following
matrices:

∆ =




−h t
1 0
1 0
0 1


 , m =

(
1 0 0 t
0 1 1 h

)
.

After that we shall use the sign of matrix multiplication instead of the
composition of the operators. So, for example, we write µ ·∆ instead of µ ◦∆.
One of the particular cases given here, is considered in detail in [TT].

We look for a matrix

I =

(
p q
r s

)
,

which corresponds to bifurcations of type 1→ 1 and gives, at the same time,
the (anti)commutativity of the bifurcation cube.

Let a coefficient ring R containing elements h and t with gradings 2 and
4, respectively, be given. Denote the obtained bifurcation cube by [[K]]R. Let
us define the differential as the sum of the partial differentials corresponding
to edges (of type m, ∆, I) with signs arranged as it was done on page 403.

Lemma 22.8. The bifurcation cube [[K]]R is anticommutative if and only if
the following properties hold :

m ·∆ = (I)2,

∆ · I = (I⊗ 1) ·∆ = (1⊗ I) ·∆, (22.6)

I ·m = m · (I⊗ 1) = m · (1 ⊗ I). (22.7)
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Proof. To check the (anti)commutativity of the state cube it is necessary for
us to consider all possible sorts of faces of the cube. Later on, we disregard
additional signs on edges and prove the commutativity.

In the “simple” case where we have the field Z2 and null-differentials cor-
responding to bifurcations of type 1 → 1, everything was reduced to the
“classical” cases, and as well as to the case depicted in Fig. 22.1.

For the (R,A)-theory we have to check more cases, since maps of type
1 → 1 are not assumed to be zero, and the maps m (multiplication) and ∆
(comultiplication) are more complicated than in the case of the homology Kh.

Each two-dimensional face of the cube represents a collection consisting
of four states, see Sec. 22.4. When pasing from one state to another, some
circles are reconstructed and the others persist. Denote these four states by
s00, s01, s10 and s11 depending on the values of two changing coordinates.
Delete “common components” of the states sij ; i.e. those components of the
state s00 which do not connect to the crossings at which the substitution
of the smoothing occurs. Then the given two-dimensional face of the cube
will represent some virtual knot and, therefore, the atom corresponding to
it. This atom will have exactly two vertices. If the atom is height, then the
corresponding diagram is realized by a bifurcation of embedded circles into
the plane, thus, the (anti)commutativity of the corresponding face belongs to
the number of classical cases checked in [Kho4, TT].

For atoms with disconnected frames the check is obvious. Further, each
orientable atom with the connected frame having two vertices is height. Thus,
the required verification is reduced to sorting out unoriented atoms with two
vertices (all of them by definition are not height). Sorting out these atoms,
eventually we shall come to relations which are satisfied identically, e.g. I◦µ =
I◦µ; see Fig. 22.23. Three atoms giving non-trivial relations pointed out in the
claim of the lemma are given in Figs. 22.24, 22.25 and (the example considered
above), Fig. 22.1.

We met the first equation already in the case of the general Khovanov
homology C (there the composition m · ∆ looks simpler). In the case of the
universal (R,A)-theory we have:

m ·∆ =

(
−h 2t
2 h

)
.

If we want to construct a Z-graded theory, then it is necessary for us that
the matrix I increases the grading of elements of the ring R by one. This
means that all elements p, q, r, s ∈ R should be homogeneous. In this case
deg p = 1, deg q = 2, deg r = 0, deg s = 1; herewith it is possible that any
of the elements p, q, r, s are equal to zero (in this case the grading is not
defined). Then from the equality (I)2 = m ·∆ it follows deg (2t) = deg t = 3,
which leads us to a contradiction, if 2 6= 0.

Thus (as well as in the case of the general Khovanov homology), under
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FIGURE 22.23: Bifurcation corresponding to tautological relation.
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FIGURE 22.24: Relations ∆ · I = (I⊗ 1) ·∆ = (1⊗ I) ·∆.
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FIGURE 22.25: Relations I ·m = m · (I⊗ 1) = m · (1⊗ I).

this approach the Z⊕Z-bigraded homology theory is possible only in the case
of a field of characteristic two.

Let us consider the case of a field of characteristic two. It turns out that
in this case we have a simple non-trivial solution. Namely, in the case 2 = 0
the matrix m ·∆ is turned into the diagonal matrix

m ·∆ =

(
h 0
0 h

)
.

Let us add to the ring R a new element u =
√
h, deg u = 1. Now set R′ =

Z2[u, t], herewith the algebra A takes the form A′ = R′[x]/(X2 − u2X − t),
where deg X = 2, deg t = 4, deg u = 1.

Set

I =

(
u 0
0 u

)
. (22.8)

In this case the matrix I is scalar, and Eqs. (22.6) and (22.7) are satisfied
automatically.

Thus, we conclude with the following theorem.

Theorem 22.15. Over the field Z2 the pair of algebras (R′,A′) together with
multiplication m, comultiplication ∆ defined by ∆(1) = 1⊗X+X⊗1−u2 ·1⊗1,
∆(X) = X ⊗ X + t1 ⊗ 1 and the scalar map I looking like (22.8), gives an
invariant homology theory for virtual links.

In the general case; i.e. in the case of the Khovanov homology for virtual
links, we have the following.

Theorem 22.16. The restriction of Khovanov’s universal theory for the case
h = 0 (no restrictions on t) can be extended to virtual links by the method
suggested in Sec. 22.7.
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The main idea of the proof of Theorem 22.16 is the following. ∆ and m
behave nicely under the involution I : 1 7→ 1, X 7→ −X that takes place while
inverting the circle: The multiplication m does not change, and ∆ changes
the sign. Note that this takes place only for h = 0 (for arbitrary t). The case
when h 6= 0 can be handled by using a more sophisticated twisting.

This generalises straightforwardly for the case when h = 0 (where all
differentials of type 1 7→ 1 are assumed to be zero). As a particular case, this
leads to an analogue of Lee’s theory, see [Lee1, Lee2, Rush].

22.10 Minimal diagrams of links

In the classification and tabulation of (virtual) knots the important step
is to describe diagrams having a minimal number of (classical) crossings. One
of the main achievements in the development of knot theory is Kauffman–
Murasugi–Thistlethwaite theorem (Theorem 7.5) and the classification of al-
ternating links by Menasco and Thistlethwaite [MT] following from this the-
orem.

In this section we shall mention theorems establishing the minimality of
virtual and classical diagrams, see also [JS, Man17]. The proofs are analogous
to the classical case (see Section 7.6.4).

Remember that the thickness T (K) (see Definition 7.8) of a virtual dia-
gramK measures the number of diagonals between the two extreme diagonals
in the Khovanov homology of K.

Lemma 22.9. For any diagram K (with a connected atom) of a virtual link
we have: T (K) 6 g(K)+2, where g(K) is the genus of the atom corresponding
to K.

Definition 22.3. Let us call a virtual diagram K 2-complete, if T (K) =
g(K) + 2.

Now we have the following

Theorem 22.17. Let T (K) = g + 2, span 〈K〉 = s. Then the number of
classical crossings of a connected diagram of the virtual link generated by K
cannot be smaller than s/4 + g.

In particular, if a diagram with n crossings and the atom with genus g is
1-complete and 2-complete, then it is minimal.

Theorem 22.17 holds in any category in which the Khovanov complex
is well defined and invariant. So, if we are interested in the invariance of a
classical diagram in the category of classical diagrams, we can consider the
thickness in the classical category.
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Chapter 23

3-Manifolds and knots in 3-manifolds

In the present chapter, we shall give an introduction to the theory of three–
manifolds. The aim of this chapter is to show how different branches of low–
dimensional topology can interact and give very strong results. In the first
part, we shall describe a sympathetic theory of knots in RP 3. The second
part will be devoted to the deep construction of Witten–Reshetikhin–Turaev
invariants of three–manifolds. We are also going to describe some fundamental
constructions of three–dimensional topology, such as the Heegaard decomposi-
tion, and the Kirby moves. On one hand, they are necessary for constructing
the Witten theory; on the other hand, they have their own remarkable in-
terest. The theory of Witten–Reshetikhin–Turaev invariants, which is based
on the Kauffman bracket on one hand and the Kirby theory on the other,
is very deep. In fact, it leads to the theory of invariants of knots in three–
manifolds. Many proofs will be sketched or omitted (e.g. the Kirby theorem).
For the study of three-manifolds, we recommend Matveev’s book [Mat5]; see
also [Ch, DFN, Mat3, Mat4, Pra1, SeSm, Tur2, Vas4].

The Witten-Reshetikhin-Turaev invariants described in the present book
are the first evidence of how quantum invariants of knots can be generalised
for 3-manifolds. To pass from knots to 3-manifolds, one has to restrict the
value of the variable (in our case, a for the Kauffman bracket) to some roots
of unity.

For the general theory of quantum invariants of links and 3-manifolds, see
monographs [Oht, Kas].

23.1 Knots in RP 3

Here we are going to present a method of encoding knots and links in RP 3

and a generalisation of the Jones polynomial for the case of RP 3 proposed by
Yu.V. Drobotukhina, see [Dro].

The projective space RP 3 can be defined as the sphere S3 with identified
opposite points. The sphere S3 consists of two hemispheres; each of them
is homeomorphic to the ball D3. Thus, the space RP 3 can be obtained by
identifying the opposite points of the boundary S2 = ∂D3.

Consequently, any link in RP 3 can be defined as a set of closed curves and

445
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A

A

B

B

FIGURE 23.1: A diagram of a link in RP 3

arcs in D3 such that the set of endpoints of arcs lies in ∂D3; and this set is
centrosymmetrical in D3. Without loss of generality, one can think that the
intersection of the link with ∂D3 lies on the “equator” of the ball. Thus, a link
in RP 3 can be represented by a diagram in D2; the points of these diagrams
lying at the boundary S1 = ∂D2, have to be centrosymmetrical.

An example of such a diagram is shown in Fig. 23.1.

Exercise 23.1. Consider an arbitrary link diagram in RP 3. Describe the
pre-image of this diagram with respect to the natural covering p : S3 → RP 3.

We shall consider only diagrams for RP 3 in general position. This means
that the edges of the diagram are smooth, all crossings are double and trans-
verse, and no crossings are available at the boundary of the circle, and no
branch of the diagram is tangent to the circle.

We recall that the singularity conditions for the case of links in R3 (or S3)
lead to the moves Ω2, Ω3. Analogously, two new moves for diagrams of links
in RP 3 generate two new moves called Ω4 and Ω5; see Fig. 23.2.

Theorem 23.1. Two link diagrams generate isotopic links in RP 3 if and only
if one can be transformed to the other by means of isotopies of D2, classical
Reidemeister moves Ω1,Ω2,Ω3, and moves Ω4 Ω5.

Proof. The proof of this theorem is quite analogous to that of the classical
Reidemeister theorem. It is left to the reader as an exercise.

Now we are ready to define the analogue of the Jones–Kauffman polyno-
mial for the case of oriented links in RP 3.

First, for a given diagram of an unoriented link L = in RP 3, let us
define an analogue of the Kauffman bracket satisfying the following axioms:

〈L〉 = a〈 〉+ a−1〈 〉; (23.1)

〈L ⊔©〉 = (−a2 − a−2)〈L〉; (23.2)

〈©〉 = 1, (23.3)
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FIGURE 23.2: Moves Ω4,5

where © means a separated unknotted circle.
The proof of the existence and uniqueness of 〈L〉 is completely analogous

to that for the Kauffman bracket defined on links in R3 (or S3).
Also, we can analogously prove the invariance of 〈L〉 under Ω2,Ω3.
To prove the invariance of 〈L〉 under Ω4, let us use the following formula

〈D〉 =
∑

s

aα(s)−β(s)(−a2 − a−2)γ(s)−1, (23.4)

where γ(s) is defined as the number of circles of L in the state s.
Actually, for each state s of the diagram L, the numbers α(s), β(s) and

γ(s) are invariant under Ω4.
The invariance of the bracket 〈L〉 under Ω5 follows from the equalities

shown in Fig. 23.3.
As in the case of links in R3, the bracket 〈L〉 is not invariant under Ω1;

this move multiplies the bracket by (−a)±3.
Now, for a diagram of an oriented link L, let us define w(L) as in the usual

case.

Definition 23.1. The Drobotukhina polynomial of the oriented link L in RP 3

is defined as

X(L) = (−a)−3w(L)〈|L|〉,
where |L| is obtained from L by “forgetting” the orientation.

Theorem 23.2. The polynomial X(L) is an invariant of oriented links in
RP 3.
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FIGURE 23.3: Invariance of bracket under Ω5

Proof. The proof is quite analogous to the invariance proof of the Jones–
Kauffman polynomial for links in S3. It follows immediately from Theorem
23.1, the definition, invariance of the bracket 〈·〉 under the moves Ω2−Ω5 and
its behaviour under Ω1 which respects the behaviour of w(·).

By using this polynomial, Yu.V. Drobotukhina classified all links in RP 3

having diagrams with no more than six crossings up to isotopy and proved an
analogue of the Murasugi theorem for links in RP 3.

23.2 An introduction to the Kirby theory

Kirby theory is a very interesting way for encoding three–manifolds. In
the present book, we shall give an introduction to the theory of the Witten–
Reshetikhin–Turaev invariants via Kirby theory. However, Kirby theory is
interesting in itself. It can be used for constructing other invariants of three–
manifolds (Witten, Viro, Reshetikhin, Turaev, Murakami, Ohtsuki, Yamada
et al.)

23.2.1 The Heegaard theorem

Below, we shall use the result of Moise [Moi] that each three–manifold
admits a triangulation.
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Definition 23.2. The Heegaard decomposition of an orientable closed com-
pact manifold M3 without boundary is a decomposition of M3 into the union
of some two handlebodies — interiors of two copies of Sg attached to each
other according to some homeomorphism of the boundary.

There are different ways to attach a handlebody to another handlebody
(or to its boundary — a sphere with handles). However, it is obvious that
the way of attaching each handlebody can be characterised by a system of
meridians — contractible curves in the handlebody.

So, in order to construct a three–manifold, one can take two handlebodies
M1 and M2 with the same number g of handles and the abstract manifold N
that is homeomorphic to ∂M1 (and hence, to ∂M2). This manifold N should
be endowed with some standard system of meridians m1, . . . ,mg (say, it is
embedded in R3 and meridians are taken to be in the most natural sense); see
Fig. 23.4.

After this, we fix two systems of meridians u1, . . . , ug forM1 and v1, . . . , vg
for M2 and two maps f1 : ∂M1 → N and f2 : ∂M2 → N , respectively.

Definition 23.3. The system of curves {f1(ui)} and {f2(vi)} is said to be
the Heegaard diagram for this attachment.

Each three–manifold obtained by such an attachment has some Heegaard
diagram. While reconstructing the manifold by a Heegaard diagram, we have
some ambiguity: the images of meridians do not define the map completely.

However, the following theorem takes place.

Theorem 23.3. If two three–dimensional manifolds M andM ′ have the same
Heegaard diagram then they are homeomorphic.

Proof. Without loss of generality, suppose the manifoldM consists ofM1 and
M2 and M ′ consists of M ′

1 and M ′
2 =M2.

Let fi : ∂Mi → N, i = 1, 2, be the gluing homeomorphisms for the manifold
M ; for M ′ we shall use f ′

i , i = 1, 2.
Since M and M ′ have the same Heegaard diagram, then f and f ′ are

homeomorphisms from ∂M and ∂M ′ to N such that the images of meridians
ui and u

′
i coincide for all i = 1, . . . , g. Let us show that in this case the iden-

tical homeomorphism h2 : M2 → M ′
2 can be extended to a homeomorphism

h : M → M ′. The homeomorphism (f ′
1)

−1 ◦ f1 : ∂M1 → ∂M ′
1 takes each

meridian of the manifold M1 to the corresponding meridian of the manifold
M ′

1. Since each homeomorphism of one circle to another one can be extended
to a homeomorphism of whole discs (along radii), then the homeomorphism
of meridians can be extended to the homeomorphism of discs bounded by
these meridians in M1 and M ′

1. After cutting M1 and M ′
1 along these discs,

we obtain manifolds D1 and D′
1 both homeomorphic to the three–ball.

Because each homeomorphism between two 2–spheres can be extended
to the homeomorphism between bounded balls (along the radii), then the
homeomorphism between boundaries of D1 and D′

1 can be extended to the
homeomorphism between the balls.
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FIGURE 23.4: A Heegaard diagram

Thus, we have constructed a homeomorphism between M and M ′. This
completes the proof of the Theorem.

Now we are ready to formulate the Heegaard theorem

Theorem 23.4. Each orientable three–manifold M without boundary admits
a Heegaard decomposition.

Below, we give just a sketchy idea of the proof. It is well known (see, e.g.
[Moi]) that each three–manifold can be triangulated. So, let us triangulate
the manifold M . Now, we construct M1 and M2 from parts of tetrahedra
representing the constructed triangulation. Each tetrahedron T will be divided
into two parts T1 and T2 as shown in Fig. 23.5.

Now, the manifold M1 will be constructed of T1’s, and M2 will be con-
structed of T2’s. It is easy to see that each of these manifolds is a handlebody
(the orientability follows immediately from that ofM). The number of handles
of M1 and M2 is the same because they have a common boundary.

Obviously, the only manifold that can be obtained by attaching two spheres
is S3. The spaces that can be obtained from two tori are S3,RP 3, and so-called
lens spaces. They are closely connected with toric braids. For their description
see [BZ], see also [Tur2].

23.2.2 Constructing manifolds by using framed links

In the present section, we shall give a very sketchy introduction to the
basic concepts of Kirby theory — how to encode three–manifolds by means
of knots (more precisely, by framed links).
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FIGURE 23.5: Dividing tetrahedra

Definition 23.4. A framed link is a link in R3 to each component of which
an integer number is associated.

Each framed link can be represented as a band: for each link component
we construct a band in its neighbourhood in such a way that the linking
coefficient between the boundaries equals the framing of the component. One
boundary component of the band should lie in the toric neighbourhood of the
second one and intersect each meridional disc of the latter only once.

Definition 23.5. Two framed links are called isotopic if the corresponding
bands are isotopic.

Having a framed link L, one can construct a three–manifold as follows. For
each component K of L, we consider its framing n(K). Now, we can construct
a band: we take a knot K ′ collinear to K such that the linking coefficient
between K and K ′ equals n. Note that this choice is well defined (up to
isotopy): while changing the orientations of K and K ′ simultaneously, we do
not change the linking coefficient.

Thus, we have chosen a curve for (each) link component.
The next step of the construction is the following. We cut all full tori, and

then attach new ones such that their meridians are mapped to the selected
curves which are called longitudes.

Theorem 23.5. For each three–manifold M , there exists a manifold M ′

homeomorphic to M that can be obtained from a framed link as described
above.
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Ω'1

FIGURE 23.6: The double twist

The idea of the proof is the following: by using the Heegaard decompo-
sition, we can use handlebodies with arbitrarily many handles; each homeo-
morphism of the Sg can be considered locally and be reduced to “primitive
homeomorphisms”; the latter can be realised by using toric transformations
as above. Here one should mention the following important theorem.

Theorem 23.6 (Dehn–Lickorish). Each orientation–preserving homeomor-
phism of Sg can be represented as a composition of Dehn twistings and home-
omorphisms homotopic to the identity.

The first proof of this theorem (with some gaps) was proposed by Dehn in
[Dehn1]. The first rigorous proof was found by Lickorish [Lic1].

23.2.3 How to draw bands

The framed link can be easily encoded by planar link diagrams: here the
framing is taken to be the self-linking coefficient of the component (it can be
set by means of moves Ω1; each such move changes the framing by ±1). If
we want to consider links together with framing, we must admit the following
moves on the set of planar diagrams: the moves Ω2,Ω3, and the double twist
move Ω′

1; see Fig. 23.6.

23.2.4 The Kirby moves

Obviously, different links may encode the same three–manifolds (up to a
diffeomorphism). It turns out that there exist two moves that do not change
the three–manifold.

The first Kirby move is an addition (removal) of a solitary circle with
framing ±1, see Fig 23.7.

The second move is shown in Fig. 23.8. Let us be more detailed. While
performing this move, we pull one component with framing k along the other
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FIGURE 23.7: The first Kirby move
.

FIGURE 23.8: The second Kirby move

one (with framing l that stays the same). The transformed component would
have framing k + l.

Remark 23.1. Note that the component might be linked or not.

The planar diagram formalism allows us to describe this move simply with-
out framing numbers.

Theorem 23.7 (The Kirby theorem). Two framed links generate one and
the same 3-manifold if one can be transformed to the other by a sequence of
Kirby moves and isotopies.

The theorem says that these two moves are necessary and sufficient. The
necessity of the first Kirby move is obvious: we cut one full torus off and
attach a new torus almost in the same manner. The necessity of the second
Kirby move can also be checked straightforwardly: one should just look at
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FIGURE 23.9: The Fenn–Rourke move

what happens in the neighbourhood of the second component and compare
the obtained manifolds.

For the sake of convenience, one usually takes another approach: one uses
the unique necessary and sufficient Fenn–Rourke move instead of the two
Kirby moves. This move is shown in Fig. 23.9.

The Fenn–Rourke theorem states that in order to establish that two three–
manifolds given by planar diagrams of framed links are diffeomorphic, it is nec-
essary and sufficient to construct a chain of Fenn–Rourke moves transforming
one diagram to the other one.

The necessity can be easily checked as in the case of the Kirby theorem.
The sufficiency can be reduced to Kirby moves. Namely, all Kirby moves

can be represented as combinations of Fenn–Rourke moves and vice versa.
The proof of this equivalence can be found, e.g. in [PS].

The simplest rigorous proof of the sufficiency of Fenn–Rourke moves can
be found in [Lu].

23.3 The Witten–Reshetikhin–Turaev invariants

In the present section, we are going to give a sketchy introduction to the
famous theory of Witten–Reshetikhin–Turaev invariants. The first article by
Witten on the subject [Wit2] was devoted to the construction of invariants
of links in three–manifolds. However, mathematicians were not completely
satisfied by the strictness level of this work. The mathematical foundations
of this theory are due to Viro, Turaev and Reshetikhin [RT, TV]. Here we
follow the work of Lickorish [Lic2], where he simplified the work of these three
authors for the case of three–manifolds (without links embedded in them).

The basic idea of the description is to use the Kauffman bracket (which
is invariant under band isotopies) and apply it to some sophisticated combi-
nations of links in such a way that the obtained result is invariant under the
Kirby moves.
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23.3.1 The Temperley–Lieb algebra

The Temperley–Lieb algebra is a classical object in operator algebra the-
ory. It has much in common with the Hecke algebra. However, it is realised as
a skein algebra (the name has come from skein relations). Here we are going
to describe how the Kauffman bracket can be used for the construction of the
three–manifold invariants via the Temperley–Lieb algebra.

Let M3 be a manifold represented by means of a framed link in S3. We
shall use bands on the plane (or, simply, planar diagrams) in order to define
the framing. The isotopies of these diagrams are considered up to Ω2,Ω3 and
the double twist Ω′

1, shown in Fig. 23.6.
The Temperley–Lieb algebra is a partial case of so–called skein spaces.

Below, we shall give some examples that will be useful in the future.
With each diagram D of an oriented link, one associates the Kauffman

bracket 〈D〉 in the variable a. For the concrete value a0 ∈ C of a, the value of
〈D〉 can be calculated just as the unnormalised Kauffman bracket evaluated
at a0 (with the condition that 〈©〉 is equal to one and not to −a20 − a−2

0 . Let
V be the linear space over C that consists of finite linear combinations of link
diagrams. In the space V , consider the subspace V0 generated by vectors of
the type

{ − a0 − a−1
0 , D ⊔©+ (a−2

0 + a20)D}.
Set S = V/V0. The set S is called the skein space for R2. Under the natural
projection p : V → V/V0 = S, the element D is mapped to λe1, where λ is
the value of the polynomial 〈D〉 evaluated in a0, and e1 ∈ S is the image of
the diagram consisting of one circle.

In fact, let Ei be the diagram consisting of i pairwise non–intersecting
circles. It follows from the construction of 〈D〉 that D =

∑
λiEi + w1 and∑

λiEi = λE1 + w2, where w1, w2 ∈ V0, and λ is the value of 〈D〉 at a0.
Now, let e be a non-zero element of S. Then, p(D) = f(D)e, where f(D) ∈

C. For e, it is convenient to choose the element e0, corresponding to the empty
diagram. Such a choice of the basic element will correspond to multiplication
of f with respect to the disconnected sum operation.

Exercise 23.2. Prove this fact.

Consequently,

f(D1 ∪D2) =
∑

i,j

(ci)λi × (cj)µj

=
∑

i

(ci)λi ×
∑

j

(cj)µj = f(D1)f(D2),

which completes the proof.
The construction of S admits the following generalisation. Let F be an
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oriented 2–surface with boundary ∂F (possibly, ∂F = ∅). Fix 2n points on
∂F (in the case of empty ∂F, n = 0).

By a diagram on F we mean a graph (possibly, disconnected or containing
circles) Γ on F such that Γ ∩ ∂F consists precisely of 2n chosen points; these
points are the only vertices of Γ of valency one; all the other vertices have
valency four and are endowed with crossing structures (as in the case of knot
diagrams). These diagrams are considered up to isotopy (not changing the
combinatorial structure and fixing the endpoints).

Fix a0 ∈ C, and consider the vector space V (F, 2n) over C consisting of
finite linear combinations of diagram isotopy classes. Let V0(F, 2n) be the
subset of V (F, 2n), generated by vectors of the type

{ − a0 − a−1
0 , D ⊔©+ (a−2

0 + a20)D}.
Put S(F, 2n) = V (F, 2n)/V0(F, 2n). For the sake of simplicity, denote S(F, 0)
by S(F ).

Remark 23.2. It is essential to consider oriented surfaces in order to be able

to distinguish between crossings and .

Theorem 23.8. The image P (D) of the diagram D under the natural pro-
jection to S(F, 2n) is invariant under Ω′

1 (see Fig. 23.6), Ω2,Ω3.

The proof of this theorem is completely analogous to the invariance proof
for the Kauffman bracket. It is left for the reader as a simple exercise.

Theorem 23.9. The basis of S(F, 2n) consists of images (under the natural
isomorphism) of all isotopy classes of diagrams Di containing neither cross-
ings nor compressible curves.

The proof is left to the reader.
The following proposition is obvious.

Proposition 23.1. S(S2) ∼= S(R2) ∼= C.

Proposition 23.2. The space S(I × S1) has the natural algebra structure
over C. This algebra is isomorphic to C[α].

Proof. By Theorem 23.9, as a basis one can take the family of diagrams where
each of these diagrams consists of n circles parallel to the base of the cylinder
I×S1. The multiplication is defined by attaching the lower base of one cylinder
to the upper base of the other cylinder and rescaling the height of the cylinder.
Let α be the image (under the natural projection) of the diagram consisting
of one circle going around the parallel of the cylinder. The remaining part of
the proposition is evident.

Now, let us consider the space S(D2, 2n). By Theorem 23.9, the basis of
this space consists of pairwise non–intersecting arcs with endpoints on ∂D.
The number of elements of the basis is equal to the n-th Catalan number cn.
These numbers have the following properties:
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FIGURE 23.10: Product in the Temperley–Lieb algebra

1. cn+1 =
∑n

i=0 cicn−i;

2. cn = 1
n+1C

n
2n.

Exercise 23.3. Prove these two statements.

The space S(D2, 2n) has an algebra structure, however, this structure is
not canonical. To define this structure, one should consider the disc D2 with
fixed 2n points as a square having n fixed points on one side and the other
points on the other side. After this, the multiplication is obtained just by
attaching one square to the other and rescaling; see Fig. 23.10.

Definition 23.6. The algebra defined above is called the Temperley–Lieb
algebra.

Notation: TLn.

Let ei be the element of TLn corresponding to the diagram shown in
Fig. 23.11.

Then, let 1n be the element of TLn corresponding to the diagram consisting
of n parallel arcs.

Theorem 23.10. The element 1n is the unity of TLn. The elements
e1, . . . , en−1 represent a multiplicative basis of the algebra TLn.

The proof is evident.
It is also easy to see that the following set of relations is a sufficient gen-

erating set for TLn:
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FIGURE 23.11: The element ei

1. e2i = ei(−a20 − a−2
0 );

2. eiei+1ei = ei.

The proof is left for the reader.

23.3.2 The Jones–Wenzl idempotent

In order to go on, one should introduce an idempotent element f (n) in the
Temperley–Lieb algebra TLn that is called the Jones–Wenzl idempotent.

Let An be the subalgebra in TLn generated by e1, . . . , en (without 1n).
Then the element f (n) is defined by the following relations:

f (n)An = Anf
(n) = 0; (23.5)

1n − f (n) ∈ An. (23.6)

Such an element exists only if we make some restrictions for a0 ∈ C.

Theorem 23.11. Let for each k = 1, . . . , n − 1, a4k0 6= 1. Then there exists
a unique element f (n) ∈ TLn satisfying the properties described above. This
element is idempotent: f (n) · f (n) = f (n).

Exercise 23.4. Calculate f (2).

Note that the existence of f (n) yields uniqueness and idempotence. Namely,
the uniqueness means the uniqueness of the unit element 1n − f (n) in An.
Moreover, since 1n−f (n) is a unit element of An, we have (1−f (n))(1−f (n)) =
(1− f (n)). From this equation we easily deduce the idempotence of f (n).
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FIGURE 23.12: The element ∆n

FIGURE 23.13: The element Sn

The construction of f (n) uses induction of n.
We shall need one more construction and some properties of it. Define the

element ∆n ∈ S(R2) as the closure of f (n); see Fig. 23.12. More precisely, f (n)

is a linear combination of some diagrams; one should take their closures as
shown in Fig. 23.12 and then take the corresponding linear combination.

Analogously, one defines the element Sn(α) ∈ S(S1×I): this is a “closure”
of f (n) in the ring; see Fig. 23.13. Here α denotes the generator of the ring
of polynomials S(S1 × I). Obviously, ∆n is obtained from Sn by natural
projecting S(S1 × I)→ S(R2) (gluing the interior circle by a disc).

The elements ∆n can be defined inductively as ∆n+1 = (−a−2
0 − a20)∆n −

∆n−1.

Obviously, ∆1 = −a20 − a−2
0 . Besides, if a

4(n+1)
0 6= 1 then ∆n 6= 0; more

precisely, ∆n =
(−1)n(a

2(n+1)
0 −a

−2(n+1)
0 )

a2
0−a−2

0
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We shall only give a concrete inductive formula for f (n):

f (n+1) = f
(n)
1 − ∆n−1

∆n
fn
1 enf

(n)
1 ,

where f
(n)
1 means the element of An obtained from f (1) (all summands with

coefficients) by adding (n− 1) horizontal lines.
The elements Sn(α) can be constructed inductively by using the following

formula:

Sn+1(α) = αSn − Sn−1.

23.3.3 The main construction

Now, we are ready to define the Witten–Reshetikhin–Turaev invariant of
three–dimensional manifolds. Associate to each link diagram D with compo-
nents K1, . . . ,Kn a polylinear map

〈·, · · · , ·〉D : S1 × · · · × Sn → S(R2),

where Si
∼= S(I ×S1). In order to define this map, it is sufficient to define the

elements 〈αk
1 , . . . , α

kn
n 〉D ∈ S(R2), where αi is the generator of Si correspond-

ing to the generator α of the algebra S(I × S1).
We deal with planar diagrams of unoriented links.
In order to obtain the diagram (and, finally, the number) corresponding to

the element 〈αk1
1 , . . . , α

kn
n 〉D, we consider the knots Bi corresponding to Ki,

and on each knot Bi, we draw ki copies of the non-intersecting curves parallel
to its boundary.

Suppose framed diagramsD and D′ are equivalent by means of Ω′
1,Ω2,Ω3.

Then the diagrams 〈αk1
1 , . . . , α

kn
n 〉D and 〈αk1

1 , . . . , α
kn
n 〉D′ can also be obtained

from each other by means of Ω′
1, Ω2 and Ω3. Thus, the images of these two

diagrams in S(R2) coincide.
Hence, the polylinear map constructed above is a framed link

invariant.
Now, we are going to construct the further invariant by using 〈·, · · · , ·〉.

But since we are constructing an invariant of three–manifolds, we should also
care about the Kirby moves.

To obtain the invariance under the second Kirby move, we shall use the
element

ω =

r−2∑

0

∆nSn(α) ∈ S(I × S1),

where r ≥ 3 is an integer.

Theorem 23.12. Suppose a0 is such that a40 is the primitive root of unity
of degree r. Suppose diagrams D and D′ are obtained from each other by the
second Kirby move. Then we have:
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FIGURE 23.14:

〈ω, ω, . . . , ω〉D = 〈ω, ω, . . . , ω〉D′ .

The main idea is the following: while performing the second Kirby move,
the difference between the obtained elements contains a linear combination
of only those terms of S(S1 × I) containing f (r−1) as a sub diagram. Since
a4r0 = 1, we have ∆r−1 = 0 and all these terms vanish.

Now, let us consider the first Kirby move. We shall need the linking coef-
ficient matrix.

For any n–component link diagram L, one can construct a symmetric
(n × n)–matrix of linking coefficients (previously, we orient all link compo-
nents somehow). For the diagonal elements, we take the self-linking coefficient
(which is equal to the framing). Denote the obtained matrix by B. Since B
is symmetric, all eigenvalues of this matrix are real. Let b+ be the number of
positive eigenvalues of B, and b− be the number of negative eigenvalues of B.
For constructing the link invariants, we shall need not the matrix B itself, but
only b+, b−.

It is easy to see that the change of the orientation for some components of
B leads to a transformation B → B′ = XTBX for some orthogonal X , thus
it does not change b+ and b−.

Let us see now that b+ and b− are invariant under the second Kirby move.
To do this, it is sufficient to prove the following theorem.

Theorem 23.13. Under the second Kirby move, the matrix B is changed as
follows: B′ = XTBX, where X is some non-degenerate real matrix.

This theorem is left to the reader as an exercise.
Consider the three standard framed diagrams U+, U−, U0 shown in

Fig. 23.14. They represent the unknotted curves with framings 1, 0, and −1,
respectively. In the case when 〈ω〉U+〈ω〉U− 6= 0, for each diagram D, one can
consider the following complex number:

I(D) = 〈ω, . . . , ω〉D〈ω〉−b+
U+
〈ω〉−b−

U−
.

Proposition 23.3. The complex number I(D) is a topological invariant of
the three–manifold defined by D if 〈ω〉U+〈ω〉U− 6= 0.
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f (n)

FIGURE 23.15:

To meet the above conditions, one should make the following restrictions
on a0. Namely, the conditions hold if a0 is a primitive root of unity of degree
4r or a primitive root of unity of degree 2r for odd r. In both cases, a40 is a
primitive root of unity (so that it satisfies the condition of Theorem 23.12).

The proof of Proposition 23.3 is very complicated and consists of many
steps. Here, we are going to give the only step that occurs in this proof.

Lemma 23.1. Suppose a0 is a complex number as above. Then we have:

1. for 1 ≤ n ≤ r − 3 each diagram containing Dn (see Fig. 23.15) equals
zero;

2. for n = r − 2 in the case when a0 is a primitive root of degree 4r, each
diagram containing Dn, equals zero as well, and in the other case (degree
2r for odd r) the diagram Dn can be replaced with 〈ω〉Uf (n).

(Here by “diagrams” we mean their images in S(R2)).

Collecting the results of Theorems 23.12 and 23.13 and Proposition 23.3,
we obtain the main theorem.

Theorem 23.14. If a0 ∈ C is either the primitive root of unity of degree 4r
or the primitive root of unity of degree 2r for odd r and r ≥ 3 then

W (M3) = I(D) = 〈ω, . . . , ω〉D〈ω〉−b+
U+
〈ω〉−b−

U−

is a topological invariant of any compact three–manifold without boundary
(here D is a framed link diagram representing M3).

This invariant is called the Witten–Reshetikhin–Turaev invariant of three–
manifolds.

Examples 23.1. The sphere S3 can be represented by the empty diagram;
thus I(S3) = 1.

The manifold S1 × S2 is represented by the diagram U . The linking co-
efficient matrix for U is B = (b11), where b11 = 0. Thus, b+ = b− = 0.
Consequently, I(S1 × S2) = 〈ω〉U .
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23.4 Invariants of links in three–manifolds

The construction of invariants of three–manifolds proposed in the present
chapter can also be used for more sophisticated objects, knots in three–
manifolds. We shall describe these invariants following [PS].

Consider a compact orientable manifoldM3 without boundary. The mani-
foldM3 can be obtained by reconstructing S3 along a framed link. This means
that there exists a homeomorphism

f : S3\LM →M3\L̃M ,

where L̃M is a link in M3. Without loss of generality, we can assume that
the link L̃M does not intersect the given link L (this can be done by a small
perturbation). Let LL = f−1(L) be the pre-image of L ⊂ M3 in the sphere
S3. Suppose if L is framed then LL is framed as well. Thus, a framed link L
in M3 can be given by a pair of framed links (LL, LM ) in the sphere S3; the
number of components of LL coincides with that of L.

Let us discuss the following question: when do two couples (LL, LM ) and
(L′

L, L
′
M ) generate the same framed link L in M3? The surgery of the sphere

along framed links LM and L′
M must generate the same manifold M3; thus,

L′
M can be obtained from LM by Kirby’s moves and isotopies. Moreover,

during the isotopy, the link LM should not intersect LL. The point is that the
isotopy that takes LM to L′

M induces the homeomorphism

f : S3\LM →M3\L̃M .

It is clear that in a general position the Kirby move does not touch a small
neighbourhood of the link LL. After we have performed the necessary Kirby
moves and isotopies, we may assume L′

M = LM . After this, we can apply Kirby
moves and isotopies to LL ∪ LM , whence the link LL can only be isotoped.
Thus, we have to clarify the connection between LL and L′

L in the case when
LM = L′

M . In this case, after performing a surgery of S3 along LM , we obtain
a manifold M3, where the images of the links LL and L′

L are isotopic. During
this isotopy, the images of LL and L′

L may intersect the image of LM . Thus,
the desired surgery is not reduced to the isotopy of LL and LM in the sphere
S3. More precisely, if in M3, a component KK of the image of KL intersects a
component KM of the image of LM , then the sphere S3 undergoes the second
Kirby move: namely, a band parallel to KM is added to the band KL.

Let us point out the following two important circumstances:

1. the numbers of components of LL and L′
L are equal;

2. under second Kirby moves, we never add bands which are parallel to
components of L.
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Now, with the framed link LL ∪ LM we can associate a framed diagram
DL ∪DM . For the link LM , consider the matrix B of link coefficients. Let b+
and b− be the numbers of positive and negative eigenvalues of this matrix; let
n be the number of components of L. Let us fix arbitrary elements

p1(α), . . . , pn(α) ∈ S(I × S1) ∼= C[α]

(here we use the previous notation).

Theorem 23.15. Let r ≥ 3 be an integer, a be a complex number and a0 be
such that: either a0 is the primitive root of unity of degree 4r or r is odd and
a0 is the primitive root of unity of degree 2r.

Then the complex number

W (M3, L) = 〈p1(α), . . . , pn(α), ω, . . . ω〉DL⊔DM
〈ω〉−b−

U+
〈ω〉−b−

U−
(23.7)

is an isotopy invariant of the framed link L in M3.

Proof. First, note that n is invariant: it is the number of components of L. The
proof of invariance of the number (23.7) under admissible transformations of
the link LL ∪ LM is almost the same as the proof of invariance of Witten’s
invariant. The only additional argument is the following. While performing
second Kirby moves, one should never add bands parallel to LL. This allows us
to use alternative marking: they can be marked as p1(α), . . . pn(α) ∈ S(I×S1),
not only by ω.

Remark 23.3. The formula (23.7) defines not a unique invariant, but an
infinite series of invariants with the following parameters: α0, p1, p2, . . . , pn;
the number α0 should satisfy the conditions above.

23.5 Virtual 3–manifolds and their invariants

Just recently, L. Kauffman and H. Dye [DK1, Kau8], (see also H. Dye’s
thesis [Dye]) generalised the Kirby theory for the case of virtual knots and
constructed so–called “virtual three–manifolds” and generalised the invari-
ants described here for the virtual case. Another definition of “virtual three–
manifolds” was given by S.V. Matveev [Mat6].

The main idea is that all the constructions described above generalise
straightforwardly.

In order to define a virtual three–manifold, one considers virtual link di-
agrams (just as in the classical case). After this, one allows the following
equivalence between them: two diagrams are called equivalent if one can be
obtained from the other by a sequence of generalised Reidemeister moves (all
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FIGURE 23.16: Virtual handle slide move

but the first classical one, Ω1) and the two Kirby moves. As for the first Kirby
move, the situation is quite clear: we are just adding a new circle with framing
one.

As for the second Kirby move, the only thing we should do accurately is
to define it for the component having virtual crossing. This move is called the
virtual handle slide move; it is shown in Fig. 23.16.

These equivalence classes generate virtual three–manifolds. After such a
definition, the following question arises immediately (stated by the author of
this book).

Now, quite an interesting point arises.
First, the Poincaré conjecture evidently fails in this sense.
Furthermore, given two classical diagrams K1 and K2 representing the

equivalent manifolds (in the sense of virtual Kirby theory); do they actually
represent the same classical three–manifolds in the ordinary sense?

Now, what we have to do is to define the Witten–Reshetikhin–Turaev
invariant for virtual knots. In fact, we already have all that we need for the
definition of it: namely, we have to use the normalised Kauffman bracket and
the Jones-Wenzl idempotent, see Theorem 23.14 and the formula therein. For
more details, see original work [Dye].





Chapter 24

Heegaard–Floer homology

In the present chapter, we review the Heegaard-Floer homology, due to Peter
Ozsváth and Zoltán Szabó [OS5]. The Heegaard-Floer homology is a homo-
logical invariant of 3-manifolds and knots in 3-manifolds.

To imagine the first step for construction of the Heegaard-Floer homology,
let us take a Heegaard splitting of a closed 3-manifold M3 into two handle-
bodies Nα∪Nβ glued along their common boundary Σg with sets of meridians
{α1, . . . , αg} and {β1, . . . , βg}.

The whole 3-manifold can be reconstructed by means of handle gluing: first
we start with a standard 3-ball B, then we add g 1-handles corresponding to
meridians α1, · · · , αg; adding 2-handles along β1, · · · , βg returns us to a 4-ball
which can be then capped with a 3-handle.

Thus we can construct a Morse function on M3 with one minimum, one
maximum, g critical points of index 1 and g critical points of index 2. If we
just want to calculate the homology groupsH1(M), H2(M), it suffices to know
single intersections of some α-curve with some β-curve.

However, we can pass to some more sophisticated configuration spaces
that we can construct from M . This idea goes back to Floer [Flo], and it was
realized by P.Ozsváth and Z.Szabó. In this setting, generators correspond to
some pairing between αj and βσ(j), where σ is some permutation of indices
{1, · · · , g}.

The differential will lead to a graded homology theory, and the invariance
of this theory can be proved in a self-contained way just by checking moves
on Heegaard-diagrams.

Now, if we have a knot in a manifold1 M3, it can be presented in a nice
way with respect to a Heegaard splittings. Looking at the same generators of
chain groups, we can treat this presence of a knot as a source for new grading.
Then we get a homology theory, whose invariance can be also proved by purely
combinatorial means.

The knot (and link) Floer homology was constructed by Ozsváth, Szabó
and, independently, by J.Rasmussen [Ras1].

A crucial observation is that the Euler characteristic of the Heegaard-Floer
homology for knots in S3 coincides with the Alexander polynomial. This can
be seen by considering some standard Heegaard decomposition of S3 related
to a particular diagram of a knot with a fixed system of meridians.

1In fact, not all M3 work here; we shall concentrate ourselves just with S3; see below.

467
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Thus, the knot Heegaard-Floer homology is a categorification of the
Alexander polynomial as the Khovanov homology is a categorification of the
Jones polynomial.

However, as we saw before, the differential in the Khovanov complex is
defined purely combinatorially though the differential in the Heegaard-Floer
complex requires some sophisticated structures (complex structures, spin-c
structures etc). Hence, since the Heegaard-Floer homology was created, the
question about purely combinatorial representation of it arose. It was suc-
cessfully constructed by C.Manolescu, P.Ozsváth, S.Sarkar and D.Thurston
[MOS, MOST] by using grid diagram presentation of knots and links.

This lead to various questions about categorifications of the HOMFLY-PT
polynomial; we send the interested author to the review [GS].

In the present chapter, we follow closely the survey of P.Ozsváth and
Z.Szábo [OS5] and L.H. Kauffman [Kau9]. The chapter is organized as fol-
lows. The first section is devoted the definition of Heegaard–Floer homology
of 3-manifolds. The second section is devoted the definition of Heegaard–Floer
homology of knots. The third section is devoted the definition of Heegaard–
Floer homology of links. The fourth section recalls the Alexander polynomial
invariant and describes how it relates to Heegaard–Floer homology.

24.1 Heegaard-Floer homology of 3-manifolds

Floer homology was initially introduced by A. Floer to study questions in
Hamiltonian dynamics [Flo]. He started with a symplectic manifold (M,ω)
and a pair of Lagrangian submanifolds L0 and L1. His invariant, Lagrangian
Floer homology, is the homology group of a chain complex generated freely
by intersection points between L0 and L1, endowed with a differential which
counts pseudo-holomorphic discs. This chain complex arises from a suitable
interpretation of the Morse complex in a certain infinite-dimensional setting.

Soon after formulation of the Lagrangian Floer homology, Floer realised
that his basic principles could also be used to construct a three-manifold
invariant, instanton Floer homology, closely related to Donaldson’s invariants
for four-manifolds. In this version, the basic setup involves a closed oriented
three-manifold2 Y . One forms a chain complex, but this time the generators
are SU(2)-representations of the fundamental group of Y .

Here we shall describe an adaptation of the Lagrangian Floer homology, the
Heegaard-Floer homology, which gives rise to a closed three-manifold invariant.
This invariant also fits into a four-dimensional framework. There is a related
invariant of smooth four-manifolds, and indeed relative invariants for this four-

2Usually, Ozsváth and Szabó use the letter Y to denote 3-manifolds and the letter X to
denote 4-manifolds because these letters Y and X have three and four ends, respectively
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Tα Tβ

x

y

Symg(Σ)

FIGURE 24.1: Whitney disk

manifold invariant take values in the Heegaard-Floer homology groups of its
boundary.

As usual, a Heegaard diagram (cf. Section 23.2.1) is a triple consisting
of an oriented two-manifold Σ of genus g and a pair of g-tuples of embed-
ded disjoint homologically linearly independent curves α = {α1, . . . , αg} and
β = {β1, · · · , βg}. A Heegaard diagram uniquely specifies a three-manifold
obtained by gluing two genus 2 handlebodies Uα and Uβ . In Uα, the curves
αi bound discs, while in Uβ , the curves βi bound discs. We associated to this
data a suitable version of Lagrangian Floer homology.

Our ambient manifold in this case is the g-fold symmetric product of Σ, the
set of unordered g-tuples of points in Σ. This space inherits a natural complex
structure from a complex structure over Σ. Inside this manifold, there is a
pair of g-dimensional real tori, Tα = α1 × · · ·αg and Tβ = β1 × · · ·βg.

We fix also a reference point

w ∈ Σ \ (α1 ∪ · · · ∪ αg ∪ β1 ∪ · · · ∪ βg).
This gives rise to a subvariety Vw = {w} × Symg−1(Σ) ⊂ Symg(Σ). We

consider the chain complex generated by the intersection points Tα ∩ Tβ .
Concretely, an intersection point of Tα and Tβ corresponds to a permutation
σ in the symmetric group on g letters, together with a g-tuple of points x =
(x1, . . . , xg) with xı ∈ αi ∩ βσ(i).

The differential again counts holomorphic discs; but some aspects of the
homotopy class of the disc are recorded. Namely, for fixed x,y ∈ Tα ∩ Tβ , let
π2(x,y) denote the space of homotopy classes of Whitney discs connecting x
to y; i.e., continuous maps of the unit disc D ⊂ C into Symg(Σ), mapping
the part of the boundary of D with negative, resp., positive real part to Tα,
resp., Tβ , and mapping i, resp., −i, to x, resp., y (see Fig. 24.1). The algebraic
intersection number of φ ∈ π2(x,y) with the subvariety Vw determines a well
defined map

nw : π2(x,y)→ Z.

It is also useful to think of the two-chain D(φ), which is gotten as a formal
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sum of regions in Σ\(α1∪· · ·∪αg∪β1∪· · ·∪βg), where a region is counted with
multiplicity np(φ), where p ∈ Σ is any point in this region. Given a Whitney
disc, we can consider its space of holomorphic representatives M(φ), using
the induced complex structure on Symg(Σ). If this space is non-empty for
all choices of almost-complex structure, then the associated two-chain D(φ)
has only non-negative local multiplicities. The group R acts on M(φ) by
translation. The moduli spaceM(φ) has an expected dimension µ(φ), which
is also called the Maslov index.

It is sometimes necessary to perturb the holomorphic condition to guar-
antee that moduli spaces are manifolds of the expected dimension. It is useful
(though slightly imprecise) to think of a holomorphic disc inM(φ) as a pair
consisting of a holomorphic surface F with marked boundary, together with
a degree g holomorphic projection map π from F to the standard disc, and
also a map f from F into Σ.

Here f maps π−1 of the subarc of the boundary of D with negative resp.
positive real part into the subset α1 ∪ · · · ∪ αg, resp., β1 ∪ · · · ∪ βg.

We now consider the complex CF−(Y ) which is the free Z[U ]-module
generated by Tα ∩ Tβ, with differential given by

∂x =
∑

y∈Tα∩Tβ

∑

{φ∈π2(x,y)|µ(φ)=1}
#

(M(φ)

R

)
Unw(φ)y. (24.1)

In the case where Y is an integral homology sphere, the above sum is finite.
(In the case where the first Betti number is positive, some further constraints
must be placed on the Heegaard diagram).

One can see that ∂2 = 0. Roughly speaking, if one can get from a point x
to a point z in two steps, then there are two ways to do it x → y1 → z and
x→ y→ z and these two ways lead to opposite signs; see Fig. 24.2.

The homology groupsHF−(Y ) of CF−(Y ) are topological invariants of Y .
Indeed, the chain homotopy type of CF−(Y ) is a topological invariant, and,
since CF−(Y ) is a module over Z[U ], there are a number of other associated
constructions.

For example, we can form the chain complex CF∞(Y ) obtained by invert-
ing U ; i.e., a chain complex over Z[U,U−1], with differential as in equation
(24.1).

The quotient of CF∞(Y ) by CF−(Y ) is a complex CF+(Y ) which is of-
ten more convenient to work with. The corresponding homology groups are
denoted by HF∞(Y ) and HF+(Y ), respectively. Also, there is a chain com-

plex ĈF obtained by setting U = 1; explicitly, it is generated freely over Z by
Tα ∩ Tβ and endowed with the differential

∂̂ =
∑

y∈Tα∩Tβ

∑

{φ∈π2(x,y)|µ(φ)=1,nw(φ)=0}
#

(M(φ)

R

)
y (24.2)

and its homology also a topological invariant of Y is denoted by ĤF (Y ).
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x z

y

y1

FIGURE 24.2: Differential property ∂2 = 0.

The invariants HF−(Y ), HF∞(Y ), and HF+(Y ), together with the exact
sequence connecting them, are crucial ingredients in the construction of a
Heegaard–Floer invariant Φ for closed, smooth four-manifolds.

24.2 Knot Heegaard-Floer homology

Heegaard-Floer homology for 3-manifolds has a refinement to an invariant
for null-homologous knots in a three-manifold (as defined independently by
Ozsváth, Szabó and Rasmussen [OS5, Ras1]).

A knot K in a 3-manifold Y is specified by a Heegaard diagram (Σ, α, β)
for Y , together with a pair w and z of basepoints in Σ. The knot K is given
as follows. Connect w and z by an arc ξ in Σ \ (α1 ∪ · · · ∪ αg) and an arc
η in Σ \ (β1 ∪ · · · ∪ βg). The arcs ξ and η are then pushed into Uα and Uβ ,
respectively, so that they both meet Σ only at w and z, giving new arcs ξ′ and
η′. Our knot K, then, is given by ξ′ − η′. For simplicity, we restrict ourselves
to the case where the ambient manifold Y is S3.

Below we present a specific representative of the Heegaard splitting of
the sphere which “agrees” with a planar knot diagram; all β-curves and all
α-curves (except one) correspond to crossings. As we shall see later, this will
correspond to the categorification of the Alexander polynomial. For the trefoil,
view Fig. 24.3.

In Fig. 24.4, we show the local behaviour of α-curves in the neighbourhood
of crossings.
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FIGURE 24.3: α-curves and β-curves for the handlebody in the neighbour-
hood of the trefoil

FIGURE 24.4: α-curves in neighbourhoods of crossings

The new basepoint z gives the Heegaard-Floer complex with a filtration.
Specifically, we can construct a map

F : Tα ∩ Tβ → Z

by setting

F (x)− F (y) = nz(φ) − nw(φ), (24.3)

where φ ∈ π2(x,y). It is easy to see that this quantity is independent on the
choice of φ, depending only on x and y. Moreover, if y appears with non-zero
multiplicity in ∂̂(x), then F (x) ≥ F (y). This follows from the fact that there
is a pseudo-holomorphic disc φ ∈ π2(x,y) with nw(φ) = 0 and also nz(φ) ≥ 0,
since a pseudo-holomorphic disc meets the subvariety Vz with non-negative
intersection number.

Equation (24.3) defines F uniquely up to an overall shift. This indeter-
minacy can be removed as follows. The filtered chain homotopy type of this
filtered chain complex is an invariant of the knot K. For example, the homol-
ogy of the associated graded object, the knot Floer homology is an invariant
of K ⊂ S3, defined by

ĤFK(S3,K) = ⊕s∈ZĤFK(S3,K, s), (24.4)

where ĤFK(S3,K, s) is the homology group of the chain complex generated
by intersection points x ∈ Tα∩Tβ with F (x) = s endowed with the differential
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∂x =
∑

y∈Tα∩Tβ

∑

{φ∈π2(x,y)|µ(φ)=1,nw(φ)=nz(φ)=0}
#

(
M(φ)

R

)
y. (24.5)

Informally speaking, our differential counts only those holomorphic disks
which behave nicely with respect to the knot.

The graded Euler characteristic of this theory is the Alexander polynomial
of the knot K, in the sense that

∆K(t) =
∑

s∈Z

χ(ĤFK∗(K, s)) · ts.

We shall touch on this topic again in Section 24.4.
This formula can be used to get rid of the additive indeterminacy of F :

we require that F be chosen so that the graded Euler characteristic is the
symmetrized Alexander polynomial. In fact, this symmetry has a stronger
formulation, as relatively graded isomorphism

ĤFK∗(K, s) ∼= ĤFK∗(K,−s).

24.3 Link Heegaard-Floer homology

Heegaard-Floer homology groups of knots can be generalised to the case
of links in S3. For an l-component link, we consider a Heegaard diagram with
genus g Heegaard surfaces, and two (g + l − 1)-tuples attaching circles α =
{α1, · · · , αg+l−1} and β = {β1, · · · , βg+l−1}. We require {α1, · · · , αg+l−1} to
be disjoint and embedded, and to span a g-dimensional lattice in H1(Σ;Z).
The same is required of the {β1, · · · , βg+l−1}. Clearly, Σ \ (α1 ∪ · · · ∪ αg+l−1)
consists of l components A1, · · · , Al. Similarly Σ \ (β1 ∪ · · · ∪ βg+l−1) consists
of l components B1, · · · , Bl. We assume that this Heegaard diagram has the
special property that Ai ∩ Bi is non-empty. Indeed, for each i = 1, · · · , l, we
choose basepoints wi and zi to lie inside Ai∩Bi. We call the collection of data
(Σ,α,β, {w1, · · · , wl}, {z1, · · · , zl}) a 2l-pointed Heegaard diagram .

A link can now be constructed in the following manner. Connected wi

and zi by an arc ξi in Ai and an arc ηi in Bi. Again, the arc ξi (resp., ηi)
is pushed into Uα (resp., Uβ) to give rise to a pair of arcs ξ′i and η′i. The
link L is given by ∪ki=1ξ

′
i − η′i. For a 2l-pointed Heegaard diagram for S3

(Σ,α,β, {w1, · · · , wl}, {z1, · · · , zl}), if L is the link obtained in this manner,
we say that the Heegaard diagram is compatible with the link L.

We will need to make an additional assumption on the Heegaard diagram.
A periodic domain is a two-chain in Σ of the form

∑
ci(Ai − Bi) where ci ∈

Z. Our assumption is that all non zero periodic domains have both positive
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FIGURE 24.5: The Conway link

and negative local multiplicities ci. This assumption on the pointed Heegaard
diagram is called admissibility.

Let L ⊂ S3 be an l-component link, suppose that L is embedded so that
the restriction of the height function to L has b local maxima, then we can
construct a compatible 2l-pointed Heegaard diagram with Heegaard genus
g = b− l.

For example, consider the two-component “Conway link” shown in
Fig. 24.5.

For this link, b = 4, and hence we can draw it on a surface of genus 2 as
shown in Fig. 24.6. Here we consider the surface of genus 2 as the result of
attaching two handles to a sphere.

The link Floer homology ĤFL(S3, L) of the link L is defined as the homol-
ogy group of the chain complex generated by intersection points x ∈ Tα ∩ Tβ

endowed with the differential

∂x =
∑

y∈Tα∩Tβ

∑

{φ∈π2(x,y)|µ(φ)=1,nwi
(φ)=nzi

(φ)=0, i=1,...,l}
#

(
M(φ)

R

)
y. (24.6)

Theorem 24.1. Link Floer homology ĤFL(S3, L) is a link invariant.

The proof of the theorem can be found in [OS5].
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X
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Y
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β1
β2

β3

FIGURE 24.6: Pointed Heegaard diagram for the Conway link. The disks
labeled by X and Y are the ends of the handles.

24.4 Heegaard splitting of S
3 and the Alexander poly-

nomial

The standard description of the Alexander polynomial given in Chapter 5
is closely related to the standard Wirtinger presentation of the fundamental
group. With a link diagram, we associate generators to arcs, and take the
relation bab−1 = c in the case of groups and c = ta+(1− t)b in the Alexander
module. The same group and module can be presented from another point of
view. Here we follow closely [Kau9].

Namely, let D be a link diagram on the plane with n crossings lying on the
plane P . Then by Euler characteristic argument this diagram tiles the sphere
(1-point compactification of the plane) into n+ 2 cells, including the infinite
one. Thus, we have n+ 1 finite regions r1, · · · , rn+1.

Let us fix two points A and B over the plane of projection and under the
plane of projection. We denote the link itself by L and we may think that it
lies in the neighbourhood of P .

We may fix an path p from B to A pickling the plane P in the infinite
region.

Then the group π1(R
3 \L) can be presented in the following way. We take

A to be the base point. Now, with all finite regions r1, · · · , rn+1 we associate
generators g1, · · · , gn+1. Each generator gj pickles the plane in the finite region
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FIGURE 24.7: Dehn generator gj

FIGURE 24.8: Crossing relation gig
−1
j gkg

−1
l = 1

from A to B and then goes back through the infinite region as indicated in
Fig. 24.7.

Then, one can easily see that for each crossing c where some four regions
ri, rj , rk, rl meet, the relation gig

−1
j gkg

−1
l = 1 holds; see Fig. 24.8.

One can easily check that this gives rise to a presentation of the funda-
mental group:

π1(R
3 \ L) = 〈g1, . . . , gn+1 | gig−1

j gkg
−1
l = 1 for all crossings c〉. (24.7)

This presentation is called the Dehn Presentation [Dehn2].
Now, let us pass to the definition of the Alexander module and the Alexan-

der polynomial via Dehn’s presentation.
Four regions meet locally at a given crossing. Letting these be labeled

generically {A,B,C,D}, as shown in Figure 24.9, we have an equation in the
Alexander module

xA− xB + C −D = 0 (24.8)

to that crossing. Here A,B,C,D go cyclically around the crossing, starting
at the top dot. In this way the two regions containing the dots give rise to
the two occurrences of x in the equation. If some of the regions are the same
at the crossing, then the equation is simplified by that equality. For example,
if A = D then the equation becomes xA − xB + C − A = 0. Each crossing
in a diagram K gives an equation involving the regions of the diagram. Let
us associate the Dehn presentation Alexander matrix to the diagram K —
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FIGURE 24.9: Alexander labeling

a matrix MK whose rows correspond to the crossings of the diagram, and
whose columns correspond to the regions of the diagram. Each nodal equation
gives rise to one row of the matrix where the entry for a given column is the
coefficient of that column (understood as designating a region in the diagram)
in the given equation. If R and R′ are adjacent regions, let MK [R,R′] denote
the matrix obtained by deleting the corresponding columns of MK . Finally,
define the Alexander polynomial ∆K(x) by the formula

∆K(x)=̇Det(MK [R,R′]). (24.9)

The notation a=̇b means that a = ±xna for some integer n. It is proved
in [Ale1], that this polynomial is well-defined, independent of the choice of
adjacent regions and invariant under the Reidemeister moves up to =̇.

Exercise 24.1. Check that the Alexander polynomial is invariant under the
Reidemeister moves up to multiplication by ±xn.
Exercise 24.2. Prove that the formula (24.9) coincides with the definition of
Alexander polynomial of the Chapter 5.
Hint. Use the skein relation of Alexander polynomial.

In Figure 24.10 we have shown the calculation of the Alexander polynomial
of the trefoil knot using this method. Figures 24.10—24.14 are borrowed from
Kauffman [Kau3].
In this figure we show the diagram of the knot, the labelings and the resulting
full matrix and the square matrix resulting from deleting two columns corre-
sponding to a choice of adjacent regions. Computing the determinant, we find
that the the Alexander polynomial of the trefoil knot is given by the equation
∆=̇ x2 − x+ 1.

Exercise 24.3. Prove that M [A,B] does not depend on the choice of B.

24.4.1 Reformulating the Alexander polynomial as a state
summation

In the present chapter, we follow Kauffman’s formal knot theory [Kau3]
by the following reasons.
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xA - xD + E - B = 0

xA - xB + E - C = 0

xA - xC + E - D = 0

A    B    C    D    E

x    -1    0    -x    1

x   -x    -1     0    1

x    0    -x    -1    1

0    -x    1

-1    0    1

-x    -1   1

M[A,B]=

�(x) = Det(M[A,B])  =  x2 - x + 1

A
B

C

D

E

M=

FIGURE 24.10: The Alexander polynomial

Firstly, at the level of the Alexander polynomial, we shall see a combinato-
rial reformulation in terms of configurations related to knot and link diagrams.

On the other hand, by looking at these configurations, one can easily see
that the Alexander polynomial is the Euler characteristic of the Heegaard–
Floer complex: when looking at Fig. 24.15, we see that the terms of the
Alexander polynomial correspond to the generators of the chain group in the
Heegaard Floer complex.

It is an interesting and challenging problem tackled by Kauffman, Przyty-
cki, Yongwu Rong and others: to construct a purely combinatorial presentation
of the Heegaard Floer complex in terms of just planar diagrams of links.

Unfortunately, this theory (also called clock homology theory) is not in-
variant: though the generators of the Heegaard-Floer complex can be defined
in terms of the knot or link diagram, the differentials still depend on some
additional complex (or spin-c) structure.

Roughly speaking, when tiling a 2-surface into regions and looking at dif-
ferentials corresponding to 2k-gons for k ∈ N, the differential does not depend
on further geometry if and only if we deal with bigons or quadrilaterals.

The “clock homology theory” deals with differentials corresponding to
polygons with a larger number of edges; hence, it is not invariant.

The solution of the problem “how to construct a purely combinatorial
theory” came from the grid diagrams when one tiles R3 into a union of two
full tori.

Another intriguing question which arises here is the following. As we shall
see soon, all “clock” states are nothing but “single circle states” (cf. Chapter 6)
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which means that both the Alexander polynomial and the Jones polynomial
can be expressed by a summation over the same set of states. What about the
HOMFLY-PT polynomial? What about the HOMFLY-PT homology theory
and superpolynomials?

Given a square n × n matrix Mij , we consider the expansion formula for
the determinant of M :

Det(M) = Σσ∈Sn
sgn(σ)M1σ1 · · ·Mnσn

. (24.10)

Here the sum runs over all permutations of the indices {1, 2, . . . , n} with
sgn(σ) being the sign of the permutation σ. In terms of the matrix, each
product corresponds to a choice by each column of a single row such that
each row is chosen exactly once. The order of rows chosen by the columns
(taken in standard order) gives the permutation whose sign is calculated.

Consider our description of Alexander’s determinant as given by the for-
mula (24.10). Each crossing is labeled with Alexander’s dots so that we know
that the four local quadrants at a crossing are each labeled with x, −x, 1 or
−1. The matrix has one row for each crossing and one column for each region.
Two columns corresponding to adjacent regions A and B are deleted from the
full matrix to form the matrix M [A,B], and we have the Alexander polyno-
mial ∆K(X)=̇Det(M [A,B]). A generalisation of this approach to knots and
links in thickened surfaces was considered by M. Zenkina [MZ, Zen1, Zen2].

In the Alexander determinant expansion the choice of a row by a column
corresponds to a region choosing a crossing in the link diagram. The only
crossings that a region can choose giving a non-zero term in the determinant
are the crossings in the boundary of the given region. Thus the terms in the
expansion of Det(M [A,B]) are in one-to-one correspondence with decorations
of the flattened link diagram (i.e. we ignore the over and under crossing struc-
ture) where each region (other than the two deleted regions corresponding to
the two deleted columns in the matrix) labels one of its crossings. We call these
labeled flat diagrams the states of the original link diagram (cf. Chapter 7).
See Figure 24.11 for a list of the states of the trefoil knot. In this figure we
show the states and the corresponding matrix forms with columns choosing
rows that correspond to each state.

At this point we have an almost complete combinatorial description of
Alexander’s determinant. The only thing missing is the permutation signs.
One can pick up the permutations from the state labeling, but there is a
better way. Call a state marker (label at a crossing as shown in Figure 24.11)
negative if it labels a quadrant where both oriented segments point toward
the crossing; see Fig. 24.12.
Let S be a state of the diagram K. Set (−1)b(S) where b(S) is the number of
negative markers in the state S. Then it turns out that with up to one global
sign ǫ depending on the ordering of crossings and regions, we have

(−1)b(S) = ǫ sgn(σ(S)),

where σ(S) is the permutation of crossings induced by the choice of ordering
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FIGURE 24.11: States with markers

FIGURE 24.12: A negative marker

of the regions of the state. This gives a purely diagrammatic access to the sign
of a state and allows us to write

∆K(x)=̇ΣS〈K|S〉(−1)b(S), (24.11)

where S runs over all states of the diagram for a given choice of deleted
adjacent regions, and 〈K|S〉 denotes the product of the Alexander nodal labels
at the quadrants indicated by the state labels in the state S. We call 〈K|S〉
the product of the vertex weights. Thus we have a precise reformulation of the
Alexander polynomial as a state summation.

Let us mention that every term in the Dehn presentation Alexander matrix
corresponds to a single-circle state, see Fig. 24.13.

In Figure 24.14 we illustrate the calculation of the Alexander polynomial
of the trefoil knot using this state summation. Here we show the contributions
of each state to a product of terms and in the polynomial we have followed
the state summation by taking into account the number of negative markers
in each state. Thus we get

(−1)b(S) = ǫ sgn(σ(S)).

Theorem 24.2. The Euler characteristic of the knot Heegaard–Floer homol-
ogy coincides with the Alexander polynomial of the knot.
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FIGURE 24.13: A single circle state

FIGURE 24.14: State sum calculation of Alexander polynomial

Sketch of the proof. Using the correspondence between the generators of the
Heegaard–Floer complex (Fig. 24.1) and the diagram states (Fig. 24.11); see
Fig. 24.15, one shows that Euler characteristic of the Heegaard–Floer complex
is the Alexander polynomial.

24.5 Applications of the Heegaard–Floer homology

Heegaard–Floer homology is well suited to problems in knot theory and
3-manifold topology which can be formulated in terms of the existence of
four-dimensional cobordisms; one of the most striking applications is that the
Heegaard–Floer homology is an unknot detector. Some years after this fact
was established, Peter Kronheimer and Tomasz Mrówka proved that Kho-
vanov homology is also an unknot detector [KrMr4] by constructing a spectral
sequence starting from Khovanov homology and converging to (a version of)
the Heegaard-Floer homology. Namely, let K ⊂ S3 be a knot. Recall that the
Seifert genus of K, denoted by g(K), is the minimal genus of any embedded
surface F ⊂ S3 with boundary K. Clearly, g = 0 if and only if K is the un-
knot. According to [OS2], knot Floer homology detects the Seifert genus of a
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FIGURE 24.15: Correspondence between generators of the Heegaard–Floer
complex and diagram states

knot by the property that

g(K) = max{s| ˆHFK(K, s) 6= 0}. (24.12)



Chapter 25

Legendrian knots and their invariants

The theory of Legendrian knots first introduced by Dmitry Fuchs and Serge
Tabachnikov [FT], lies at the juncture of knot theory, the theory of wave
fronts and contact geometry. D.B. Fuchs calls the “Fuchs–Tabachnikov moves”
“Swiatkowski moves” according to [Swi].

Legendrian knots in R3 represent the one–dimensional case of Legendrian
manifolds (in the general case, a Legendrian manifold is a k–dimensional sub-
manifold in a (2k+1)–dimensional manifold satisfying some conditions). The
Legendrian knot theory is interesting because it allows us to introduce a new
equivalence for knots: besides topological isotopy, one can consider a more
subtle isotopy in the space of Legendrian knots.

25.1 Legendrian manifolds and Legendrian curves

One of the main questions of the theory of differential equations is to find
an enveloping curve for the family of straight lines on the plane. It is well
known that in the smooth case, this problem has a solution according to the
existence and uniqueness theorem.

If we consider the field of, say, planes in R3, or, more generally, hyperplanes
in odd–dimensional space R2n+1, the enveloping surface does not always exist.

In the general position called “the maximally non–integrable case”, the
maximal dimension of a surface tangent to these hyperplanes at each point
equals n.

For the case n = 1 we obtain just curves in R3; i.e., knots (which can be
tangent to the given family of planes).

Maximally non–integrable fields of hyperplanes are closely connected to
contact structures.

25.1.1 Contact structures

Let us first introduce the notion of contact structure, see, e.g., [Arn2, Thu].

Definition 25.1. A contact structure (form) on an odd–dimensional manifold

483
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M2n+1 is a smooth 1–form ω on M such that ω ∧ dω ∧ · · · ∧ dω︸ ︷︷ ︸
n

is a non–

degenerate form.

Having a contact form, one obtains a hyperplane in the tangent space at
each point: the plane of vectors v such that ω(v) = 0.

Let us consider the case of R3 and the form ω = −xdy+ dz. Obviously, at
each point (x, y, z) the incident plane is generated by the two vectors (1, 0, 0)
and (0, 1, x). Denote this field of planes by τ .

Definition 25.2. A Legendrian link is a set of non-intersecting oriented curves
in R3 such that each link at each point is tangent to τ .

Since a Legendrian link is a link, one can consider its projection onto
planes; i.e. planar diagrams. It turns out that projections on different planes
have interesting properties.

Note that there are non-equivalent contact structures even in R3, the tight
one and the overtwisted one. With respect to each contact structure, there is
its own theory of Legendrian knots.

We shall not go into the detail and we shall restrict ourselves to the struc-
ture given above.

25.1.2 Planar projections of Legendrian links

First, let us consider a projection of a Legendrian link L to the Oyz plane.
Let γ be the projection of one component of L. Consider γ̇ = (0, ẏ, ż). By
definition xẏ = ż, and we conclude that the coordinate x of the Legendrian
curve L equals the fraction ∂z

∂y , or, in other words, the abscissa equals the
tangent of the tangent line angle.

The only inconvenience here is that ẏ cannot be equal to zero.
This effect can be avoided by allowing x to be equal to ∞; i.e., by con-

sidering R2 × S1 instead of R3. Indeed, in this case there arises a beautiful
theory of Legendrian links (as well as in any three–manifold that is a bundle
over a two–surface M2 with fiber S1, for example, the unit bundle UT∗M of
M). However, here we consider knots and links in R3; thus we must take the
restriction ẏ 6= 0.

This means that on the plane Oyz our curve has no “vertical” tangent
lines. So, the only possibility to change the sign of ẏ is the existence of a cusp;
see Fig. 25.1.

Generically, the cusp has the form of a semi cubic parabola: the curve
(3t2 , t

2, t3) is a typical example of such a curve (the cusp takes place at (0,0,0)).
Having any piecewise–smooth oriented curve (smooth everywhere except

cusps where ẏ changes the sign), we can easily restore a Legendrian curve in
R3 by putting

x =
ż

ẏ
.
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A cusp

FIGURE 25.1: A cusp of the front projection

x

Oxy

FIGURE 25.2: Restoring crossing types from the front projection

Obviously, taking a curve γ in general position (with only double transverse
intersection points), one gets a link L having projection γ. So, in order to
construct a shadow of a link isotopic to L, one should just smooth all cusps.

Besides this, the transverse intersection points define uniquely the crossing
structure of the link. Namely, the x–coordinate is greater for the piece of curve
where the tangent is greater.

One can slightly deform the projection γ (without changing the isotopy
type of the corresponding Legendrian link) so that the two intersecting pieces
of the curve γ̃ have directions northwest–southeast and northeast–southwest;
see Fig. 25.2

In this case, the branch northeast–southwest will form an overcrossing.
Hence, we know how to construct planar link diagrams from diagrams of

Legendrian links projections to Oyz.
The inverse procedure is described in the proof of the following

Theorem 25.1. For each link isotopy class there exists a Legendrian link L
representing this class.

Now, let us look at what happens if we take the projection to Oxy.
It is more convenient in this case to consider each link component sepa-

rately.
Let γ be a curve of projection. If we take an interval of this curve starting

from a point A and finishing at a point B, we deduce from ż = xẏ that
zA − zB =

∫
A xdy. If we take an integral along all the curve γ (from A to A),

we see that
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∮

γ

xdy = 0,

or by the Gauss–Ostrogradsky theorem,

S(Mγ) = 0, (25.1)

where S means oriented area, and Mγ is the domain bounded by γ (with
signs).

Equation (25.1) is the unique necessary and sufficient condition for the
Legendrian curve to be closed.

If we want to get some crossing information for a Legendrian knot, we
should take a crossing P and take an integral along γ from P lying on one
branch of γ to P on the other branch of γ. If the value of this integral is positive
then the first branch is an undercrossing; otherwise it is an overcrossing.

If we consider an n–component link, one can easily establish the crossings
for each of its components. Then one has n− 1 degrees of freedom in posing
the components.

So, for the case of a link, the crossing structure cannot be restored uniquely.

25.2 Projections of Legendrian knots and their proper-
ties

Here we shall use the notation from [Che2, ChPu]. We are going to give
definitions only for the case of knots; analogous constructions for links can be
presented likewise.

Consider a smooth knot in the standard contact space R3 = {q, p, u} with
the contact form α = du−pdq (we introduce the new coordinates u, p, q instead
of z, x, y respectively).

Definition 25.3. A smooth knot L is called Legendrian if the restriction of
α to L vanishes.

Definition 25.4. Two Legendrian knots are called Legendrian isotopic if one
can be sent to the other by a diffeomorphism g of R3 such that g∗α = φα,
where φ > 0.

There are two convenient ways of representing Legendrian knots by pro-
jecting them on different planes. The projection π : R3 → R2, (q, p, u)→ (q, p)
is called the Lagrangian projection, and the projection σ : (q, p, u)→ (q, u) is
called the front projection.
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−→ −→ −→

FIGURE 25.3: Restoring a diagram from a front

FIGURE 25.4: Constructing a front by a diagram

25.2.1 The front projection

Having a front projection, we can restore the Legendrian knot as follows.
We just smooth all cusps, and set the crossings according to the following rule:
the upper crossing is the branch having greater tangency. Since the front has
no vertical tangent lines, the choice of crossing is well defined; see Fig. 25.3.

The front projection is called σ–generic if all self–intersections of it have
different q coordinates.

The inverse procedure can be done as follows. After a small perturbation
we can make a diagram having no vertical tangents at crossings. Now, let
us replace all neighbourhoods of points with vertical tangents by cusps. All
“good” crossings are just replaced by intersections. Besides, all double points
with “bad” crossings are to be replaced just as shown in Fig. 25.4.

Thus, we have proved that each knot can be represented by a front; i.e.,
each knot has a Legendrian representative. Thus, we have proved The-
orem 25.1.

In Fig. 25.5, we show diagrams and fronts for the two trefoils. The as-
symmetry of these two diagrams follows from the convention concerning the
“good” crossings. It is quite analogous to the assymmetry of the simplest
d–diagrams of the trefoils.

25.2.2 The Lagrangian projection

In the normal case, the Lagrangian projection is smooth (has no cusps or
other singularities unlike the front projection). As in the case of front pro-
jection, the Lagrangian projection allows us to restore the crossing structure,
and hence, the topological knot itself..

More precisely, a Lagrangian projection is called π–generic if all self–
intersections of it are transverse double points.

Namely, having a planar diagram L of a knot, let us fix some point P of
it different from a crossing and fix u(P ) = 0. Now, we are able to restore the
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FIGURE 25.5: Left trefoil and right trefoil
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A+B+C+D+E+2F≠0

for positive

A,B,C,D,E,F

FIGURE 25.6: A braided diagram is not Lagrangian

coordinate u for all the points of L. Taking into account that du = pdq along
the curve, we see that the difference uA − uB equals the oriented area of the
domain restricted by the part of the curve from A to B.

Thus, if we have some projection L (combinatorial knot diagram) and we
want it to be Lagrangian, we should check the following condition: if we go
along the knot from some point A to itself, we obtain an equation on areas of
domains cut by L. All crossing types are regulated by equations.

Exercise 25.1. Write these equations explicitly

This shows that some projections cannot be realised as Lagrangian ones.
For instance, having a braided diagram (see Fig. 25.6), we cannot realise

it as Lagrangian because the equation to hold will consist only of positive
numbers whose sum with positive coefficients should be equal to zero: we go
around each area a positive number of times and each area is positive. Thus,
it cannot be equal to zero.

In this sense, Lagrangian diagrams are opposite to braided diagrams.

Remark 25.1. In fact, the third projection (q, p, u)→ (p, u) is not interesting.

A Legendrian knot L ⊂ R3 is said to be π–generic if all self intersections
of the immersed curve π(L) are transverse double points. In this case, this
projection endowed with over– and undercrossing structure represents a knot
diagram that is called the Lagrangian diagram.
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FIGURE 25.7: Lagrangian projection and front projection

Of course, not every abstract knot diagram in R2 is a diagram of a Legen-
drian link, or is oriented diffeomorphic to such a one.

For a given Legendrian knot L ⊂ R3, its σ–projection or front σ(L) ⊂ R3

is a singular curve with no vertical tangent vectors.

25.3 Fuchs–Tabachnikov (Swiatkowski) moves

Legendrian knots and links in their frontal projection admit a combinato-
rial interpretation like ordinary knots and links. Namely, there exists a set of
elementary moves transforming one frontal projection of a Legendrian link to
each other projection of the same link.

In fact, the following theorem holds.

Theorem 25.2 (Fuchs, Tabachnikov [FT]). Two fronts represent Legendrian–
equivalent links if and only if one can be transformed to the other by a sequence
of moves 1–3 shown in Fig. 25.8.

By admitting the 4th move, we obtain the ordinary (topological) equivalence
of links.

Note that the tangency move (when two lines pass through each other) is
not a Legendrian isotopy: this tangency in R2 means an intersection in R3 (the
third coordinate is defined from the tangent line). Thus, this move changes
the Legendrian knot isotopy type; it is not the second Reidemeister move.

Note that the grid diagram presentation for links allows one to get a nice
way for encoding Legendirian links: the set of diagrams is the same, and in
the set of moves we just forbid a certain sort of stabilisation.
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1)

2)

3)

4)

FIGURE 25.8: Fuchs–Tabachnikov moves

+ + − −

FIGURE 25.9: Positive cusps Negative cusps

25.4 Maslov and Bennequin numbers

The invariants named in the section title can be defined as follows. The
Bennequin number (also called the Thurston–Bennequin number) β(L) of L is
the linking number between L and s(L), where s is a small shift along the u
direction.

The Maslov number m(L) is the rotation number of the projection of L to
the (q, p) plane.

The change of orientation on L changes the sign of m(L) and preserves
β(L).

Both these invariants can be defined combinatorially by using the front
projection of the Legendrian knot. Namely, the Maslov number is half of
the difference between the numbers of positive cusps and negative cusps; see
Fig. 25.9.

Exercise 25.2. Prove the equivalence of the two definitions of the Maslov
number.

Definition 25.5. A crossing is called positive if the orientation of two
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+ + − −

FIGURE 25.10: Positive crossings Negative crossings

branches of the front have directions in different half–planes, and negative
otherwise; see Fig. 25.10.

The Bennequin number is 1
2 (# cusps)+ (# positive crossings)–(# negative

crossings).

Exercise 25.3. Prove the equivalence of the two definitions of the Bennequin
number.

25.5 Finite–type invariants of Legendrian knots

By definition, each Legendrian knot is a topological knot; besides, two
equivalent Legendrian knots are (topologically) equivalent knots. Thus, each
knot invariant represents an invariant of Legendrian knots. So are finite-type
invariants of knots. Moreover, one can easily define the finite type invari-
ants of Legendrian knots and show that all finite-type invariants coming from
“topological knots” have finite-type in the Legendrian sense.

Exercise 25.4. Prove that the Maslov number and the Bennequin number are
finite-type invariants: the first of them has order zero and the second one has
order one.

The most important achievement (classification) of the finite type invari-
ants is described by the following.

Theorem 25.3 (Fuchs, Tabachnikov). All Vassiliev invariants of Legendrian
knots can be obtained from topological finite-type invariants and Maslov and
Bennequin numbers.

This means that the theory of finite–type invariants for Legendrian links is
not so rich. As we are going to show, there are stronger invariants that cannot
be represented in terms of finite order invariants.

This theorem comes from the following observation

Theorem 25.4. For any two Legendrian knot diagrams L and L′ of the same
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topological type having the same Maslov index and Thurston-Bennequin num-
bers there exists a diagram D of a topologically trivial Legendrian knot such
that L#D = L′#D generate equivalent Legendrian knots.

The proof goes as follows. We consider D to be a diagram consisting of
sufficiently many zigs and zags (see Fig. 25.8.4)) We just perform the topo-
logical isotopy between D and D′ as classical knots. There are no problems
with third Reidemeister moves, but if we deal with the first Reidemeister move
(and the second Reidemeister move) we can need a cusp to perform it. This
cusp can be taken from D. We can take D large enough to be able to perform
all possible first and second Reidemeister moves.

After the whole isotopy is performed, we can take all “auxiliary” cusps
from D back to their position.

This theorem shows that from the point of view of Vassiliev’s invariants
Legendrian knots do not differ so much from classical knots. In the next section
we shall see quite new and powerful invariants.

25.6 The differential graded algebra (DGA) of a Legen-
drian knot

In the present section, we shall speak about the differential graded algebra
(free associative algebra with the unit element) of Legendrian knots, proposed
by Chekanov. It turns out that all homologies of this algebra are invariants
of Legendrian knots. Now, we are going to work with Lagrangian diagrams of
Legendrian knots.

We associate with every π–generic Legendrian knot K a DGA (A, ∂) over
Z2 (see [Che]).

Remark 25.2. A similar construction was given by Eliashberg, Givental and
Hofer, see [EGH, Eli]).

Let L be a Lagrangian diagram of a Legendrian link. Denote crossings of
this diagram by {a1, . . . , an}.

We are going to denote a tensor algebra T (a1, . . . , an) with generators
a1, . . . , an. This algebra is going to be a Zm(L)–graded algebra (free, associa-
tive and with unity).

First of all, let us define the grading for this algebra. Let aj be a crossing
of L. Let z+, z− be the two pre-images of aj in R3 under the Lagrangian
projection, whence z+ has greater u–coordinate than z−.

Without loss of generality, one might assume that the two branches of the
Lagrangian projection at aj are orthogonal.

These points divide the diagram L into two pieces, γ1 and γ2, and we
orient each of these pieces from z+ to z−.
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Now, for ε ∈ {1, 2}, the rotation number of the curve π(γε) has the form
Nε

2 + 1
4 , where Nε ∈ Z. Clearly, N1 −N2 is equal to ±m(L). Thus N1 and N2

represent one and the same element of the group Zm(L), which we define to
be the degree of aj .

Now, we are going to define the differential ∂. For every natural k, let us
fix a curved convex k–gon Πk ⊂ R2 whose vertices xk0 , . . . , x

k
k−1 are numbered

counterclockwise.
The form dq ∧ dp defines an orientation on the plane. Denote by Wk(L)

the collection of smooth orientation–preserving immersions f : Πk → R2 such
that f(∂Πk) ⊂ L. Note that f ∈Wk(L) implies that f(xki ) ∈ {a1, . . . , an}.

Let us consider these immersions up to combinatorial equivalence
(parametrisation) and denote the quotient set by W̃k(L). The diagram L di-
vides a neighbourhood of each of its crossings into four sectors. Two of them
are marked as positive (opposite to the way used while we defined Kauffman’s
bracket) and the other two are taken to be negative. For each vertex xki of the
polygon Πk, a smooth immersion f ∈ W̃k(L) maps its neighbourhood in Πk

to either a positive or negative sector; in these cases, we shall call xki positive
or negative, respectively.

Define the set W+
k (L) to consist of immersions f ∈ W̃k(L) such that the

vertex xk0 is the only positive vertex for f ; all other vertices are to be negative.
Let W+

k (L, aj) = {f ∈ W+
k (L)|f(xk0) = aj}. Let A1 = {a1, . . . , an} ⊗ Z2 ⊂

A,Ak = A⊗k
1 . Then A = ⊕∞

l=0Al.
Let ∂ =

∑
k≥0 ∂k, where ∂k(Ai) ∈ Ai+k−1 and

∂k(aj) =
∑

f∈W+
k+1(L,aj)

f(xk+1
1 ) · · · f(xk+1

k ).

Now, we can extend this differential for the algebra A by linearity and the
Leibnitz rule. Now, the following theorem says that (A, ∂) is indeed a DGA.

Theorem 25.5. The differential ∂ is well defined. We have deg∂ = −1 and
∂2 = 0.

The main theorem on this invariant [Che], see also [Che2], is the following.

Theorem 25.6. Let (A, ∂), (A′, ∂′) be the DGA’s of (π–generic) Legendrian
knot diagrams L,L′. If L and L′ are Legendrian isotopic then the homology
rings H(A, ∂) and H(A′, ∂′) are isomorphic.

The proof is a straightforward check.

25.7 Chekanov–Pushkar’ invariants

The invariants described in this section are purely combinatorial. They
are described in the terms of front projection. Though they are combinatorial
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µ= i

µ= i+1

µ= i

µ= i+1

FIGURE 25.11: Jumps of the Maslov index near cusps

and the proof of their invariance can be easily obtained just by checking all
Reidemeister moves, they have deep homological foundations.

Given a σ–generic oriented Legendrian knot L, let us denote by C(L)
the set of its points corresponding to cusps of σL. The Maslov index µ : L/
C(L) → Γ = Zm is a locally constant function uniquely defined up to an
additive constant by the following rule: the value of µ jumps at points of
C(L) by ±1 as shown in Fig. 25.11. A crossing is called a Maslov crossing if
µ takes the same value on both its branches.

Assume that Σ = σ(L) is a union of closed curves X1, . . . , Xn that have
finitely many self–intersections and meet each other at finitely many points.
Then we call the unordered collection {X1, . . . , Xn} a decomposition of Σ.

Now, a decomposition is called admissible if it satisfies some conditions.
1. Each curve Xi bounds a topologically embedded disk: Xi = ∂Bi.
2. For each i and q ∈ R, the set Bi(q) = {u ∈ R | (q, u) ∈ Bi} is either a

segment, or consists of a single point u such that (q, u) is a cusp of σL, or is
empty.

Conditions 1 and 2 imply that each curve Xi has exactly two cusps (and
hence the number of curves is half the number of cusps). Each Xi is divided by
cusps into two pieces, on which the coordinate q is a monotone function. Near a
crossing x ∈ Xi∩Xj , the decomposition of Σ may look in one of the three ways
represented in Figure 25.12. The first type of crossing shown in Fig. 25.12.a is
automatically ruled out by conditions 1,2. The second type of decomposition
(see Fig. 25.12.b) is called switching. The third type (Fig. 25.12.c) is called
non–switching.

3. If (q0, u) ∈ Xi ∩ Xj is switching for some i 6= j then for each q 6= q0
sufficiently close to q, the set Bi(q)∩Bj(q) either coincides with Bi(q) or with
Bj(q), or is empty.

4. Every switching crossing of type shown in Fig. 25.12b is Maslov.

Definition 25.6. A decomposition is called admissible if it satisfies conditions
1–3 and graded admissible if it also satisfies condition 4.
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a b c

FIGURE 25.12: Three types of switchings

Note that there are three types of crossings with respect to the layout of
Xi, shown in Fig. 25.12.

Denote by Adm(Σ) (respectively, Adm+(Σ) ) the set of admissible (respec-
tively, graded admissible) decompositions of Σ. Given D ∈ Adm(Σ), denote
by Sw(D) the set of its switching points. Define Θ(D) = #(D)−#Sw(D).

Now, we are ready to formulate the main theorem on the Chekanov–
Pushkar’ invariants.

Theorem 25.7. If the σ–generic Legendrian knots L,L′ ⊂ R3 are Legendrian
isotopic then there exists a one–to–one mapping

g : Adm(σ(L))→ Adm(σ(L′))

such that
g(Adm+(σ(L))) = Adm+(σ(L

′))

and Θ(g(D)) = Θ(D) for each D ∈ Adm(σ(L)).
In particular, the numbers #(Adm(σ(L))) and #(Adm+(σ(L))) are in-

variants of Legendrian isotopy.

Proof. It is sufficient to establish a correspondence between the decomposi-
tions in the case when L and L′ differ by a Fuchs–Tabachnikov move; see
Fig. 25.8.

For the first move, the crossing of the move must be switching and the two
cusps are paired.

For the second move, none of the crossings of the move can be switched
so the structure of decompositions does not change.

For the third move, the natural bijection between the crossings of the
diagrams L and L′ induces a bijection between the decompositions.

25.8 Basic examples

Both Chekanov and Chekanov–Pushkar’ invariants cannot be expressed in
terms of finite type invariants.

To show this (in view of the Fuchs–Tabachnikov theorem) it suffices to
present a couple of Legendrian knots which represent the same topological
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5

FIGURE 25.13: Chekanov’s pair. The Maslov crossings are marked with
dots and numbered.

knot (thus have all equal topological finite order invariants) and have equal
Maslov and Bennequin numbers. This couple of knots is called a Chekanov
pair. Their front projections are shown in Fig. 25.13. The left diagram has one
graded admissible decomposition with switching crossings 1 and 4. The right
diagram has two graded admissible decompositions with the sets of switching
crossings {1, 2} and {1, 2, 4, 5}.



Appendix A

Energy of a knot

There is an interesting approach to the study of knots, the knot energy. Such
energies were first investigated by H.K. Moffat [Mof]. We shall describe the
approach proposed by Jun O’Hara. In his work [O’Ha1] (see also [O’Ha2,
O’Ha3]) he proposed studying the energy of the knot. First, it was thought
to be an analogue of the Gauss electromagnetic function for links, but it has
quite different properties.

An energy is a function on knots that has some interesting properties and
some invariance (not invariant under all isotopies!) However, these properties
are worth studying because some of them lead to some invariants of knots;
besides, they allow us to understand better the structure of the space of knots.
Here we shall formulate some theorems and state some heuristic conjectures.

In the present appendix, we shall give a sketchy introduction to the best-
known energy, the Möbius energy.

Definition A.1. Let K be a knot parametrised by a natural parameter
r : S1 → R3, where S1 is the standard unit circle in R2. Then the Möbius
energy of the knot K is given by:

Ef (K) =

∫ ∫

S1×S1

f(|r(t1)− r(t2)|, D(t1, t2))dt1dt2,

where f(·, ·) is some function on the plane (one can take various functions, in
these cases different properties of the energy may arise), D(·, ·) is the function
on S1 × S1 representing the distance between the two points along the circle
(one takes the minimal length), and the integration is taken along the direct
product of the knot by itself with two parameters t1, t2.

Physical matters (for example, a uniformly charged knot) lead to the for-
mula with f(x, y) = 1

x . However, such a function does not always converge.
Thus, other cases are worth studying.

One often uses the function f(x, y) = y2

x .
In this case, the Möbius energy has the following properties. The main

property is that the integral converges for smooth knots.
Actually, the natural parametrisation is not always convenient to use.

In fact, we shall study some transformations of knots where the natural
parametrisation becomes unnatural.

So, it is convenient to define the Möbius energy for the arbitrary parametri-
sation r(u) = r(t(u)) as follows:

497
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E(r) =

∫ ∫ (
1

|r(t(u)) − r(t(v))|2
− 1

D2(t(u), t(v))

)
· |ṫ(u)| · |ṫ(v)|dudv.

1. The Möbius energy is invariant under homothetic transformations.

2. The Möbius energy tends to infinity while the knot is closing to a singular
knot.

3. The Möbius energy is strictly positive.

4. The Möbius energy is invariant under Möbius transformations, namely,
under inversions in spheres not centred at a point of the knot. If we
invert in a sphere centred at a point of the knot K then we obtain a
long knot K ′; one can define the Möbius energy in the same way. In this
case, E(K) = E(K ′) + 4.

5. The absolute minimum of the Möbius energy is realised on the standard
circle.

6. The Möbius energy is smooth with respect to smooth deformations of
the knot.

Let us consider these properties in more detail and prove some of them.
The first property easily follows from the form of the invariant: we have

a double integration that is cancelled (while performing homothety) by the
second power in the denominator. The invariance under shifts and orthogonal
moves is evident.

The second property is obvious: one obtains a denominator that tends to
infinity while the integration domain and coefficients remain separated from
zero.

The third property follows from the fact that the distance between two
points in R3 does not exceed the distance along the arc of the circle for the
corresponding parametrising points (in the natural parametrisation case).

The fourth and the sixth property follow from a straightforward check.
Let us now discuss the fifth property in more detail and establish some

more properties of the Möbius energy. First, let us prove the “long knot prop-
erty”: if K is a knot and X is a point on K then for any sphere centred at
X , for the long knot K ′ obtained from K by inversion in this sphere, we have
E(K) = E(K ′) + 4.

Rather than proving this property explicitly, we shall prove that the energy
of the circle equals four. Then, from some reasonings this property will follow
immediately.

In fact, for the circle in the natural parametrisation, the length along the
circle is (t1 − t2) if 0 ≤ (t1 − t2) ≤ π. The distance is then 2 sin ( t1−t2

2 ).
After a suitable variable change u = t1 − t2, the integral is reduced to the
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single integral multiplied by 2π. Besides, for symmetry reasons, is sufficient to
consider u from zero to π, and then double the obtained result. Then we get:

4π

∫ π

0

(
1

4 sin2(u/2)
− 1

u2

)
du.

The latter equals

lim
ε→0

4π(−1

2
cot(u/2) +

1

u
)|π−ε
ε ,

which is equal to four.
Now, after a small perturbation, each knot can be considered as a knot

containing a small piece of a straight line with arbitrarily small change of
energy.

Taking into account that for any long knot different from the straight line,
we see that the only knot having energy four is the circle; all other knots have
greater energies. This proves the fifth property.

It is easy to see that for long knots the energy is non–negative as well.
Thus, we immediately see that E(K) > 4 for ordinary knots.

Furthermore, for the straight line, the energy equals zero, whence for any
other long knot it is strictly greater than zero. So, the energy of the circle
equals four; this realises the minimum of the energy for all (classical) knots.

This property is very interesting. Thus one can consider the knot energy
as the starting point of Morse theory for the space of knots. One considers the
space of all (smooth knots) and studies the energy function and its properties.
For instance, for each knot there exists its own knot theory with minima,
maxima and other critical points.

The property described above shows that for the unknot there exists only
one minimum, namely, four. This minimum is realised by the circle. The circle
is considered up to moves of the space R3 (orthogonal and shifts) and homo-
theties. So, in some sense one can say that there exists only one minimum of
the energy function on the space of knots.

So, if we consider knots up to orthogonal moves of R3, shifts, and homo-
theties, then the circle is the unique minimum for the unknot.

We see that the energy of each long knot is positive, so the energy of each
closed knot is greater than or equal to four.

One can ask the question whether for each knot there exists a normal
form; i.e., a representative with the minimal energy. The natural questions
(conjectures) are:

1. Does such a normal form (realising the minimum) exist?

2. Is this unique?

Both these questions were stated by Freedman, and now none of them has
any satisfactory solution except for the case of the unknot. Moreover, these
conjectures are not strictly stated: one should find the class of deformation
that defines “the same knot”.
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However, the set of minima and minimal values of the energy function can
be considered as a knot invariant. Since we have many energies (for different
functions f), these invariants seem to be quite strong, so that they seem to
differ for all non-isotopic knots. This is another conjecture.

The only thing that can be said about all knot isotopy classes is that there
exists only a countable number of energy minima.

The absolute minimum of any nontrivial knot has not yet been calculated.
However, the following theorem holds.

Theorem A.1 (Freedman [FHW]). If E(K) ≤ 6π+4, then K is the unknot.

There is another interesting result on the subject, namely, the existence
theorem:

Theorem A.2. Let K be a prime knot isotopy class. Then there exists a
minimal representative Kγ of K such that for each other representative K ′,
we have E(K ′) ≥ E(Kg).

Note that the analogous statement for knots which are not prime is not
proved.
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The A-polynomial

Now we are going to construct one more powerful knot invariant, the A-
polynomial. It was defined in [CCGLS] by Cooper et al. This polynomial
recognizes the unknot, which was proved independently by N.Dunfield and
S.Garoufalidis in [DG] and, independently, by S.Boyer and X.Zhang, [BoZh].

In the present appendix we follow [DG]. The explanation here is how-
ever not self-contained for it relies on a deep result due to P.Kronheimer and
T.Mrowka, whose proof is beyond the scope of our book.

Roughly speaking, the A-polynomial of a knot K in S3 describes SL(2,C)-
representations of the knot complement, as viewed from the boundary. The
authors [CCGLS] initially defined the A-polynomial also for knots in homo-
logically trivial spheres, but we shall restrict ourselves to knots in S3. Let
M = S3\N(K) be the complement to K. The boundary of M is the torus

∂M = ∂M̂(K), whose fundamental group π1(∂M) = Z2 is generated by the
meridian µ and the longitude λ. As we know from Chapter 4, if K is not
trivial the natural map of fundamental groups π1(T

2)→ π1(M(K)) is an in-
clusion. Consider a representation ρ : π1(M) → SL(2,C). The restriction of
ρ to π1(∂M) has a simple form, since a pair of commuting 2× 2-matirces are
typically simultaneously diagonalisable; i.e., up to a conjugation we have

ρ(µ) =

(
M 0
0 M−1

)
and ρ(λ) =

(
L 0
0 L−1

)
. (B.1)

The possible eigenvalues (M,L) of (ρ(µ), ρ(λ)) as ρ varies form a complex
algebraic subvariety of C2. The A-polynomial is the defining equation for the
1-dimensional part of this subvariety; that is, it describes a plane curve whose
points correspond to the restrictions to π1(∂M).

As the group of isometries of hyperbolic 3-space in PSL(2,C), the A-
polynomial is connected to the study of deformation of (incomplete) hyper-
bolic structures on M . For example, the variation of the volume of hyperbolic
structures on M depends only on their restriction on the boundary torus, and
it is controlled entirely by the A-polynomial. Topologically, the sides of the
Newton polygon of the A-polynomial give rise to incompressible surfaces in
M .

The A-polynomial of the unknot is simply L−1. The A-polynomial always
contains a factor L−1 coming from reducible representations; we say that the
A-polynomial is non-trivial if it has an additional factor.
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Theorem B.1. A non-trivial knot in S3 has a non-trivial A-polynomial.
Moreover, the A-polynomial of a non-trivial knot is not a power of (L− 1).

We deduce Theorem B.1 as a direct corollary from the following theorem
due to P.Kronheimer and T.Mrowka [KrMr2]:

Theorem B.2. Let K be a non-trivial knot in S3. For r ∈ Q, let Mr be the
3-manifold which is the r-Dehn surgery on K. If |r| ≤ 2, then there exists a
homomorphism π1(Mr)→ SU(2) with non-cyclic image.

Their proof uses Gauge theory; we shall not present it here. It was pre-
viously known for all non-satellite knots for simple geometric reasons, as we
now describe. When M is hyperbolic, we have the holonomy representation
π1(M)→ SL(2,C) of the complete hyperbolic structure; Thurston showed in
his Hyperbolic Dehn Surgery Theorem that this representation has a complex
curve of deformations which change the holonomy along the boundary [Thi].

Thus, in this case, the A-polynomial is non-trivial. Non-hyperbolic knots
are torus knots or satellites. For torus knots, the non-triviality of the A-
polynomial was shown in [CCGLS] by direct calculation. Satellite knots are
those which have closed incompressible tori in their complements. One can
look at the resulting geometric decomposition, and try to understand how the
representation of each piece could glue together to give a representation of the
whole fundamental group π1(M); however, this seems to be quite difficult in
general.

Since the proof of Theorem B.1 is based on the existence of SU(2)-
representations, we really show that if one looks only at representations
ρ : π1(M) → SU2, then the eigenvalues (M,L) of (ρ(µ), ρ(λ)) sweep out a
real 1-dimensional subset of the unit torus in C∗×C∗. This is interesting even
in the case of hyperbolic knots.

The key ingredient in the reduction of Theorem B.1 to Theorem B.2 is the
Proposition B.1.

B.1 Connection to the Jones polynomial

While the A-polynomial arose from the study of hyperbolic geometry, it
turns out to have connections to seemingly disparate parts of low-dimensional
topology, including the Jones polynomial. As we will now explain, the non-
triviality of the A-polynomial of a knot has implications to the strength of
the coloured Jones function. The latter is essentially the sequence of Jones
polynomials of a knot and its connected parallels. In [GL], it was proved that
the coloured Jones function of a knot is a sequence of Laurent polynomials
which satisfy a q-difference equation. It was observed by Garoufalidis that one
can choose the q-difference in a canonical manner. The corresponding operator
to this q-difference equation is an element of the non-commutative ring
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Z[q±1]〈Q±1, E±1〉(EQ − qQE)

of Laurent polynomials in E and Q which satisfy the commutation relation
EQ = qQE.

This operator defines the so-called non-commutative A-polynomial of
a knot. In [Garo], Garoufalidis conjectured that specializing the non-
commutative polynomial at q = 1 coincides with the A-polynomial of a knot
after a change of variables (E,Q) = (L,M2) (there may also be changes in
the multiplicities of factors and polynomials in Q). This is called the AJ-
conjecture, and if it holds then Theorem B.1 would imply

Corollary B.1. If the AJ Conjecture holds then the coloured Jones polyno-
mial distinguishes the unknot.

B.2 Connection to contact homology

Another surprise is that the A-polynomial is connected with contact ge-
ometry.

L.Ng proved that the A-polynomial can be derived from the simplest piece
of the framed knot contact homology. He constructed a homology theory for
knots in S3, the framed knot contact homology.

Theorem B.3. [NgL] The framed knot contact homology distinguishes the
unknot from any other contact knot in S3.

Now we pass to the proof of Theorem B.1.
We begin by reviewing the definition of the A-polynomial for a compact

3-manifold M whose boundary is a torus. Let R(M) denote the set of repre-
sentations π1(M)→ SL(2,C), which is an affine algebraic variety over C. It is
natural to study representations over tiny automorphisms of SL(2,C), so let
us consider the character variety, X(M), which is the quotient of R(M) by
the action of SL(2,C) conjugation. Technically, one has to take the algebro-
geometric quotient to deal with orbits of reducible representations which are
not closed; in this way X(M) is also an affine complex variety.

To define the A-polynomial, we first need to understand the character
variety X(∂M) of the torus ∂M . We know that π1(∂M) = Z × Z; let us
fix its generators µ, λ. Since this group is commutative, any representation
ρ : π1(∂M) → SL(2,C) is reducible, that is, has a global fixed point for the
Möbius action on CP 1. Moreover, if no element of ρ(π1(∂M)) is parabolic,
then ρ is conjugate to a diagonal representation as in (B.1). As such, X(∂M)
is approximately the whole of ∂C, ∂C with coordinates being the eigenvalues
of (M,L). This is not quite right, as switching (M,L) with (M−1, L−1) gives
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a conjugate representation. In fact, X(∂M) is exactly the quotient of C∗×C∗

under the involution (M,L) 7→ (M−1, L−1).
Now the inclusion i : ∂M → M induces a regular map i∗ : X(M) →

X(∂M) via restriction of representations from π1(M) to π1(∂M). Let V be
the (complex) 1-dimensional part of i∗(X(M)). More precisely, take V to be
the union of the 1-dimensional i∗(X), where X is an irreducible component of
X(M). The curve V is used to define the A-polynomial. To simplify things,
we look at the plane curve V̂ (M) which is the inverse image of V under the
quotient map C∗ ×C∗ → X(∂M). The A-polynomial is the defining equation
for V̂ (M): it is a polynomial in M,L. Since all the maps involved are defined
over Q, the A-polynomial can be normalised to have integral coefficients.

In the definition of the A-polynomial, we looked only at those irreducible
components where i∗(X) is 1-dimensional. In the proof of Theorem B.1, we
shall need the following standard lemma.

Lemma B.1. Let X be an irreducible component of X(M). Then i∗(M) has
dimension 0 or 1.

Proof. There are various proofs of this theorem in the literature; we sketch
two proofs of this.

We need to rule out the possibility that i∗(X) is 2-dimensional and thus,
Zariski-open subset of X(∂M). The approach from [CCGLS] is to introduce
the notion of the volume of a representation ρ : π1(M)→ SL(2,C). This gives
a natural function V ol : X(M)→ R. Then Schläfli’s formula for the change of
volume of a family of polyhedra in H3 shows that the derivative of V ol depends
only on the restriction of representations to ∂1(∂M). This leads to an 1-form
on X(∂M) which must be exact on i∗(X(M)). This form is not exact on any
Zariski-open subset of X(∂M), and hence i∗(X) is at most 1-dimensional.

The other argument is to observe that if i∗ were 2-dimensional, it would
then let us construct ideal points of X(M) where the associated surface has
whatever boundary slope we want. This would contradict Hatcher’s finiteness
theorem for boundary slopes. In more detail, start with a slope α ∈ π1(∂M)
and let β be a complementary slope. Choose a complex number c so that the
curve Y in X(∂M) given by tra = c has i∗(X) ∩ Y dense in Y . Choose a
curve Ỹ ⊂ X whose image under i∗ is dense in Y . Since trα is constant on Y ,
an incompressible surface associated to the ideal point p must have boundary
slope α. But A. Hatcher showed that there are only finitely many α which are
boundary slopes of incompressible surfaces [Hat], a contradiction.

Let us proceed now with the proof of Theorem B.1. When M is the ex-
terior of a knot in S3, then, up to orientation convention, there is a canon-
ical meridian-longitude basis (µ, λ) for π1(∂M), and one uses this basis for
writing the A-polynomial. Since we are interested in the non-triviality of the
A-polynomial, we need to discuss the conventions for dealing with the re-
ducible representations. When M is the exterior of a knot in S3, one has
H1(M,Z) = Z, and so there are many reducible representations which fac-
tor through π1(M) → Z → SL1(C). Irreducible components of X(M) either
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consist of solely reducible representations, or have a Zariski-open subset of
irreducible representations. In the case of the exterior of a knot S3, there is a
single irreducible component of X(M) consisting entirely of reducible repre-
sentations.

This component contributes a factor (L − 1) to the A-polynomial. Some
authors exclude it from the A-polynomial, and define the curve V above to
be the image under i∗ of the irreducible components of X(M) which contain
an irreducible representation. To say that the A-polynomial is non-trivial, we
mean that it does not just consist of the L − 1 coming from the irreducible
representations. We shall now show that the A-polynomial of a non-trivial
knot in S3 is non-trivial, and, moreover, that it is not just a power of L− 1.

Let M be the exterior of K. Let X ′(M) denote X(M) minus the compo-
nent consisting of reducible representations, and let V ′ be the union of the
1-dimensional i∗(X) where X is an irreducible component of X ′(M). The
main part of the theorem is to show that V ′ is non-empty. To this end we
shall prove the following

Proposition B.1. There exists an infinite collection of irreducible represen-
tations ρn : π1(M)→ SL(2,C) whose restrictions to pi1(∂M) are all distinct
in X(∂M).

Before proving this claim, let us deduce V ′ 6= ∅ from it. Assuming the
claim, as a 0-dimensional algebraic variety consists of finitely may points,
there must be some irreducible X in X ′(M) so that the dimension of i∗(X)
is at least 1. Since we eliminated 2-dimensional components, the dimension of
i∗ must be exactly one, and so, V ′ 6= 0.

To prove the claim, we use the SU(2) representation given in B.2. LetM 1
n

be the 1
n filling of M . By Theorem B.2, for each non-zero n ∈ Z we have a

representation ρn : π1(M 1
n
) → SU(2) with non-cyclic image. First, we claim

that the ρn are irreducible as representations into a larger group of SL2(C).
Suppose rhon were reducible. Since H1(M 1

n
,Z)) = 0, the group G = π1(M 1

n
)

coincides with [G,G]. As ρn is reducible, and commutators of elements of
SL2(C) with common fixed point are parabolic with trace 2, it follows that
tr(ρn(γ)) = 2 for all γ ∈ G. But the only element of SU(2) with trace 2 is the
identity, and so ρn would be trivial, a contradiction. So, ρn is irreducible.

As π1(M 1
n
) is a quotient of π1(M), we shall regard ρn as a representation

of π1(M) inot SU(2) ≤ SL(2,C). To prove Proposition B.1, we need to show
that the restrictions of the ρn to π1(∂M) gives an infinite collection of points
on X(∂M). Two representations of π1(∂M) into SU(2) which correspond to
the same point in X(∂M) are actually conjugate, because they both must be
conjugate to the same diagonal representation. Because of this, the proof of
the Proposition B.1 reduces to the fact that the kernels Kn of the ρn give rise
to an infinite collection of different subgroups of π1(∂M) = Z2.

For α is a slope in ∂M , note that ρn extends to π1(Mn) if and only if
α ∈ Kn. As ρn comes from M 1

n
, we have (1, n) ∈ Kn for each n 6= 0. As

(1, 0)-filling gives S3, which is simply connected, we have (1, 0) 6= Kn.
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Because of this, the desired statement follows directly from the following
Lemma with γ being the line x = 1:

Lemma B.2. Suppose γ is a line in R2 which contains infinitely many lattice
points of Z2 and does not contain 0. Consider a collection Kn of subgroups
of Z2 whose union, K, contains all but finitely many of the lattice points on
γ. Suppose, in addition, that there is a lattice point on γ which is not in K.
Then there are infinitely many distinct Kn.

Proof. Assume that there are finitely many Kn. If Kn has rank less than 2,
then Kn is contained in a line through the origin, and so Kn intersects γ in
at most one point. So, we can remove all such Kn of rank less than 2.

So, we can assume the quotient group Z2/Kn to be finite for each n. Let L
be the intersection of Kn; as there are finitely many groups Kn, the subgroup
L is also a finite-index subgroup of Z2. Now, let γ′ be the line parallel to γ
which passes through the origin. As Z2/L is finite, the subgroup H = γ′∩L is
infinite. Let v0 be the given point in γ\K. Then if h ∈ H , we have that v0+h
is also in γ\K since if v0 + h is in some Kn then so is v0 = (v0 + h) − h).
But H is infinite, and thus so is {v0+h} which contradicts that γ\K is finite.
Thus we must have an infinite collection of distinct Kn.

To complete the proof of Theorem B.1, we need to show that the A-
polynomial M is not a power of L − 1. Assume the contrary. Consider the
point pn = (mn, ln) ∈ C∗ × C∗ corresponding to the restriction of ρn to
π1(∂M). As ρn comes from the (1, n)-filling of M , we have mnl

n
n = 1. By the

above argument, all but finitely many of the pairs satisfy the A-polynomial
equation, and hence ln = 1. Then for such n, the relation mnl

n
n = 1 implies

that mn = 1. As ρn has image in SU(2), this implies that ρn is trivial when
restricted to π1(∂M). But then ρn factors over to the S3-surgery, and we get
a contradiction. Thus the A-polynomial is not a power of L− 1.



Appendix C

Garside’s normal form

Below we present a normal form due to Garside [Gars] and give a solution to
the conjugacy problem for classical braids. Very briefly, up to a high power
of a kernel element ∆p, all elements become positive, and the equivalence of
positive elements with no negative generators involved can be checked “by
hand”. Note that since the first solution due to Garside, there have been
many other solutions to the conjugacy problem, see e.g., [Deh2, KT]. We
shall restrict ourselves with the historically first case, which treats the usual
Artin braid group only; the reader interested in the solution to the conjugacy
problem in a more general situation is referred to [KT].

We deal with braid words in letters α±1
1 , . . . , α±1

n , hence, with letters gen-
erating Bn+1. We say that a braid word is positive if it contains no negative
exponents α−1

j .
Words. If A,B are words in the generators and their inverses, then A = B

will mean that A can be transformed into B by using the defining relations,
whence A ∼ B will mean the two words are identical letter by letter, and
A ∼= B means that A is conjugate to B. A word consisting of an ordered
sequence of the generators only, in which no inverse of any generator occurs
will be called a positive word. We shall denote by L(W ) the word-length of a
word W .

For positive words we introduce the notation A=. B if the word A can be
transformed into the word B by elementary braid-moves within the set of
positive words. In the sequel, whenever we use the symbol =. , we deal with
positive braids only.

If A=. B, then L(A) = L(B).

Theorem C.1 (Theorem H). If αiX=. αkY , either of the following holds:

1. k = i =⇒ X=. Y ;

2. |k − i| ≥ 2 =⇒ X=. αkZ, Y=. αiZ

3. |k − i| = 1 =⇒ X=. αkαiZ, Y=. αiαkZ.

for some Z.

The proof of Theorem H is given below.
The next theorem is just the “mirror image” of theorem H , so it’s proof

is almost identical.

507
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Theorem C.2 (Theorem K). In B(n+1) for i, k = 1, 2, . . . , n if Xαi
.
= Y αk,

then:

1. If k = i then X = Y ;

2. If |k − i| ≥ 2 then X=. Zak, Y=. Zai for some Z

3. If |k − i| = 1 then X=. Zaiak, Y=. Zakai.

Let us denote by L the braid length (sum of exponents).

Corollary C.1. In the group B(n + 1) if A
.
= P,B

.
= Q,AXB

.
= PY Q,

(L(A) ≥ 0, L(B) ≥ 0), then X = Y .

This corollary immediately follows from Theorems H and K. The latter
means that the monoid S is cancellative.

Now let us introduce the fundamental word ∆.
We denote the word αrαr+1 · · ·αs (resp., αrαr−1 · · ·αs) with increasing

(res., decreasing) order of generators, by (αr · · ·αs). By Πs we shall denote
the word (α1 · · ·αs).

In the group Bn+1 if R is a map of the set (α1, . . . , αn) onto itself given
by Rαi = αn+1−i, then it is easy to see that the map R can be extended to
an automorphism of Bn+1. Note also that if P=. Q, then RP=. RQ.

Set

∆r ∼ ΠrΠr−1 · · ·Π1.

We shall call ∆r the fundamental word of order r + 1.
Later on we shall often omit the index r and write simply ∆.
The key properties of the element ∆ are:

1. The square of this element belongs to the centre of the braid group
(hence, for the solution of the conjugacy problem we can multiply by
even powers of ∆);

2. each braid becomes positive after multiplying by ∆N for some suffi-
ciently large N .

Hence, after some effort, we can reduce the braid conjugacy problem for
arbitrary braids to the conjugacy problem for positive braids; if we conjugate
positive braids by positive braids, the problem becomes finite.

To realise the above plan, we start with some lemmas
Thus, we get the following:

Lemma C.1 (“inverting lemma”). In Bn+1 for 1 < s ≤ t ≤ n we have
asΠt = Πtas−1.

The proof follows from a direct check.
Analogously one can check the following
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Lemma C.2. In Bn+1, the following equalities hold:

1. a1∆t=. ∆tat (t = 1, 2, . . . , n);

2. as∆=. ∆Ras;

3. a−1
s ∆=. ∆(Ras)

−1;

4. as∆
−1=. ∆

−1Ras;

5. a−1
s ∆−1=. ∆

−1(Ras)
−1.

From these lemmas the reader immediately deduces the following

Theorem C.3. 1. P∆2m=. ∆
2mP , P∆2m+1=. ∆

2m+1RP for all positive
words P (m ≥ 0)

2. Q∆2m = ∆2mQ, Q∆2m+1 = ∆2m+1RQ for all words Q, m positive or
negative.

From easy calculations using the above techniques, one gets the following

Lemma C.3. In the group Bn+1 we have

1. R∆=. ∆

2. rev∆=. ∆.

Here rev is the reverse operator: rev(x1x2 · · ·xt) = xt · · ·x2x1 where
x1, x2, . . . , xt are generators or their inverses.

The proof of 1) is left to the reader as an exercise.
The proof of 2) is by induction. Assume that for any particular r we have

rev∆r=. ∆r. Then

rev∆r+1 ∼ rev{(a1 · · ·ar+1)∆r}

∼ rev∆rrev(a1 · · · ar+1)

=. ∆r(ar+1 · · · a1),
using the induction hypothesis; i.e.,

rev∆r+1=. ΠrΠr−1 · · ·Π1(ar+1 · · · a1).
Now ar+1 commutes with Π1,Π2, . . . ,Πr−1; ar commutes with Π1,Π2, . . . ,

Πr−2, . . . , etc.
Hence

rev∆r+1=. Πrar+1Πr−1ar · · ·Π2a3Π1a2a1 ∼ ∆r+1.

The induction is now established, since the hypothesis is clearly true for
r = 1 and the result follows.
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Lemma C.4. In Bn+1, there exist positive words Xr, Yr such that

arXr=. ∆=. Yrar (r = 1, 2, . . . , n).

By definition ∆ ∼ ΠnΠn−1 · · ·Π2Π1, i.e. ∆=. Y1a1, where Y1 ∼
ΠnΠn−1 · · ·Π2.

We now observe that if f(a2, a3, . . . , at) is any positive word involving the
generators a2, a3, . . . , at only, then by Lemma C.1, we have

Π1f(a1, a2, . . . , at−1)=. f(a2, a3, . . . , at)Πt.

Let at by any particular one of the generators a2, · · · , an. Then, denoting
Πt−1Πt−2 · · ·Π1 by f(a1a2 · · · at−1), we have

∆ ∼ ΠnΠn−1 · · ·Πtf(a1, a2, · · · , at−1)

=. ΠnΠn−1 · · ·Πt+1f(a2, a3, · · · , at)Πt

=. ΠnΠn−1 · · ·Πt+1f(a2, a3, · · · , at)(a1 · · · at−1)at

∼ Ytat,
say.

Now putting Xr = revYr , we have, for r = 1, 2, . . . , n

arXr ∼ arrevYr ∼ rev(Yrar)=. rev∆=. ∆.

Hence words Xr also exist, and the proof is complete.

Corollary C.2. In Bn+1, if A is any positive word, then for r = 1, 2, . . . , n,
there exist words Ar such that ∆A ∼ Arar.

For
∆A=. (RA)∆=. (RA)Yrar ∼ Arar,

say.

Lemma C.5. Let ai be any one of the n generators of the group Bn+1, and
let x1, x2, · · · , xt be generators, not necessarily distinct, such that each xr
commutes with ai. Then if aiP=. x1x2 · · ·xlQ, then there exists some R such
that Q=. aiR.

We have aiP=. x1x2 · · ·xtQ. Hence, by making successfull applications of
theorem H (ii), we have x2x3 · · ·xlQ=. aiR2 for some R2; x3x4 · · ·xtQ=. aiR3

for some R3; . . . xtQ=. aiRt for some Rt; and finally Q=. aiR for some R, as
required.

Lemma C.6. In Bn+1, if ai+1P=. ΠiQ, then Q=. ai+1aiR, for some R (i =
1, 2, . . . , n− 1).
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By hypothesis ai+1P=. a1a2 · · · aiQ, and hence

aiQ=. ai+1T

for some T . Hence, by Theorem H 3), it follows that Q=. ai+1aiR for some
R, as required.

Theorem C.4. If W is any positive word in Bn+1 such that either

(i) W=. a1X1=. a2X2=. · · ·=. anXn,

or
(ii) W=. Y1a1=. Y2a2=. · · ·=. Ynan

then W=. ∆Z for some Z.

Proof. The proof is by induction. Let r ≤ n− 1 be a positive integer. Then as
our induction hypothesis we assume that, in Bn+1, if

W=. a1X1=. a2X2=. · · ·=. arXr,

then W=. ∆rPr for some Pr.
Now suppose that W=. a1X1=. a2X2 · · ·=. arXr=. ar+1Xr+1.
Then from the above formula and from the induction hypothesis it follows

that

ar+1Xr+1=.W=. ∆rPr ∼ (a1 · · ·ar)∆r−1Pr.

Hence, by Lemma C.6,

∆r−1Pr=. ar+1arQr

for some Qr, so that W=. (a1 · · ·ar)ar+1arQr, or putting

T ∼ arQr

W=. (a1 · · ·ar+1)T ∼ Πr+1T.

Now we have

ai+1Xi+1=. (a1 · · · ai)(ai+1 · · · ar+1)T, i = 1, 2, . . . , r − 1,

so that, by Lemma C.6,

(ai+1 · · ·ar+1)T=. ai+1aiSi

for some Si.
Therefore, by Corollary C.1, (ai+2 · · · ar+1)T=. aiSi.
Applying Lemma C.5 it follows that for some Qi
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T=. aiQi (i = 1, 2, . . . , r − 1).

This leads us to
T=. ∆rPr+1

for some Pr+1 and hence to

W=. Πr+1∆rPr+1 ∼ ∆r+1Pr+1.

Remarking that the induction hypothesis is clearly true for r = 1, the
induction is now established and the result follows.

The case ii) is easily obtained from i) by applying rev.

Lemma C.7. If X,Y are any two positive words in Bn+1, then there exist
words U, V , such that UX=. V Y .

Proof. Indeed, let X ∼ r1r2 · · · rl, Y ∼ s1s2 · · · sm be any two positive words
where ri and si are generators, not necessarily distinct. Then, by repeated
application of Corollary C.2, we have

∆mX=. ∆
m−1A1sm=. ∆

m−2A2sm−1sm=. · · ·=. AmY.

The result follows on putting U ∼ ∆m, V ∼ Am.

The following fact is crucial

Theorem C.5. In Bn+1 if two positive words are equal then they are positively
equal.

Proof. Let S be the semi-group generated by a1, a2, · · · , an subject to the
following relations

aiai+1ai = ai+1aiai+1 (1 ≤ i ≤ n− 1)

aiak = akai, (|i− k| ≥ 2).

By Lemma C.7, S is right-reversible. By Corollary C.1, it is cancellative. It
is a standard fact that the map from a right-reversible and cancellative monoid
to the group with the same generators and relations is an inclusion [Öre].
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FIGURE C.1: Cayley graph of the word a3a1a2a5

C.1 Cayley diagrams

The braid group with its standard presentation with generators and defin-
ing relations can be represented by its Cayley graphs. In the sequel, we shall
considerably use the Cayley graph.

Links. We shall call two successive generators of a positive word links.
Thus the initial link of the word a3a1a2a5 is a3; the third link is a2; etc. No
arrow will be put in the Cayley graph, as it will be always understood that
the positive direction is from the left to the right. The drawn figure will show
the initial link on the left, the successive other links extending in order to the
right; see Fig. C.1.

Diagram. Let W be any positive word, and let W,W1,W2, · · · ,Wm be
the complete set of distinct words which are positively equal to W . Then
we shall refer to this set as the diagram of W , and write D(W ). Clearly,
D(W ) ∼ D(W1) ∼ · · · ∼ D(Wm). The words W,W1, · · · ,Wm will be called
routes of D(W ). The process of enumerating routes of D(W ) will be called
drawing the diagram D(W ). In the drawn figure the diagram of W is the
Cayley diagram of all words positively equal to W . The name Cayley will be
omitted from now on.

Nodes of D(W ). Let W be any positive word, and D(W ) its diagram. If
A,X are any two positive words such that W = AX (0 ≤ L(A), L(X)), then
we shall call D(A) a node of D(W ). When we are considering nodes we shall
frequently write the node D(A) as the node A or simply A. If L(A) = t, we
shall say that the node A is of order t.

Sub-routes of D(W ). If W=. AXB(L(A) ≥ 0, L(B) ≥ 0), we shall say that
X is a sub-route of D(W ). If L(A) = 0, we shall say that X is an initial
sub-route of D(W ). If W=. PXQ(L(P ) ≥ 0, L(Q) ≥ 0), we shall say that the
sub-route X starts at P . If W=. RQ=. PXQ, we shall say that the sub-route X
ends at R.

Incidence. If the link ar either i) starts at P or ii) ends at P , we shall say
that the link ar is incident at P . If the links ar, as are both incident at P ,
we shall say that they meet at P . We shall also say that P is the meet of the
links ar, as. If a link ar ends at P and a link ar starts at P , we shall say that
the link ar is repeated at P .

If any sub-route of D(W ) is ∆; i.e., if W = A∆B, (L(A) ≥ 0, L(B) ≥ 0),
we shall say that ∆ is a factor of W or simply that W contains ∆. From
Theorem C.3 it follows that if W contains ∆, then W=. ∆X for some X . If W
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is any positive word which does not contain ∆, we shall say that W is prime
to ∆.

Base ofD(W ). In Bn+1 supposeW is of word-length L, and supposeD(W )
consists of the t wordsW1 ∼ aiajak · · · ,W2 = apaqar · · · ,...Wt ∼ axayaz · · · .
Then there is a one-to-one correspondence between the wordsW1,W2, · · · ,Wt

and the set of numbers P1 = ijk · · · , P2 = pqr · · · , Pt = xyz · · · , where each
number P is expressed in the scale of n + 1, and consists of L digits. The
numbers P are all distinct. Suppose the smallest is Pr. Then the corresponding
word Wr, which is uniquely defined, will be called the base of D(W ) . If A is
a positive word prime to ∆, we shall sometimes denote the base of A by Ā.
The use of this notation will imply that A is positive and prime to ∆.

Lemma C.8. The diagram of any positive word W in Bn+1 can be system-
atically drawn, and is finite.

Let the set of all distinct words positively equal to W through a trans-
formation of chain-length 1 be W1, . . . ,Wt. It is clear that this set can be
enumerated, and is finite. Now consider the set of words positively equal to
W1 by a transformation of chain-length 1. Denote those which are distinct
from W , W1, . . . ,Wt and from each other, by Wt+1,Wt+2, . . . . Continue to
repeat the process for W2,W3, . . . . Clearly the number of positive words of
word-length equal to L(W ) is finite, and hence the set of words positively
equal to W is finite. Hence the sequence W,W1, . . . , ultimately terminates.
It is clear that any word which is positively equal to W must ultimately be
reached through the process outlined above, and the lemma is proved.

C.2 Solution to the word problem

The following theorem is crucial for the solution of the word problem and
conjugacy problem for braids.

Theorem C.6. In Bn+1, every word W can be expressed uniquely in the form
∆mÃ.

Proof. First suppose P is any positive word. From the set D(P ) select any
route starting with as many consecutive sub-routes ∆ as possible equal to
t, say, t ≥ 0. Suppose, P=. ∆

tA. Then A is prime to ∆ as otherwise there
would be a route of D(P ) starting with more than t consecutive sub-routes
∆. Denoting the base of A by Ā, we have P=. ∆

tĀ.
Now let W be any word in Bn+1. Then clearly we may put

W =W1(x1)
−1W2(x2)

−1 · · · (xs)Ws+1,

where eachWr is a positive word of word-length≥ 0, and the xr are generators.
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Note for each xr there exists a positive word Xr such that xrXr=. ∆, so that
(xr)

−1 = Xr∆
−1, and hence

W =W1X1∆
−1W2X2∆

−1 · · ·WsXs∆
−1Ws+1.

Hence, moving the factors ∆−1 to the left, we get W = ∆−sP , where
P is positive. Now, we have P = ∆tÂ for maximum possible t, hence W =
∆−s∆tĀ, or putting t− s = m, we get

W = ∆mĀ.

Now it remains to show that this form is unique.
Suppose ∆mĀ = ∆pB̄.
First suppose p < m, and let m − p = t, where t > 0. Then ∆tĀ = B̄,

and hence ∆tĀ=. B̄. Hence B̄ contains ∆, which is impossible. Therefore (by
symmetry) p = m. This means Ā = B̄, hence Ā=. B̄. But any positive word
has one and only one base. Hence Ā ∼ B̄, and the uniqueness is established.

Definition C.1. Any word W of Bn+1 expressed in the unique form ∆mĀ
will be said to be in the standard form. The index m will be called the power
of W .

Theorem C.7. The necessary and sufficient condition that two words in
Bn+1 are equal is that their standard forms are identical.

C.2.1 The center of Bn+1

Theorem C.8. 1. When n = 1 the centre Bn+1 is generated by ∆

2. When n > 1, the centre of Bn+1 is generated by ∆2.

Proof. The first case is trivial.
Let n > 1 and W be any word in the centre. Then, if X is any word in

Bn+1, X
−1WX =W , so that

WX = XW

. There are three possible forms for W : (a) W = ∆pĀ, where L(Ā) > 0;
(b) W = ∆2m+1; (c) W = ∆2m. We proceed to consider each in turn.

a) W = ∆pĀ(L(Ā) > 0).
Let Ā=. aiAi, L(Ai) ≥ 0. Let |s− i| = 1.
Considering first the case when p is even, put X ∼ asai. Then we have

∆paiAiasai = asai∆
paiAi = ∆pasaiaiAi.

Hence
aiAiasai = asaiaiAi,
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therefore
aiAiasai=. asaiaiAi,

hence by Theorem H , aiaiAi=. aiasAs for some As,

C.2.2 The structure of D(∆)

Theorem C.9. In Bn+1, if W=. ∆V is any positive word containing ∆, then
each of the n links ar (r = 1, 2, . . . , n) is incident at each node of D(W ).

Proof. We know that W=. a1W1=. a2W2=. . . .=. anWn, so the theorem is cer-
tainly true for the initial node.

The proof of the theorem will be by induction. As our induction hypothesis
we assume the theorem is true for all nodes of D(W ) of order ≤ m. Let C be
any node of order m, and let as be any link of the diagram starting at C and
ending at D.

(a) We first consider the links ai, |i− s| ≥ 2. By the induction hypothesis
D(W ) includes either (i) a link ai ending at C or (ii) a link ai starting at C,
or (iii), both (i) and (ii) are true.

(i) ai ends at C (|i − s| ≥ 2). The diagram D(W ) includes Fig. C.2(left).
By the defining relations this implies Fig. C.2(right); i.e., D(W ) includes a
link ai ending at D.

(ii) ai starts at C (|i− s| ≥ 2). The diagram D(W ) includes Fig. C.3(left).
By Theorem H this implies Fig. C.3(right); i.e., D(W ) includes a link ai
starting at D.

(iii) If (i) and (ii) are both true then D(W ) must include both a link ai
ending at D and a link ai starting at D.

Hence in all cases, for |i− s| ≥ 2, at least one link ai is incident to D.
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(b) It remains to consider the links at where |t− s| = 1. The proof will be
omitted. If follows the same pattern as (a) above. In all cases, if |t − s| = 1,
at least one link ai is incident to D.

Now, by hypothesis there is a link as ending at D. Hence, by (a) and (b)
together we see that the n links ar (r = 1, 2, . . . , n) are incident at D. The
induction is established, and the result follows.

Theorem C.10. In Bn+1 every node of D(∆) is the meet of the n links
a1, a2, . . . , an. Furthermore only n links are incident at each node.

By the previous theorem it follows at once that each node of D(∆) is the
meet of the n links a1, · · · , an. It therefore remains only to prove that we
cannot have a repeated link at any node. For suppose the contrary is true, so
that for some A, r,B we have ∆=. AararB. Then

AararBRA=. ∆RA = A∆ and ararX=. ∆,

where X ∼ BRA.
This leads us to

ararX=. a1A1=. · · ·=. ar−1Ar−1=. ar+1Ar+1=. · · ·=. anAn,

and Theorem H now gives

arX=. a1B1=. · · ·=. ar−1Br−1=. ar+1Br+1=. · · ·=. anBn.

Hence, arX contains ∆, which is impossible since L(arX) < L(∆).
The theorem therefore follows.

C.3 Solution to the conjugacy problem in Bn+1

C.3.1 Index length

The algebraic sum of the indices of any given word will be called the index
length. For instance, (α2)

2(α3)
−1α5

1 has index length 4.
The following lemma is crucial for solving the conjugacy problem.

Lemma C.9 (Crucial Lemma). In Bn+1 the number of words in standard
form of index length t and power ≥ p is finite.

Let ∆mĀ be any word satisfying the conditions. Then if L(∆) = d, we
have

m ≥ p (C.1)
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t = md+ L(Ā) (C.2)

Since L(Ā) ≥ 0 and d is positive, the last equation gives

m ≤ t

d
. (C.3)

(C.1) and (C.3) together show that the number of values of m is finite.
(C.2) shows that for any fixed m, L(Ā) is constant, and so the number of
possible values of Ā is finite. This leads us to Lemma C.9.

Definition C.2. In the diagram D(∆) in Bn+1 let α be any initial sub-route
so that ∆

.
= αX (0 ≤ L(X) ≤ L(∆)). We shall call such a sub-route an

α-route. If W is any word in Bn+1, then the word α−1Wα reduced to the
standard form, will be called an alpha-transformation ofW . If α̃ is the base of
any α-route α, then we shall call α̃ an α̃-route and the transformation α̃−1Wα̃
an α̃-transformation of W . It is clear that any α-transformation is equal to
the corresponding α̃-transformation.

C.3.2 Summit form. Summit set. Summit. Summit power

LetW be any word in Bn+1 with standard form ∆mĀ =W1, say. Consider
now the following chain of α-transformations of W .

Take all the α-transformations ofW1, and let those which are of power≥ m
and which are distinct fromW1 and from each other, beW2,W3, . . . ,Wl. Now,
repeat the process for each of the wordsW2,W3, . . . ,Wl, in turn, denoting suc-
cessively by Wl+1,Wl+2, · · · , any new words occurring, the condition being
always that each new word must be of power ≥ m. Continue to repeat the pro-
cess for every new distinct word arising, as the sequenceW1,W2, . . . ,Wl+2, . . . ,
expands. Now, each word of the sequence is of the same index length as W .
Hence, by Crucial Lemma C.9, the sequence is finite, and ultimately a stage
must be reached when further application of the process will yield no new
words.

Suppose that in the set W1,W2, · · · , the highest power reached in s, and
that the words of power s from the subset V1, V2, · · · . Then any Vr will be said
to be a summit form of W . The set V1, V2, · · · , will be called the summit set
or simply the summit of W . The power s of any summit form will be called
the summit power of W . It is clear from the definitions given above that no
single α-transformation of a summit from can be a power greater than the
summit power.

Lemma C.10. In Bn+1, if W = ∆mV , where V is positive, and P is a
positive word such that P−1WP is of power m+ r (r > 0), then V P contains
∆.

By hypothesis, P−1∆mV P = ∆m+rQ̂, so that
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V P = ∆−mP∆m+rQ̂ (C.4)

Put P̃ ∼ P for (m+r) is even, P̃ ∼ RP (m+r is odd). Then, V P = ∆rP̃ Q̂,
which means that V P=. ∆

rP̃ Q̂. Hence V P contains ∆.

Lemma C.11. In Bn+1, if W ∼= V , then there exists a positive word X such
that X−1WX = V .

By hypothesis there exists a word A such that A−1WA = V . Let A =
∆mP̄ . Then

P̄−1∆−mW∆mP̄ = V.

If m is even, we get P̄−1WP̄ = V (P̄ positive). If m is odd, we may apply
the same trick with ∆P̄ instead of just P̄ .

Lemma C.12. In Bn+1, suppose (i) that W ∼ ∆pP̄ is a summit form of any
given word A, (ii) that X is any positive word such that X−1WX = ∆qQ̄,
where q ≥ p, and (iii) that X = uY , where u is an α-route of maximum
length. Then u−1Wu, reduced to standard form is a summit form of A.

Theorem C.11. In Bn+1, A ∼= B if and only if their summit sets are iden-
tical.

Proof. (i) If the condition is satisfied, let C be any member of the common
summit set. Then A ∼= C,B ∼= C. Hence A ∼= B, so that the condition is
certainly sufficient.

(ii) We now proceed to show that the condition is necessary. Suppose

A ∼= B (C.5)

Let

∆pP̂ ∼= A be any summit form of A (C.6)

∆qQ̂ ∼= B be any summit form of B (C.7)

First suppose q ≥ p. Clearly ∆pP̂ ∼= ∆qQ̂, and hence, there exists a positive
word X such that

X−1∆pP̂X = ∆qQ̂ (q ≥ p).
Let X=. u1X1, X1=. u2X2, . . . , etc., and finally Xs=. us+1, where u1, u2, . . . ,

are defined successively as α-routes of maximum length, and X1, X2, . . . , are
words of steadily reducing length, so that the final word Xs+1 is the empty
word.

Then
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X=. u1u2 · · ·us+1.

Using the last equation, the formula X−1∆pP̂X = ∆qQ̂ may be re-
garded as the product of the s+1 successive transformations (u1)

−1∆pP̂ u1 =
Ŵ1, say, in standard form: u−1

2 W1u2 = W2, say, in standard form; · · · ,
(us+1)

−1Wsus+1 = ∆qQ̂ are each summit forms of A.
Hence we cannot have q > p and similarly we cannot have p > q. Hence

p = q and by the argument above ∆qQ̂ ∼ ∆pQ̂ is a summit form of A. We
have thus proved that any summit form of B is a summit form of A. Similarly
any summit form of A is a summit form of B; i.e., the summit sets of A and
B are identical.

C.4 The proof of Theorem H

The theorem for words X,Y of word-length s will be refereed to as Hs.
For s = 0, 1, the theorem is obvious and is left to the reader.

The proof of the general theorem now follows by induction. For our induc-
tion hypothesis we assume

(α) Hs is true for 0 ≤ s ≤ r for transformations of all chain-lengths and
(β) Hr+1 is true for all chain-lengths ≤ t.
Let X,Y be of word-length r + 1, and let aiX=. akY through a transfor-

mation of chain-length t + 1. Let the successive words of the transformation
be W1 ∼ aiX,W2 ∼ · · · ,Wt+2 ∼ akY .

Choose arbitrarily any intermediate wordWc ∼ amW , say, from the middle
of the chain somewhere. The transformations aiX → amW,amW → akY are
each of chain-length ≤ t, and we can therefore apply (β) to them. We have
then

aiX=. amW=. akY.

For the complete proof of Theorem H we have to consider all possible
variations in the values of i,m, k. The general pattern of the proof is, however,
exactly the same for each variation, and it will be sufficient here to deal with
two cases only, as typical examples of the common method of proof.

Case 1. k = i, |m− i| ≥ 2.
We have:

aiX=. amW ; amW=. aiY (|m− i| ≥ 2).

By (β) we have
X=. amP,W=. aiP for some P ;

and
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W=. aiQ;Y=. amQ for some Q.

Hence X=. amP=. amQ=. Y as required.
Case 2. |k − i| ≥ 2, |m− i| ≥ 2, |k −m| = 1.
We have

aiX=. amW ; amW=. akY.

By (β) we get
X=. amP ;W=. aiP for some P ;

and

W=. akamQ, Y=. amakQ for some Q.

By (α), the two expressions for W give us

P=. akR, amQ=. aiR for some R.

The last equation now gives

Q=. aiS,R=. amS for some S.

Therefore

X=. amakamS, Y=. amakaiS.

Hence, using the defining relations, we have

X=. akamakS, Y=. amaiakS=. aiamakS,

i.e., X=. akZ, Y=. aiZ as required, where Z ∼ amakS.
The proofs of other variations in the values of i,m, k are similar.
Since Hr+1 is true for chain length 1, an induction proves it for all chain

lengths, and a further induction (on r) completes the proof of Theorem H .





Appendix D

Unsolved problems in knot theory

I. Below, we give a list of unsolved problems. While compiling the list,
we mostly referred to the Robion Kirby homepage www.math.berkeley.edu/
∼kirby (his problem book on low–dimensional topology). We could not place
here the whole list of problems listed there. We have chosen the problems with
possibly easier formulations but having a great importance in modern knot
theory. Besides, we used some “old” problems formulated in [CF] and still
not solved, and problems from [CD3, Jon4, Mor2]. As for virtual knot theory,
we mostly used the lists of problems [FKM, FIKM] by the author, Louis H.
Kauffman, Roger A. Fenn and Denis P. Ilyutko.

If the problem was formulated by some author, we usually indicate the
author’s name. If the problem belongs to the author of the present book, we
write (V.M).

1. How do we define whether a knot is invertible?

2. Let C(n) be the number of simple unoriented knots in S3 with minimal
number of crossings equal to n. Describe the behaviour of C(n) as n
tends to ∞. Some bounds for C(n) can be found in [Wel].

The first values of C(n) (starting from n = 3) are: 1, 1, 2, 3, 7, 21, 49, 165,
552, 2167, 9998.

3. Similarly, let U(n) be the number of prime knots K for which the un-
knotting number equals n. What is the asymptotic behaviour of U(n)?;
of C(n)/U(n)?

4. Is it true that the minimal number of crossings is additive with respect
to the connected sum operation: c(K1#K2) = c(K1) + c(K2)?

5. (de Souza) Does the connected sum of n knots (not unknots) have un-
knotting number at least n?

The positive answer to this question would follow from the positive
answer to the following question:

6. Is the unknotting number additive with respect to the connected sum:
u(K1#K2) = u(K1) + (K2)?

7. The counterexample to the third Tait conjecture (see Chapter 7) was
found in [HTW1]. It has 15 crossings.

523
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Are there amphicheiral knots with arbitrary minimal crossing number
≥ 15?

8. Are there (prime, alternating) amphicheiral knots with every possible
even minimal crossing number?

9. (Jones) Is there a non-trivial knot for which the Jones polynomial equals
1? Bigelow proved that this problem is equivalent to the existence of a
kernel for the Burau representation of Br(4).

(Kauffman, “virtual reformulation”) There are different methods for
constructing virtual knots with the trivial Jones polynomial. Are there
classical knots among them?

10. Are there infinitely many different knots with the same Kauffman two–
variable polynomial?

In fact, it is shown in [DH] that if such an example exists, the number
of its crossings should be at least 18.

11. Find an upper bound on the number of Reidemeister moves transforming
a diagram of a knot with n crossings to another diagram of the same
knot with m crossing (a function of m,n).

12. Is the Burau representation of Br(4) faithful?

13. (Vassiliev) Are the Vassiliev knot invariants complete ?

14. (Partial case of the previous problem) Is it true that the Vassiliev knot
invariants distinguish inverse knots? In other words, is it true that there
exists inverse knots K and K ′ and a Vassiliev invariant v such that
v(K) 6= v(K ′)?

15. Is there a faithful representation of the virtual braid group V B(n) for
arbitrary n?

O. Chterental [Cht1] constructed a faithful (nonlinear) representation of
the virtual braid group into the automorphism group of “virtual curve
diagrams” and used it to solve the word problem for virtual braids.

16. (Fox) A knot is called a slice if it can be represented as an intersection
of some S2 ⊂ R4 and some three–dimensional hyperplane.

A knot is called a ribbon if it is a boundary of a ribbon disk. Obviously,
each ribbon knot is a slice.

If K is a slice knot, is K a ribbon knot?

17. Two knots given by maps f1, f2 : S1 → S3 are called concordant if the
maps f1,2 can be extended to an embedding F : S1 × I → S3.

Problem (Akbulut and Kirby) If 0–frame surgeries on two knots give
the same 3–manifold then the knots are concordant.
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Remark D.1. The theory of knots, cobordisms and concordance is rep-
resented very well in the works [COT] by Cochran, Orr and Teichner
and [Tei] by Teichner.

18. (Jones and Przytycki) A Lissajous knot is a knot in R3 given by the
following parametric equations:

x = cos(ηxt+ φx)

y = cos(ηyt+ φy)

x = cos(ηzt)

for integer numbers ηx, ηy, ηz . Which knots are Lissajous?

19. (V.M) Find an analogue of combinatorial formulae for the Vassiliev in-
variants for knots and links in terms of d–diagrams.

20. Does every non-trivial knot K have property P , that is, does Dehn
surgery on K always give a non-simply connected manifold?

To date, this problem has been solved positively in many partial cases.

21. (Kauffman) Find a purely combinatorial proof that any two virtually
equivalent classical knots are classically equivalent.

22. (V.M) Can the forbidden move be used for constructing a system of
axioms in order to obtain virtual knot invariants (like skein relations
and Conway algebras).

23. Is there an algorithm for recognising virtual knots?

This problem was essentially solved by the author in [MI] and the ques-
tion is to find an explicit and constructive description for the algorithm.

24. Is there an algorithm that distinguishes whether a virtual knot is isotopic
to a classical one?

25. Crossing number problems (R. Fenn, L. Kauffman, V. M).

For each virtual link L, there are three crossing numbers: the minimal
number C of classical crossings, the minimal number V of virtual cross-
ings, and the minimal total number T of crossings for representatives of
L.

What is the relationship between the least number of virtual cross-
ings and the least genus in a surface representation of the virtual knot?

Is it true that T = V + C?

Are there some (non-trivial) upper and lower bounds for T, V, C
coming from virtual knot polynomials?
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26. Let U1, U2 be some two virtual knots. Is it true that the triviality of
U1#U2 implies the triviality of one of them, where by U1#U2 we mean

any connected sum;

arbitrary connected sum?

The same question about long virtual knots.

27. (X.–S. Lin) Suppose that oriented knots K+ and K− differ at exactly
one crossing at which K+ is positive and K− is negative. If K+ = K−,
does it follow that K+ equals

K1 K2

where either K1 or K2 could be the unknot?

28. There is a visible similarity between the behaviour of parity for classical
knots and the behaviour of the Maslov index.

Construct a parity theory for Legendrian knots in front projection. Use
it to enhance it in a way similar to Chekanov-Eliashberg DGA.

II. In 2009, the author introduced the notion of parity into knot theory,
see [Man22]. The main feature of parity is the possibility of constructing
picture-valued invariants. The simplest key invariant is the parity bracket for
free knots which is defined as the sum over all smoothings at even crossings.
The smoothings themselves are framed 4-graphs since odd crossings remain
untouched. The simplest parity bracket is considered as a Z2-linear combina-
tion of framed 4-graphs modulo second Reidemeister moves.

If a framed 4-graph K has no odd crossings then by definition

[K] = K,

since there are no crossings to smooth and K is the unique crossing of itself.
If K admits no decreasing Reidemeister moves, then this means that K in
the right hand side is the minimal diagram of K modulo Reidemeister moves,
which, in turn, means that for any diagram K equivalent to K ′ we have

[K ′] = K

which by construction means that K appears as a smoothing of K ′.
This principle can be formulated as: If K is complicated enough (in our

case, odd and irreducible) then it realizes itself.
The same principle works not only for odd diagrams, see [Man26, KM2,

KM3].
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Recently, Sam Nelson with coauthors [NOR] introduced various enhance-
ments of quantum invariants by means of quandles and biquandles.

The pattern is as follows. We take a colouring of a knot diagram by ele-
ments of a finite (bi)quandle and then modify some known invariant pattern
(say, skein-relation) by taking into account the colours. Then we take the sum
over all admissible colourings.

This can be also done with the elements of the universal quandle.
Nelson’s construction leads to a (huge) system of equations depending on

colours which can be written down for each particular quandle. This system of
equation a priori leads to a solution where coefficients do not depend on colours
and allows one to restore the initial quantum invariant times the number of
colourings.

Nelson’s enhancements turn out to be a priori at least as powerful as many
known classical invariants, and they indeed turn out to be more powerful since
they detect some effects the initial classical invariants do not detect.

The main difference between the parity bracket and invariants constructed
before is that the parity bracket is valued in pictures unlike the Kauffman
bracket etc. We do not count the number of components after the smoothings;
we count the result of smoothings as a graph (maybe, modulo some moves,
which, however, turn out to be very easy).

The crucial observation of myself of 2016 realized in our joint paper with
D. Ilyutko in January 2017 [IM2] is that

the Gaussian parity itself can be axiomatized by using a very simple bi-
quandle.

Namely, having a framed 4-graph, we can colour its edges by 0 and 1 (after
each crossing we switch from 0 to 1 and back). The crossing is even if two
incoming edges have different labels (1 and 0) and odd otherwise.

Thus, the parity bracket can be written down as follows: we colour edges
by elements of this simple biquandle, and associate with each even crossing the
sum of two splittings with coefficient 1, and associate with each odd crossing
the rigid crossing with coefficient 1. This sum is considered modulo 1, and
graphs with rigid vertices are considered modulo the second Reidemeister
moves.

Thus, we see, that a modification of Nelson’s principle allows one to get
the parity bracket. However, our graphs should be evaluated as graphs, not
as numbers (polynomials, etc).

This allows one to axiomatize further, by using arbitrary biquandles or
universal biquandles, etc. The axioms are written down in my joint paper
with Ilyutko [IM2].

This system of axioms a priori has two “independent” solutions: Nelson’s
solution (when we drop graphs and consider numbers instead) which is ex-
tremely powerful for classical knots and my bracket which leads to pictures
for virtual knots and allows one to realize the parity principle.
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Problem. Does this system have any solution for classical knots (links)
valued in pictures?

Or, globally, how can we get invariants of classical links valued in graphs
related to classical link diagrams?

For example, can we get, say, Borromean rings with a non-zero coefficient
(note that Borromean rings here are considered as a “doodle” not as a link)?

The main problem is that the computer evaluation of this system of equa-
tions even for 3-element biquandles requires a lot of memory time.

The invariant defined by Ilyutko and myself admits several variations.

1. One can consider graphs up to first and second Reidemeister moves
(doodles)

2. One can forget about first and second Reidemeister moves if we know a
priori that the invariant gets multiplied by some constant

3. One can use not just Kauffman bracket formalism, but other graph
formalisms. In particular, if we take Kuperberg’s brackets (three of
them) [Kup2], then we can still realize the principle “If a diagram is
complicated enough then it realizes itself” not exactly by 4-graphs but
by using 3-graphs related to them.

Here the word “complicated enough” leads to a larger class than just
“odd irreducible diagrams”.

It is known [Man26, KM2] that such diagrams almost completely classify
for free knots, that is, one can prove that if diagram has no loops, bigons,
triangles and quadrilaterals, then this diagram is minimal and this minimal
representative is unique.

In particular, the problem of a complete classification of free knots remains
open for a small class of diagrams.

Which is the geometrical interpretation of free knots?
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Zürich 1897, Leipzig, ss. 256–259.
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1–Negative braid, 180
1–Neutral braid, 180
1–Positive braid, 180
3–Manifold virtual, 464
A-polynomial, 501
LD–quasigroup, 184
LD–system, 182
R–matrix, 221
V A–polynomial, 339
α-route, 518
π–generic Lagrangian projection, 487
σ-generic front projection, 487
d–diagram, 9
i–handle, 190
3-Manifold Boundary–irreducible, 62
3-Manifold Irreducible, 62

Absolute value of a braid, 193
Actuality table, 277
Admissible diagram, 474
Alexander matrix, 74

Dehn presentation, 476
Alexander trick, 164
Arc, 38
Arf equivalence, 36
Arf invariant, 35
Arrow

bad, 315
Artin’s relations, 135
Atom, 279

Baguette diagram, 256
Balanced bibracket structure, 291
Base of D(W ), 514
Bennequin number, 490
Biquandle, 325
Borromean rings, 7

Bracket calculus, 293
Braid, 133

pure, 134
quasitoric, 294
unary, 219
virtual, 377

Braid axis, 205
Braid closure, 144
Braid diagram, 136
Braid word, 135
Braid–link, 206
Braided diagram, 165

virtual, 390
Braids isotopy, 133
Burau representation, 152

Canonical generators, 111
Catalan number, 456
Categorification, 393
Cayley graph, 193
Character variety, 503
Chekanov pair, 496
Choice of overpasses, 206
Closure of a virtual braid, 390
Colouring invariant, 39
Colouring matrix, 371
Complex

Khovanov
topological, 91

Koszul, 394
Wehrli, 102

Complexes
quasiisotopic, 93

Compressible surface, 62
Configuration space, 135
Connected sum, 20
Connection, 267
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Connection curvature, 267
Connection flat, 267
Contact structure, 483
Conway polynomial, 75
Conway triple, 65
Coproduct, 249
Covering

orientable, 408
Crossing, 4

semivirtual, 311
splitting, 102
switching, 494

Cube
anticommutative, 95, 399
bifurcation, 94, 399
commutative, 95

Cut chord, 285
Cycle

bad, 409
good, 409
orientable, 410

Degree
of an invariant, 312

Dehn presentation, 476
Dehn twisting, 142
Dehn’s theorem, 46
DGA, 492
Diagonal, 105
Diagram

2-complete, 106, 442
descending, 314
with semivirtual crossings, 312

Diagram alternating, 17
Diagram ascending, 5
Differential

partial, 398, 412
Dimension

graded, 93
Disconnected sum, 20
Drobotukhina polynomial, 447

Edge
bad, 409
good, 409, 410

Euler characteristic
graded, 93

Extension for singular knots, 226

Feynman diagram, 245
Forbidden move, 304
Fork, 153
Four colour problem, 251
Free reduced word, 186
Frobenius embedding, 103
Frobenius extension, 103
Front projection, 486
Fundamental group, 45
Fundamental word, 508

Gauss diagram, 307
Gauss electromagnetic formula, 34
Genus

of a virtual link, 412
slice, 108
Turaev, 412

Gordon-Luecke Theorem, 45
Grading, 397

homological, 397
induced by a filtration, 113
quantum, 93, 397

Hamiltonian cycle, 252
Handle gluing, 467
Handle reduction, 190
Hecke Algebra, 146
Heegaard decomposition, 449
Heegaard diagram, 449

compatible with a link, 473
pointed, 473

Heegaard–Floer invariant, 471
Heegaard-Floer homology, 468
Height, 99, 397, 400

of a Khovanov homology, 435
of a state, 94
of an edge, 94

Height (vertical) atom, 279
Holonomy, 267
Horizontal deformation, 262
Hurwitz action, 180
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Index
length, 517

Infinity change, 43
Integral multiplicative, 268
Invariant

finite-type, 312
Iterated formula, 268

Jacobi diagram, 256
Jones polynomial, 81
Jones–Wenzl idempotent, 458

Kauffman polynomial, 80
Kauffman two–variable polynomial,

82
Kauffman’s bracket, 80
Khovanov homology

width, 122
Kishino knot, 310
Knot, 4

amphicheiral, 5
concordant, 524
figure eight, 5
invertible, 17
Legendrian, 486
Lissajous, 525
long, 20
oriented, 6
polygonal, 13
positive, 109
prime, 22
ribbon, 524
slice, 524
tame, 13
trefoil, 5
left, 6
right, 6

trivial, 5
virtual, 305
twisted, 412

wild, 13
Knot arithmetics, 13
Knot complexity, 4
Knot Floer homology, 472
Knot genus, 25, 481

Knot group, 46, 309
Knot invariant, 4
Knot isotopy, 4
Kontsevich integral, 259, 265

preliminary, 260
Krammer–Bigelow representation,

158

Lagrangian projection, 486
Legendrian isotopy, 486
Leibnitz formula, 234
Link, 6

braided around a point, 163
Hopf, 7
Legendrian, 484
trivial, 6
virtual, 305
alternating, 407

Whitehead, 7
Link component, 6
Link Floer homology, 474
Link isotopy, 6
Linking coefficient, 34
Long knot, 292
Long link, 292
Long quandle, 368, 369
Long unknot, 292
Longitude, 29, 451
Lower arc, 181

Möbius energy, 497
Map, 251
Mapping

Frobenius, 103
Marked d–diagram, 284
Markov equivalent links, 211
Markov theorem, 209
Maslov index, 470, 494
Maslov number, 490
Matrix

factorisation, 394
Meridian, 29
Minimal virtual link diagram, 307
Mirror image, 5, 305
Modified Bernoulli numbers, 275
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Morse knot, 260

Nest, 191
Nested Seifert circles, 165
Noodle, 153, 160

One-term relation, 239
Ordered configuration space, 135
Orientation

alternating, 281

Parity, 331
Periodic domain, 473
Planar braid diagram, 136
Planar isotopy, 14
Positive braid monoid, 183
Primitive element, 244
Product

tensor
ordered, 415
unordered, 398

Product of braids, 133
Proper colouring, 38
Proper handle reduction, 191

Quandle, 55
long
linear, 370

Quantum YBE, 222

Rasmussen invariant, 107
Realisable Gauss diagram, 286
Reidemeister moves, 14
Reidemeister moves Ω4,5, 446
Reidemeister moves generalised, 303
Route, 513

Seifert circle, 23
Seifert surface, 22
Self-linking coefficient, 35
Shadow, 4
Shift

grading, 93
height, 93

Simple Markov equivalence, 211
Singular virtual knot, 320

Skein space, 455
Smoothing, 165
Spherical diagram, 43
Stable braid group, 138
Standard form, 515
State, 79
Structure

source–sink, 281
Sub-route, 513

initial, 513
Subdiagram, 314
Sufficiently large, 48
Summit, 518

form, 518
power, 518
set, 518

System
Frobenius, 103

Tangle, 276
Temperley–Lieb Algebra, 457
Thickened braid, 141
Thickening

orientable, 412
Thickness

of a complex, 105
of a diagram, 106

Threading, 205

Universal (R,A)-construction, 104
Universal Vassiliev–

Kontsevich invariant,
265

Unknot, 5
Unknotting number, 235
Unlink, 6
Unordered side, 166

Van Kampen theorem, 48
Vassiliev invariant, 226
Vassiliev module, 277
Vassiliev relation, 226
Vassiliev’s conjecture, 277
Virtual braid diagram, 377
Virtual handle slide move, 465
Virtual knot
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alternatible, 414
Virtual knot group, 309
Virtual link diagram, 303
Virtualisation conjecture, 411
Vogel’s algorithm, 165

Weight system, 241
Welded knot, 305
Width

of a complex, 105
of a diagram, 106

Wirtinger presentation, 52
Witten–Reshetikhin–Turaev

invariant, 462
for virtual knots, 465

Word prime to ∆, 514
Word reversing, 193
Word-length, 507
Writhe number, 80

Yang–Baxter equation, 221
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