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Primary and secondary characteristic forms

Characteristic forms and
geometric invariants

By SHIING-SHEN CHERN AND JAMES SIMONS*

1. Introduction

This work, originally announced in [4], grew out of an attempt to
derive a purely combinatorial formula for the first Pontrjagin number of a
4-manifold. The hope was that by integrating the characteristic curvature
form (with respect to some Riemannian metric) simplex by simplex, and
replacing the integral over each interior by another on the boundary, one
could evaluate these boundary integrals, add up over the triangulation, and
have the geometry wash out, leaving the sought after combinatorial formula.
This process got stuck by the emergence of a boundary term which did not
yield to a simple combinatorial analysis. The boundary term seemed interest-
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©p,01€ Ap connections on P — M

ks Ap affine map with endpoints ©g, ©1
Definition: The Chern-Simons (2p — 1)-form is

(69, 01) = Ll w(®p) e

Stokes’ formula: da(09,01) = w(01) — w(Oy)
Remark: This Chern-Simons form is a secondary invariant of two connections

Remark: The de Rham cohomology class of w(©) in ng(M) ~ H?’(M;R) is
independent of ©
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We construct it from the previous Chern-Simons form «(—, —) using a pullback bundle:
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e compact, oriented
m P— X principal G-bundle with connection ©

s: X — P section of 7 (may not exist)

RS J s*a(O) integral of Chern-Simons form

I'(0©, s) is independent of the homotopy class of s, since w(©) = 0 for degree reasons

(5 i represents a class in H??(BG;R) el
H?’(BG;Z) - H*(BG; R} image is a full lattice y

Integrality assumption: : {(—,--- ,—) is the image of a level A € H*’(BG;Z)

Then Z (X;0) = exp (2my/—1T(0, s)) € C* is well-defined (Chern-Simons invariant)



Spin refinement
Example: G =C*, p=2, P — M principal C*-bundle with connection ©
Then w(©) € O}, represents c;(P)% € H4(M;Z)

Theorem: If M is a closed, spin 4-manifold, then {c;(P)?, [M]) € 2Z
If X is a closed, spin 3-manifold, then .7 (X;©) € C* has a canonical v/

This square root is the spin Chern-Simons invariant . (X;0) € C*



Spin refinement
Example: G =C*, p=2, P — M principal C*-bundle with connection ©
Then w(©) € O}, represents c;(P)% € H4(M;Z)

Theorem: If M is a closed, spin 4-manifold, then {c;(P)?, [M]) € 2Z
If X is a closed, spin 3-manifold, then .7 (X;©) € C* has a canonical v/

This square root is the spin Chern-Simons invariant . (X;0) € C*

If X = 0M for M a compact spin 4-manifold, and © extends to a C*-connection = on M:

F(X;0) = exp <2wﬁ wa(E)> S (X;0) =exp (27”/—71 JM ;w(5)>




Spin refinement
Example: G =C*, p=2, P — M principal C*-bundle with connection ©
Then w(©) € O}, represents c;(P)% € H4(M;Z)

Theorem: If M is a closed, spin 4-manifold, then {c;(P)?, [M]) € 2Z
If X is a closed, spin 3-manifold, then .7 (X;©) € C* has a canonical v/

This square root is the spin Chern-Simons invariant . (X;0) € C*

If X = 0M for M a compact spin 4-manifold, and © extends to a C*-connection = on M:

F(X;0) = exp <2wﬁ wa(E)> S (X;0) =exp <2wﬁ JM ;w(5)>

The spin refinement is defined based on a cohomology theory E which fits into
° 2
o — HY(—; Z) — B et a2 (R0 e C L e /) ST
The map H?’(BG;7Z) — E?’(BG) maps levels to “spin levels”
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Application to conformal immersions (Chern-Simons)

This appears in the 1973 Chern-Simons paper, here reinterpreted a bit

2 closed spin Riemannian 3-manifold

Oc Levi-Civita SOs-connection on X

7504 secondary spin invariant for “p;/2”

Theorem: S, (RP?,0, ) = -1 Corollary: YSOS(S?’; S g

Theorem: If X — E* is a conformal immersion, then F50,(X;00) =1

i
Ty R 1 e
l l Ti(er s

X e F50,(X:0f0) = F50,(5% 07c) ™) =

Gauss

Proof:
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Chern-Simons as an invertible field theory

Example: G = C*
w= 1
w(O) represents ¢y
Z (5% 0) holonomy of © around circle
(O] - parallel transport
Z (pt; 9) complex line

This generalizes to any (G, p)

Attach a complex line to a G-connection on a closed, oriented (2p — 2)-manifold
(Ramadas-Singer-Weitsman)

Constructions for smooth families of connections

e Express in language of field theory as a map out of a bordism category
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Domain: The bordism category Bord,_; ,\(orientation, G-connection) (n = 2p — 1)
of manifolds equipped with orientation and G-bundle with connection

Codomain: The linear category Line. of 1-dimensional complex vector spaces and
invertible linear maps

“Classical” Chern-Simons theory: A homomorphism
F 1 Bordg,_1 ,(orientation, G-connection) — Lineg
® Includes evaluation in parametrized families and formulas for curvature and holonomy

* A nonflat trivialization of w: P — Y with connection 7 is a not-necessarily-flat section
of m, and it produces a nonzero element of the complex line .7 (Y; )

* There is a spin refinement .#": Bord,,,_; ,(spin structure, G-connection) — Lineg

® The theories .%,.7 are best viewed in the context of generalized differential
cohomology (Cheeger-Simons, Hopkins-Singer, ... )

3



The enhanced Rogers dilogarithm

Begin with power series defined for |z| < 1:

ORI
5
—log(l—2) = Z s
(analytically continue to C\[1,0)) n=1
o i
Liy(2) = Z % (Spence)

S
Il

=4



The enhanced Rogers dilogarithm

P
n

18

Begin with power series defined for |z| < 1: —log(l—2) =
1

S
Il

(analytically continue to C\[1,0))

3

Liy(2) = i % (Spence)
My = (C)?
J\%T = C2 universal (Z x Z) cover of M.
T = {(p1, p2) € My : p1 + pg = 1} (complex) curve in M,, My ~ CPM\{0, 1, 0}
M, = {(u1,u9) € J\A/[T e +e"? =1} Z x 7 cover of M/ (u1,ug) —> (e, e"?)
Z(1) = 27/—1Z Tate twist

Z(2) = Z(1)®% = 47°Z
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Begin with power series defined for |z| < 1: —log(l—2) =
1

S
Il

(analytically continue to C\[1,0))

0 Zn
Li = — Spence
ia(2) nzzjl " (Spence)
M, = (€)?
J\%T = C2 universal (Z x Z) cover of M.

T = {(p1, p2) € My : p1 + pg = 1} (complex) curve in M,, My ~ CPM\{0, 1, 0}
A/T = {(u1,u2) € J\A/[T e +e"? =1} 7 x 7 cover of M/ (ug,ug) — (", e"?)
Z(1) = 2mv/ =12 Tate twist
Z(2) = Z(1)®% = 47°Z

] ) 3 : log(1 — 2) ws dug
Differentiate the power series: dLig(z) = ————dz = —ugdu; = R T

—e
(=i (meromorphic 1-form on the wus-line with simple

poles at Z(1) < C and residues in Z(1))
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2 — 4
Z(1)® =
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My = ((CX)2
M, = C?
7= {(p1, p2) € Myt p1 + pg = 1}
M{J' > {(Uhuz) g J\A/ET AL 2 = 1}
Z(1) = 2m/—1Z

7(2) = Z(l)®2 = 477,

Rogers enhanced dilogarithm

R: M —

(ul, UQ) — F(UQ) 4F

satisfies the differential equation

dR =

K

My — C\Z(1)

(Ufuo) —> . ug

C/2(2)

uiuz

uldug = quul

%

mod Z(2)

— C/Z(2)
— Lig(1 — e¥2)
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¢ It has known values at special z and satisfies several identities



My = C? = {(u1, uz)}
ﬁf/T = {(u17U2) = ﬁ[T Ul 4 U2 — 1}
¢ The Rogers enhanced dilogarithm R: J%’T — C/Z(2) is essentially the function

T %log(z) ol sl o e)

¢ It has known values at special z and satisfies several identities
® The most important is the 5-term identity

R(u1,v1) + -+ - + R(us,vs) = constant, Vi = U1 + Uii1
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Interpretation in terms of flat connections

= ((CX)/E moduli space of flat C*-connections on 2-torus T = R?/Z* (#,6?)

pk,

X flat connections on trivial (product) C*-bundle over T’

moduli space of flat C*-connections with nonflat trivialization over T'/htpy

® Universal C*-connection over ﬁl,, Myp:
A p A
MpxTxC* —=MpxT
to
TN 2
£ = —uy dOt — up dG240E leﬁTxT(C)

® Descend to p: Q — M, x T' with connection 7

il sot ndiis
121 M2

e Curvature: Q(n) = — A df?
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My = {(11, ) € M : 1 + o = 1}
Jwr = {(U17U2) € 3\7[T s el 4 e¥2 = 1}

(6/)*9/ : €*Q (6’)*[;/
/é// /7/ ///
ML, x 7 SR 5, ¢
NNV VNS
e Q/ € Q 0 L/
/ / /
MpxTe—— > M xT M, €

Proposition: : L' — M, is with



(e)*L!

2>
)\]

L

Define a function on JQE’T as the ratio of two sections:

i i 5



(e')kL! e*L

/.

Define a function on JQE’T as the ratio of two sections:

M. € M,
o= i W —
e/y e :
M, € M

The formula for the connection form implies
dp 1

© 4m+/—1

(’LL1 dUQ = UQd’LLl )



(e')kL! e*L

Nt € M, Define a function on M. as the ratio of two sections:
0= it B
e/ i ; ;
M. C My

The formula for the connection form implies
dp 1

e ]

(U1 dUQ = UQd’LLl )

updus — usdu

Define L: JT(’T — C/Z(2) by ¢ = exp < 5

L
Wk By i
2m/—1>’ i



(eN*e! e*L

o Define a function on JQE’T as the ratio of two sections:

Y X
o T T
y R (e/)*r! 17

The formula for the connection form implies

1
dﬁ = (uldu2 = UQd’LLl)

e ]

5 15 updus — usdu
Define L: M. — C/Z(2) by ¢ = exp <W> so I — 22—

Theorem: L = R up to a constant
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Application of spin Chern-Simons to prove 5-term identity

Theorem: The sum L(uj,v1) + - -+ + L(us, vs) is independent of (u;, v;) € J\A/[ép, i € Z/5Z,
which satisfy
W Sds—i A el for all ¢

Remark: Write z; = €%, so 1 — z; = z;_12;+1. There is a connected complex
2-manifold M’y of solutions

1 —% E—+)

z, 7y71_xy

l—zy’ 1—=xy

parametrized by z,y € C satisfying xy # 0, x # 1, y # 1, and zy # 1.
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Proof sketch: Let X be the compact spin 3-manifold with boundary formed from S by
removing a tubular neighborhood of the 5-component link

0X ~ T™ and the restriction of a flat connnection on X to the boundary satisfies

Vi = Ui—1 + Uit for all ¢

My moduli space of flat C*-connections on X

J\ATX moduli space of flat C*-connections with nonflat trivialization over X /htpy



My ()P
(r')* (L") N
MYy - (V)P

® The section .7 is flat (covariant derivative = integral of %w A w vanishes)

* Choose flat section 7/ so # = (r/)*[(7/)®®] (unique up to 5th root of unity)

¢ Pullbacks of ~ and to 3\7['X agree = ( /7/)®% =1 (exp of 5-term identity) //



Application to 3-manifolds

X closed oriented 3-manifold
© flat connection on principal SLo C-bundle P — M
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Application to 3-manifolds

X closed oriented 3-manifold
© flat connection on principal SLo C-bundle P — M
F(X;0) € C* Chern-Simons invariant

Well-known that if X is triangulated, then .#(X;©) can be expressed in terms of dilogs

New idea: Apply stratified abelianization via a spectral network (Gaiotto-Moore-Neitzke)
to identify .7 (X; ©) as the spin Chern-Simons invariant of a flat C*-connection
on the total space of a branched double cover X — X

To appear. ..
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