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Example: quantum cohomology of CPn

(Usual) cohomology ring H•(CPn,Q) ∼ Q[h]/(hn+1) where
h ∈ H2(CPn) = c1(O(1)) is dual to the hyperplane CPn−1 ⊂ CPn.

Linear basis: ∆0 = 1, ∆1 = h, . . . , ∆n = hn.

Poincaré pairing: ⟨∆i , ∆j⟩ =
{

1 if i + j = n
0 otherwise

Multiplication table: ∆i · ∆j =
{

∆i+j if i + j ≤ n
0 otherwise

Quantum cohomology ring : the same space H•(CPn), with the
same Poincaré pairing, and with the new (quantum)
multiplication ⋆q depending on parameter q:

∆i ⋆q ∆j :=
{

∆i+j if i + j ≤ n
q∆i+j−(n+1) if i + j > n

It is isomorphic as a ring to Q[h]/(hn+1 = q).



Geometric meaning (denote X := CPn):

⟨∆i ⋆q ∆j , ∆k⟩ =
∫

I3;0
(∆i ⊠∆j ⊠∆k) + q

∫
I3;1

(∆i ⊠∆j ⊠∆k)

where I3;0 ∈ H2n(X 3) is the class of the main diagonal, and
I3;1 ∈ H4n+2(X 3) is the class of the cycle consisting of triples of
points (x1, x2, x3) lying on a line CP1 ⊂ CPn = X .

In general, for any integer d ≥ 0 we may be tempted to define the
homology class I3;d of X 3 = X × X × X as follows: consider the
variety Mapsd(CP1, X ) of polynomial maps φ : CP1 → X = CPn

of degree d . This is a smooth algebraic variety of complex
dimension n + d(n + 1), and we declare I3;d to be the image of its
fundamental class (problem: noncompactness) under the evaluation
map Mapsd(CP1, X ) → X 3 : φ 7→

(
φ(0), φ(1), φ(∞)

)
.

By degree reasons only d = 0, 1 terms survive in ”correct formula”

⟨∆i ⋆q ∆j , ∆k⟩ =
∑
d≥0

qd
∫

I3;d
∆i ⊠∆j ⊠∆k



General theory of Gromov-Witten invariants
Input: X , a smooth projective algebraic variety over C

⇝Output: for any β ∈ H2(X ,Z) and any k ≥ 0, a homology class

Ik;β ∈ H2δ(X k ,Q)

where δ = δk;β := dimC X + k − 3 +
∫

β c1(TX ) is the virtual
dimension of certain compact possibly singular moduli orbi-space of
so called stable maps Mgenus=0,k(X , β), whose open (but possibly
not everywhere dense) part consists of isomorphism classes of
tuples (C , p1, . . . , pk ; φ) where C ≃ CP1 is a rational curve (i.e. of
genus=0) with k ≥ 3 distinct marked points p1, . . . , pk , and
φ : C → X is an algebraic map of degree β = φ∗([C ]).
The class Ik;β is defined as the image of virtual fundamental class
∈ H2δk;β (Mg=0,k(X , β),Q) under the evaluation map.

We love Gromov-Witten invariants because their generating series
satisfies a beautiful system of non-linear differential equations
(WDVV equations) =⇒ quantum deformation of H•(X ).



Quantum multiplication from GW invariants
Let us choose a linear basis (∆i) of H•(X ,Q) compatible with
Z-grading, and such that ∆0 = 1 ∈ H0(X ,Q) = Q and
∆1, . . . , ∆r ∈ H2(X ,Q) are the first Chern classes of ample line
bundles on X where r = rk H1,1(X ) ∩ H2(X ,Q) (Hodge classes in
degree 2). Let us introduce formal variables ti (even or odd)
corresponding to elements ∆i of the basis, and also additional even
formal variables q1, . . . , qr .
The quantum multiplication is a linear map preserving Z/2-grading:

⋆ = ⋆q,t : H ⊗ H → H[[q1, . . . , qr ; t0, t1, . . .︸ ︷︷ ︸
exterior algebra

in odd ti

]], H := H•(X ,Q)

⟨∆i1⋆∆i2 , ∆i3⟩ =
∑

β∈H2(X ,Z)

r∏
j=1

q
∫

β
∆j

j
∑
k≥0,

i4,...,ik+3

∏
j≥4

tij

k!

∫
Ik+3,β

∆i1⊠· · ·⊠∆ik+3



Quantum multiplication is associative ⇐⇒

⟨∆i1 ⋆ ∆i2 , ∆i3 ⋆ ∆4⟩ = ⟨∆i1 ⋆ ∆i3 , ∆i2 ⋆ ∆4⟩,

(WDVV equations, or associativity axiom), does not depend on t0
(corresponding to 1 ∈ H0(X ) (unit axiom), and depends on
variables q1, . . . , qt , t1, . . . , tr only via expressions (qiet

i )i=1,...,r
(divisor axiom).

The origin of Witten-Dijkgraaf-Verlinde-Verlinde equation:
consider the virtual fundamental cycle of stable maps from rational
curves with 4 + k points p1, . . . , pk+4 such that the cross-ratio
λ = (p1 : p2 : p3 : p4) ∈ C is fixed. This class does not depend on
the value of λ, and in the limits λ → 0, ∞ one obtains the
matching of Taylor coefficients between the l.h.s. and the r.h.s. of
WDVV equation.



Example: rational curves on CP2

By the unit and divisor axioms, GW invariants of X = CP2 are
determined by a sequence of numbers c1 = 1, c2 = 1, c3 = 12, . . .
where cd ∈ Z is the number of rational curves in CP2 of degree
d ≥ 1 passing through generic (3d + 2) points.

WDVV equtions ⇐⇒ recursion

∀d ≥ 2 : cd =
∑

d1+d2=d
d1,d2≥1

cd1cd2

[
d2

1 d2
2

(
3d − 4
3d1 − 2

)
− d3

1 d2

(
3d − 4
3d1 − 1

)]

⇝ (using c1 = 1) c2 = 1, c3 = 12, c4 = 620, c4 = 87403, . . .
Generating series is related to a solution of Painlevé VI equation.



Theory of Gromov-Witten invariants is ∼ 30 years old beautiful but
isolated chapter of algebraic geometry, it was almost useless for
”classical” questions.

GW invariants are invariant under continuous deformations of
algebraic varieties, and in fact can be defined for arbitrary compact
sympectic manifolds (following pioneering ideas of A.Floer and
M.Gromov), via pseudo-holomorphic maps.

The only obvious relation between algebraic geometry and
GW-invariants is that the latter are Q-linear combinations of
algebraic classes. It looks (in examples) like a weak constraint...

Not true any more!!!

GW theory is a new powerful universal tool in birational geometry



F -manifolds with Euler fields
In general, the convergence of series in the definition of quantum
product is not known. One of possible fixes is to work in an
algebraically closed non-archimedean field K := ∪N≥1Q((y1/N)).
Let us consider the K-analytic super manifold FX with coordinates
q1, . . . , qr and ti for i /∈ {1, . . . , r} where

0 < |qi | < 1, 0 ≤ |ti | < 1 for j such that ∆i is an even class

Quantum multuplication gives an associative commutative product
⋆ on the tangent bundle TFX identified with H•(X ) via

∆i 7→
{

qi∂qi if i ∈ {1, . . . , r}
∂ti otherwise

Another important structure is Euler vector field given by the
cohomology class

Eu := c1(TX ) +
∑

i :deg ∆i ̸=2

deg ∆i − 2
2 ti∆i



Decomposition theorem

Denote M := FX . The multiplication ⋆ ∈ Γ(M, (T ∗
M)⊗2 ⊗ TM)

and the Euler field Eu ∈ Γ(M, TM) are related by

LieEu(⋆) = ⋆ .

Let us consider a point p ∈ Meven and a finite collecton of disjoint
open discs (Dα) ∈ K such that the spectrum of the operator Eu ⋆ ·
acting on TpM, is contained in the union ⊔αDα. Then locally
near p the same is true, and we get a decomposition of TM in the
vicinity of p into a direct sum of subspaces. The general result is
that this decomposition comes from a canonical decomposition

(M, ⋆, Eu) =
∏
α

(Mα, ⋆α, Euα) near p

of (quotient) varieties endowed with products and Euler fields.



Blowup formula

Let Z ⊂ X be a smooth closed subvariety of codimension m ≥ 2.

By making blowup with center at Z we obtain a new smooth
projective variety X̃ = BlZ X . It is well-known that there is a
canonical identification of cohomology spaces (breaking Z-grading
and cup-product)

H•(X̃ ) ≃ H•(X ) ⊕
⊕

(m−1) copies
H•(Z )

If we consider spectrum of (Eu ⋆ ·)|TpF
X̃

for a point p ∈ Feven
X̃

corresponding to an ample class on X̃ sufficiently close to the
semi-ample class [X̃ → X ]∗ωX where ωX is an ample class, we
obtain a picture like this:



where eigenvalues close to 0 corresponding to classes in H•(X ),
and eigenvalues close to the rescaled (m − 1)-st roots of 1
corresponding to classes in H•(Z ).

The calculation is very easy, it is similar to the calculation of the
quantum product for CPn at the beginning of this lecture. The
only relevant curves are constant maps and lines in the
projectivization of the normal bundle to Z ⊂ X .



By the general decomposition theorem, we conclude that MX̃ is
locally isomorphic to the product of m different F -manifolds with
Euler fields, which have the same dimensions as MX and (m − 1)
copies of MZ . In 2019 I conjectured that the factors are
canonically isomorphic to open domains in MX and MZ
respectively.

Last year Hiroshi Iritani (arXiv:2307.13555) proved this conjecture.

Iritani’s result opens the gate to applications in birational
geometry, and right now we (L.Katzarkov, T.Pantev, T. Yu and
myself) are writing it up.

I’ll show the force of the new theory, solving one of oldest open
puzzles, which have resisted up to now all attempts based on the
classical methods.



Atoms
Let X be a complex projective variety, consider the subspace of its
even cohomology H2•(X ,Q) spanned by the Hodge classes:

HHogde(X ) := ⊕i
(
H i ,i(X ) ∩ H2i(X ,Q)

)
This subspace gives a purely even submanifold MX ,Hodge ⊂ MX
over K, of dimension equal to the rank of HHogde(X ).
The spectrum of operator Eup ⋆ · where p ∈ MX ,Hodge achieves
certain maximal value µ at a dense open nonempty connected
subset Mo

X ,Hodge ⊂ MX ,Hodge . Eigenvalues of Eup ⋆ · give a µ-fold
spectral cover of Mo

X ,Hodge , possibly disconnected.

Definition: the set of local atoms AtomsX is the set of connected
components of the spectral cover described above.

Important example: if KX = det T ∗
X is numerically effective (has

non-zero intersection with any curve), then AtomsX consists just of
one point. Reason: quantum product preserves filtration H≥•(X ).



Now consider the following huge set:⊔
iso classes of X/C

(
AtomsX /Aut X

)
Iritani’s theorem implies that one can relate certain elements of
MX̃ with some elements of MX or MZ . This generates certain
equivalence relation on the set above, and we denote by AtomsC
the set of equivalence classes. This set is naturally filtered by the
minimal dimension of a variety in which an atom can appear.

Well-known fact: birational equivalences between smooth
projective varieties are generated by blowups with smooth centers
of codimension ≥ 2 =⇒ non-rationality criterion:

If for an N-dimensional variety X (here N ≥ 2) at least one of
atoms of X does not appear in varieties of dimension ≤ N − 2,
then X is not rational.



Some invariants of atoms
Our goal is to prove non-rationality of certain 4-dimensional
varieties. Hence we have to study atoms coming from all
≤ 2-dimensional varieties, i.e. from points, curves and surfaces.
Moreover, it is sufficient to consider only one representative in
each birational class of surfaces.

For every atom α (in general) we have following invariants:
1. the rank ρα of the space of Hodge classes HHogde(X ) ⊗Q K in

the corresponding generalized eigenspace of Eu ⋆ ·,
2. the Hodge polynomial Pα ∈ Z[t, t−1] whose coefficient at tk

is equal to the rank of the generalized α-eigenspace in
⊕p,q:p−q=kHp,q(X ).

Using these two types of invariants we will be able to distinguish
certain atom of the generic cubic 4-fold from those coming from
points, curves and surfaces.



Atoms from ≤ 2-dimensional varieties

1. for any atom α coming from points or curves we obviously
have Coefft2Pα = 0 ,

2. for minimal models X of all surfaces, except surfaces of
general type and K3 surfaces, we have Coefft2Pα = 0 for
any atom coming from X , because H2,0(X ) = 0,

3. for the minimal resolution X of ADE singularities of the
minimal model of a K3 surface or a surface of general type,
we have KX ≥ 0, hence only one atom α and then ρα ≥ 3 ,
as X has two non-trivial algebraic cycles of dimensions 0, 2
and at least one non-trivial algebraic cycle of dimension 1.



Non-rationality of the generic cubic 4-fold
Generic cubic 4-fold X ⊂ CP5 has the following Hodge diamond
(and the decomposition into the sum of Hodge classes and the
transcendental part):

1
1

1
1

1

1

21

1
1

1
1

1

11 20= ⊕

Classical Givental’s calculation: at a special (maybe non-generic)
point of MX ,Hogde the spectrum of Eu is

24 1

1

1

hence the middle part has ρ = 2, Coefft2Pα = 1
=⇒ it can not come from ≤ 2 dimensions. ■


