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RELIABILITY: BASIC DEFINITIONS

• Failure time T , with pdf f(t) and cdf F (t), t ≥ 0

• Failures T1, . . . , Tn ⇒ Wi = Ti − Ti−1 interfailure (interarrival) times

• Reliability function: S(t) = P(T > t) =
∫∞
t

f(x)dx

• Mean time to failure MTTF =
∫∞
0 tf(t)dt =

∫∞
0 S(t)dt

• Hazard function (hazard rate, failure rate):

h(t) = lim
∆t→0

P(t ≤ T < t+∆t|T ≥ t)

∆t
=

f(t)

S(t)

– h(t) not a density but h(t)∆t ≈ P(t ≤ T < t+∆t|T ≥ t)

– h(t) = f(t)
S(t)

– f(t) = h(t)S(t) = h(t)e−
∫ t

0
h(x)dx
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SOFTWARE RELIABILITY

• Software reliability can be defined as the probability of failure-free operation of a
computer code for a specified mission time in a specified input environment

• Here we are interested in the evolution of the reliability during the phase of software
testing, where the goal is to remove as many bugs as possible before marketing but
there is the risk of introducing new bugs and worsening the reliability

• Software testing is an important phase before marketing a product

– Software released too early might have many bugs (errors), causing losses to
the producers, due to repair costs and worsened reputation

– Software released too late might have very few or no bugs but it could be obso-
lete or marketed when competitors have already sold their own software

• Optimal release time is a target, possibly achievable by using (Bayesian) statistics
and decision analysis in combining available data (and experts’ opinions) and utility
functions based on costs and revenues
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HIDDEN MARKOV MODEL

• Failure times t1 < t2 < . . . < tn in (0, y]

• Yt latent process describing reliability status of software at time t (e.g. growing,
decreasing and constant)

• Yt changing only after a failure ⇒ Yt = Ym for t ∈ (tm−1, tm], m = 1, . . . , n + 1,
with t0 = 0, tn+1 = y and Yt0 = Y0

• {Yn}n∈N Markov chain with

– discrete state space E

– transition matrix P with rows Pi = (Pi1, . . . , Pik), i = 1, . . . , k

• k might be fixed and known or to be estimated
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HIDDEN MARKOV MODEL

• Interarrival times of m-th failure Xm|Ym = i ∼ E(λ(i)), i = 1, . . . , k,m = 1, . . . , n

• Xm’s independent given Y ⇒ f(X1, . . . , Xn|Y ) =
n∏

m=1

f(Xm|Y )

• Pi ∼ Dir(αi1, . . . , αik), ∀i ∈ E, i.e. π(Pi) ∝
k∏

j=1

P
αij−1
ij

• Independent λ(i) ∼ G(a(i), b(i)), ∀i ∈ E

• For fixed k (number of states), available full conditionals ⇒ Gibbs sampling

– λ(i) ∼ G, ∀i ∈ E

– Pi ∼ D, ∀i ∈ E,

– Ym given by a discrete distribution in closed form, m = 1, . . . , n
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HIDDEN MARKOV MODEL: SOME ISSUES

• We dealt earlier with many independent r.v.’s and computed the likelihood as the
product of their density

• Here we have interarrival times Xm which are not independent but we are still able to
consider the product of their conditional densities since they are independent given
the hidden states Ym

P (X1, . . . , Xn|Y ) =
∫ ∏n

m=1 P(Xm|Ym)P(Y1, . . . , Yn)dY

• In the Bayesian framework the hidden states Ym are treated as if they were param-
eters and they are drawn at each iteration of the MCMC from an adequate posterior
conditional distribution

• At the end it is possible to estimate the state of the hidden chain at each time m by
considering the frequency of each state in the sample drawn from the MCMC

• Estimation of the number of states K was done either through Reversible jump
MCMC or Bayes factor out of MCMC (Chib’s method)
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SOFTWARE RELIABILITY - MUSA DATA

• Musa System 1 data: 136 software failure times

• Hidden Markov model with 2 unknown states

Posterior Predictive Density of X[137]

x[137]
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SOFTWARE RELIABILITY - MUSA DATA

Posterior Distribution of Lambda[1]
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SOFTWARE RELIABILITY - MUSA DATA

Posterior Distribution of P[1,1]
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Posterior Distribution of P[1,2]
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Posterior Distribution of P[2,1]
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SOFTWARE RELIABILITY - MUSA DATA
Time Series Plot of Failure Times
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Time Series Plot of Posterior Probabilities of Y(t)=1
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Longer failure times ⇒ higher Bayes estimator of probability of ”good” state
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GAS ESCAPES IN A CITY NETWORK

• Setting up an efficient replacement policy in a large metropolitan gas distribution
network developed in the last century

• Assessment of failure rate of the pipelines, different for materials (cast iron, steel,
polyethylene, etc.) and conditions (diameter, laying depth, etc.)

• Change of pipelines with highest failure rate

• (Traditional) cast iron pipelines with higher failure rate than other materials

– not subject to corrosion (aging)

– propensity-to-failure in a unit time period or unit length does not vary significantly
with time and space

– rare events occurring randomly and not affecting the next ones

– ⇒ HPP

• EDA identified diameter, laying depth and location as the most significant factors
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FAILURES IN CAST-IRON PIPES

• HPP with parameter λ (unit failure rate in time and space)

• n failures in [0, T ]× S,⇒ L(λ|n, T,S) = (λsT )ne−λsT , with s = meas(S)

• Data: n = 150 failures in T = 6 years on a net ≈ s = 312 Km long

• ⇒ L(λ|n, T,S) = (1872λ)150e−1872λ

• MLE λ̂ = n/(sT ) = 150/1872 = 0.080

• λ ∼ G(α, β) ⇒ λ|n, T,S ∼ G(α+ n, β + sT )

• Consider 8 classes determined by two levels of relevant covariates: diameter, loca-
tion and depth
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FAILURES IN CAST-IRON PIPE

Depth < 0.9 m 0.0717

D < 125 mm 0.0755

Depth > 0.9 m 0.0941

Sidewalk 0.0698

Depth < 0.9 m 0.0666

D > 125 mm 0.0656

Depth > 0.9 m 0.0600

Overall 0.08003

Depth < 0.9 m 0.1773

D < 125 mm 0.1668

Depth > 0.9 m 0.1152

Street 0.1497

Depth < 0.9 m 0.1315

D > 125 mm 0.1371

[failures/(km year)] Depth > 0.9 m 0.1777
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ELICITATION OF EXPERTS’ OPINIONS

• A questionnaire was given to 26 experts from different areas within the company

• Interviewees were unable to say how many failures they expected to see on a kilo-
meter of a given kind of pipe in a year (even upper and lower bounds on them!)

• The experts had great difficulty in saying how and how much a factor influenced the
failure and expressing opinions directly on the model parameters while they were
able to compare the performance against failure of different pipeline classes

• To obtain such a propensity-to-failure index, each expert was asked to compare the
pipeline classes pairwise. In a pairwise comparison the judgement is the expression
of the relation between two elements that is given, for greater simplicity, in a linguistic
shape

• The linguistic judgement scale is referred to a numerical scale (Saaty’s proposal:
Analytic Hierarchy Process) and the numerical judgements can be reported in a
single matrix of pairwise comparisons
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ELICITATION OF EXPERTS’ OPINIONS

   2   1 3 4  5 6 7 8
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ANALYTIC HIERARCHY PROCESS

• Two alternatives A and B

B “equally likely as” A → 1
B “a little more likely than” A → 3
B “much more likely than” A → 5
B “clearly more likely than” A → 7
B “definitely more likely than” A → 9

• Pairwise comparison for alternatives A1, . . . , An

• ⇒ square matrix of size n

• ⇒ (normalized) eigenvector associated with the largest eigenvalue

• ⇒ (P (A1), . . . , P (An))

• Question: if a gas escape occurs, where do think it will occur if you have to choose
between subnetwork A and subnetwork B?
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ANALYTIC HIERARCHY PROCESS

An expert’s opinion on propensity to failure of cast-iron pipes

Class 1 2 3 4 5 6 7 8

1 1 3 3 3 1/6 1 1/6 3
2 1/3 1 1/4 2 1/6 1/2 1/5 1
3 1/3 4 1 1 1/4 1 1/6 2
4 1/3 1/2 1 1 1/5 1 1/5 1
5 6 6 4 5 1 4 4 5
6 1 2 1 1 1/4 1 1/6 1
7 6 5 6 5 1/4 6 1 4
8 1/3 1 1/2 1 1/5 1 1/4 1
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ELICITATION OF EXPERTS’ OPINIONS
Values elicited by experts ⇒ similar opinions
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MODELS FOR CAST-IRON PIPES
Independent classes Ai, i = 1,8, given by 3 covariates (diameter, location and depth)
⇒ find the “most risky” class

• Failures in the network occur at rate λ and allocated to class Ai with probability
P (Ai) ⇒ failures in class Ai occur at rate λi = λP (Ai) (Coloring Theorem)

• P (Ai) given by AHP for any expert

• Choice of λ ⇒ critical

– Proper way to proceed:

∗ Use experts’ opinions through AHP to get a Dirichlet prior on pi = P (Ai)

∗ Ask the experts about the expected number of gas escapes for given period
and length of network ⇒ statements on λ, unit failure rate for entire network,
and get a gamma prior on it

– What we did

∗ Estimate λ by MLE λ̂ with a unique HPP for the network

∗ Use experts’ opinions through AHP to get a prior on λi = λ̂P (Ai)
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MODELS FOR CAST-IRON PIPES

• Choice of priors

– Gamma vs. Lognormal [informal sensitivity]

– For each expert, eigenvector from AHP multiplied by λ̂⇒ sample about (λ1, . . . , λ8)

– Mean and variance of priors on λi’s estimated from the sample of size 26 (num-
ber of experts) using the method of moments

• Posterior mean of failure rate λi for each class

• Classes ranked according to posterior means (largest ⇒ most keen to gas escapes)

• Sensitivity

– Classes of Gamma priors on λ with mean and/or variance in intervals

– Quantile class on λ
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ESTIMATES’ COMPARISON

• Location: W (under walkway) or T (under traffic)
• Diameter: S (small, < 125 mm) or L (large, ≥ 125 mm)
• Depth: N (not deep, < 0.9 m) or D (deep , ≥ 0.9 m)

Class MLE Bayes (LN ) Bayes (G)
TSN .177 .217 .231
TSD .115 .102 .104
TLN .131 .158 .143
TLD .178 .092 .094
WSN .072 .074 .075
WSD .094 .082 .081
WLN .066 .069 .066
WLD .060 .049 .051

Highest value; 2nd-4th values

• Location is the most relevant covariate
• TLD: 3 failures along 2.8 Km but quite unlikely to fail according to the experts
• LN and G ⇒ similar answers
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RENEWAL PROCESS

• Sequence of failure times X0 = 0 ≤ X1 ≤ X2 ≤ · · ·

• Interfailure times Ti = Xi −Xi−1 for i = 1,2, . . .

• If T1, T2, . . . sequence of i.i.d. random variables

• ⇒ {Ti} stochastic process called renewal process

• The previous HPP N(t), with N(t) ∼ P(λt), is an example of renewal process
since the interfailure times T1, . . . are i.i.d. exponential random variables

• We check only for T1, but it is possible to prove for all the other interfailure times:

P(N(t) = 0) = e−λt = P(T1 > t) ⇒ survival/reliability function of E(λ)
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RENEWAL PROCESS

• Number of cycles run by washing machines before failure (same model, operated
under same conditions)

• ⇒ Sequence of integer-valued random variables N1, . . . , Nn

• Assume Ni’s, i = 1, . . . , n, are i.i.d. Poisson P (λ) random variables

• ⇒ likelihood given by l(λ|data) =
λ
∑n

i=1
Ni∏n

i=1Ni!
e−nλ

• Conjugate gamma G (α, β) prior for λ

• ⇒ Posterior G
(
α+

∑n
i=1Ni, β + n

)
• Posterior mean

α+
∑n

i=1Ni

β + n
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NONHOMOGENEOUS POISSON PROCESS

• NHPP are used in many fields but we will concentrate here on reliability

• NHPP used to model reliability growth/decay

• NHPP good for

– prototype testing

– repair of small components in complex systems

• Repair strategies in a NHPP:

– instantaneous

– minimal repair (⇒ back to previous reliability)

Repairs could worsen the reliability
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NONHOMOGENEOUS POISSON PROCESS

• NHPPs characterized by intensity function λ(t) varying over time

• ⇒ NHPPs useful to describe (rare) events whose rate of occurrence evolves over
time (e.g. gas escapes in steel pipelines)

– Life cycle of a new product

∗ initial elevated number of failures (infant mortality )

∗ almost steady rate of failures (useful life)

∗ increasing number of failures (obsolescence)

⇒ NHPP with a bathtub intensity function

• NHPP has no stationary increments, unlike the HPP

• Superposition and Coloring Theorems can be applied to NHPPs

• Elicitation of priors raises similar issues as before
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NONHOMOGENEOUS POISSON PROCESS
N(t) Power Law process (PLP) (or Weibull process)

• l(M,β | T1, . . . , Tn) = Mnβn
n∏

i=1

T β−1
i e−MT β

• Independent priors M ∼ G (α, δ) and β ∼ G (µ, ν)

• Possible dependent prior: M |β ∼ G
(
α, δβ

)
• ⇒ posterior conditionals (in red changes for dependent prior)

M |T1, . . . , Tnβ ∼ G
(
α+ n, δβ + T β

)
β|T1, . . . , TnM ∝ βµ+n−1 exp{β(

n∑
i=1

logTi − ν)−MT β−Mδβ}

• Sample from posterior applying Metropolis step within Gibbs sampler
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POWER LAW PROCESS
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RELIABILITY MEASURES

• System reliability (for a PLP)

– Data on the same system (observed up to y):

R((y, s]) = P (N(y, s) = 0|M,β) = e
−M

(
sβ − yβ

)
– Data on equivalent system:

R(s) = P (N(s) = 0|M,β) = e−Msβ

• Expected number of failures in future intervals

– Same system: E[N(y, s]|M,β] = M
(
sβ − yβ

)
– Equivalent system: E[N(s)|M,β] = Msβ

• Intensity function at y:

Reliability growth models without further improvements ⇒ constant intensity λ(y)
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RELIABILITY MEASURES

• Posterior on (M,β) given data T ⇒ sample
{
M (i), β(i)

}N
i=1

• Reliability measures (now to be integrated w.r.t. posteriors):

– R((y, s] = E[R((y, s]|M,β)] =
∫
e−M(sβ−yβ)f(M,β|T)dMdβ

– E[N(y, s] = E[E[N(y, s]|M,β]] =
∫
M(sβ − yβ)f(M,β|T)dMdβ

• Estimates:

– ̂R((y, s]) =
N∑

i=1

e−M (i)(sβ(i)−yβ(i))

– ̂E[N(y, s]] =
N∑

i=1

M (i)(sβ
(i) − yβ

(i)

)
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GAS ESCAPES IN STEEL PIPES

• Replacements not affecting network reliability ⇒ repairable system

• Steel pipes subject to corrosion (aging) ⇒ NHPP and relevance of installation date

• Network split into subnetworks based upon year of installation, as if pipes were in-
stalled on July, 1st each year

• Independent PLP’s Ni(t) for each subnetwork, with λi(t) = Miβitβi−1

• Superposition Theorem: Sum of independent NHPPs Ni(t) with intensity functions
λi(t) is still a NHPP N(t) with intensity function λ(t) =

∑
λi(t)

• Characteristics of pipes installed vs. PLP parameters

– Equal pipes ⇒ same M and β for each Ni(t)

– Completely different pipes ⇒ different, independent Mi and βi for each Ni(t)

– Similar pipes ⇒ Mi and βi for each Ni(t) coming from a common distribution
(exchangeability)
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GAS ESCAPES IN STEEL PIPES

• Experts asked about interval of first gas escape X1

– Choice of section of the network (e.g. length l)

– Choice of time intervals in a list (e.g. [T0, T1])

– Degree of belief on each interval (choice among 95%, 85% and 75%); e.g. for
PLP (M,β)
⇒ P (X1 ∈ [T0, T1]) = exp{−lMT β

0 } − exp{−lMT β
1 } = 0.95

– Check for consistency, e.g. A ⊂ B ̸⇒ P (A) > P (B)

• Pooling of experts’ opinions

– ⇒ sample from priors

– ⇒ hyperparameters in priors, matching moments
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GAS ESCAPES IN STEEL PIPES
• Known length ls of network installed in year s = 1, . . . , r

• Known installation date δk of k-th failed pipe

• Likelihood L(M,β; t, δ) =
n∏

k=1

βδklδkMδk(tk − δk)
βδk

−1e−
∑r

s=1
lsMs[(T1−s)βs−(s∨T0−s)βs]

• Ms ∼ E(θM) ⊥ βs ∼ E(θβ), s = 1, . . . , r, but exchangeable among themselves

• θM ∼ E(τM) and θβ ∼ E(τβ)

• Posterior π(M,β|t, δ) obtained integrating out θM and θβ

• π(M,β|t, δ) ∝

(
r∏

s=1

(lsMsβs)
|Is|

)(
n∏

k=1

(tk − δk)
βδk

−1

)
e−
∑r

s=1
lsMs[(T1−s)βs−(s∨T0−s)βs]·

·τMτβ
r![∑r

s=1(Ms + τM/r)
]r+1

r![∑r
s=1(βs + τβ/r)

]r+1
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MODELS FOR STEEL PIPES
Exchangeable M and β; known installation dates

95% credible intervals for reliability measures:

• System reliability over 5 years: P{N(1998,2002) = 0} ⇒ [0.0000964,0.01]

• Expected number of failures in 5 years: EN(1998,2002) ⇒ [4.59,9.25]

• Mean value function (solid) vs. cumulative # failures (points)
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