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Some references on spectral geometry of random hyperbolic
surfaces of large genus

e M. Mirzakhani, Growth of Weil-Petersson volumes and random hyperbolic
surfaces of large genus, Jour. of Differential Geometry 94:2 (2013), 267-300.

e Y. Wu, Y. Xue, Random hyperbolic surfaces of large genus have first

eigenvalues greater than 13—6 — &, Geom. Funct. Anal. (2022).

e M. Lipnowski, A. Wright, Towards optimal spectral gaps in large genus,
arXiv:2103.07496.

e \W. Hide, M. Magee, Near optimal spectral gaps for hyperbolic surfaces
(2021), arXiv:2107.05292

e N. Anantharaman, L. Monk, A high-genus asymptotic expansion of
Weil-Petersson volume polynomials, (2020), arXiv:2011. 14889
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Elementary estimates on the asymptotic number of meanders

The number of the arc diagrams of order [V is the /N-th Catalan number

1 (2N 1
N N+1<N> T

Any upper arc diagram may be completed to a meander by an appropriate
lower arc diagram (up to the best o f my knowledge, this observation is due to
S. Lando and A. Zvonkin). Thus, we obtain trivial upper and lower bounds:

Cy < My <C%.

The conjectural asymptotics is in between:
Conjecture (S. Lando and A. Zvonkin, 1993).  The number M of meanders
with 2/V crossings is asymptotic to

My ~ const - R*Y - N® for N — oo,

where R? ~ 12.26 (value is due to I. Jensen) and o = —29+1— V2145
(conjectural value due to P. Di Francesco, O. Golinelli, E. Guitter, 1997).
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Twisting a pair of arc systems

The conjecture claims that M grows much slower than 0]2\,. This indicates
that for a random pair of arc systems, twisting cyclically one of them we never
get a meander, whatever twist we chose.
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Twisting a pair of arc systems

The conjecture claims that M grows much slower than C’]QV. This indicates
that for a random pair of arc systems, twisting cyclically one of them we never
get a meander, whatever twist we chose.

Here is a concrete example:
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Twisting a pair of arc systems

The conjecture claims that M grows much slower than C’]z\,. This indicates
that for a random pair of arc systems, twisting cyclically one of them we never
get a meander, whatever twist we chose.

However, if we change the setting and choose a random pair of arc systems
having a fixed total number p of minimal arcs and identify them by a random
twist, then by our result with V. Delecroix, E. Goujard and P. Zograf we get a
meander with probability

1/2\7° [2p—4 y 8 \P° o 1
2\ 72 p—2) " p \r2 !
even without further twisting.

There is no contradiction. General pairs of random arc systems with /N arcs on
each side have about /V minimal arcs in total, while in our conditional setting
we have only a fixed number p of minimal arcs, while N — +o0.

5/38






-1

Discussion of the
homework assignment

Hyperbolic geometry of
surfaces

e Hyperbolic surfaces
e Simple closed
geodesics

e Topological types of
simple closed curves

® Mapping class group

® Exercise: separating

curves

e Families of hyperbolic
surfaces

e Moduli space

Mg,n

Multicurves

Mirzakhani’'s count

Average number of
simple closed
geodesics

7/38 "



Hyperbolic surfaces

Any smooth orientable surface of genus g > 2 admits a metric of constant
negative curvature (usually chosen to be —1), called hyperbolic metric.
Allowing to metric to have several singularities (cusps), one can construct a
hyperbolic metric also on a sphere and on a torus.
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Simple closed curves and simple closed geodesics

A smooth closed curve on a surface is called simple if it does not have
self-intersections.

9/38



Simple closed curves and simple closed geodesics

A smooth closed curve on a surface is called simple if it does not have
self-intersections.

Suppose that we have a simple closed curve ~y on a hyperbolic surface
(possibly with cusps). Suppose that the curve is essential, that is not
contractible to a small curve encircling some disc or some cusp.
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Simple closed curves and simple closed geodesics

Fact. For any hyperbolic metric and any essential simple closed curve on a
surface, there exists a unigue geodesic representative in the free homotopy
class of the curve; it is realized by a simple closed geodesic.
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Simple closed curves and simple closed geodesics

Fact. For any hyperbolic metric and any essential simple closed curve on a
surface, there exists a unigue geodesic representative in the free homotopy
class of the curve; it is realized by a simple closed geodesic.

Speaking of a “free homotopy class” we puncture the surface at all cusps so
that curves do not traverse cusps along continuous deformations.
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Topological types of simple closed curves

Let us say that two simple closed curves on a smooth surface have the same
topological type if there is a diffeomorphism of the surface sending one curve to
another.
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Topological types of simple closed curves

Let us say that two simple closed curves on a smooth surface have the same
topological type if there is a diffeomorphism of the surface sending one curve to
another.

It immediately follows from the classification theorem of surfaces that there is a
finite number of topological types of simple closed curves. For example, if the
surface does not have punctures, all simple closed curves which do not
separate the surface into two pieces, belong to the same class.
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Topological types of simple closed curves

Let us say that two simple closed curves on a smooth surface have the same
topological type if there is a diffeomorphism of the surface sending one curve to
another.

It immediately follows from the classification theorem of surfaces that there is a
finite number of topological types of simple closed curves. For example, if the
surface does not have punctures, all simple closed curves which do not
separate the surface into two pieces, belong to the same class.

Indeed: the classification theorem implies that cutting the surface open along
such two simple closed curves we get two diffeomorphic surfaces with two
boundary components. A little extra effort allows to build a diffeomorphism of
the initial closed surface to itself sending the first curve to the second.
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Mapping class group

The group of all diffeomorphisms of a closed smooth orientable surface of
genus g quotient over diffeomorphisms homotopic to identity is called the
mapping class group and is denoted by Mod,,.
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Mapping class group

The group of all diffeomorphisms of a closed smooth orientable surface of
genus g quotient over diffeomorphisms homotopic to identity is called the
mapping class group and is denoted by Mod,,.

When the surface has n marked points (punctures) we require that
diffeomorphism sends marked points to marked points; the corresponding
mapping class group is denoted Mod, 5.
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Exercise: separating curves

Exercise. Prove that all curves presented at the picture are separating.

Hint: choose an appropriate basis of cycles and verify that intersection
numbers of each curve with all basic cycles are zero.

The picture is taken from the book of B. Farb and D. Margalit “A Primer on Mapping Class Groups”.

Exercise. Detect which curves are essential and which essential curves belong
to the same orbit of the mapping class group.
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Exercise: orbits of the mapping class group

Select all simple closed curves in the picture below which might be isotopic to
simple closed hyperbolic geodesics on a twice-punctured surface of genus two.

How many distinct orbits of Mods 2 they represent? Indicate which curves
correspond to which orbit.
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Families of hyperbolic surfaces

Consider a configuration of four distinct points on the Riemann sphere CP!.

Using appropriate holomorphic automorphism of CP! we can send three out of
four points to 0, 1 and co. There is no more freedom: any further holomorphic
automorphism of Cp! fixing 0, 1 and oo is already the identity transformation.

The remaining point serves as a complex parameter in the space M 4 of
configurations of four distinct points on CP! (up to a holomorphic diffeomorphism).
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By the uniformization theorem, complex structures on a surface with marked
points are in natural bijection with hyperbolic metrics of curvature —1 with
cusps at the marked points, so the moduli space My 4 can be also seen as the
family of hyperbolic spheres with four cusps. Deforming the configuration of
points we change the shape of the corresponding hyperbolic surface.
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Moduli space M, ,

Similarly, we can consider the moduli space My ,, of spheres with n cusps.
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Moduli space M, ,

Similarly, we can consider the moduli space My ,, of spheres with n cusps.

The space M, ,, of configurations of n distinct points on a smooth closed
orientable Riemann surface of genus g > 0 is even richer. While the sphere
admits only one complex structure, a surface of genus g > 2 admits complex
(3g — 3)-dimensional family of complex structures. As in the case of the
Riemann sphere, complex structures on a smooth surface with marked points
are in natural bijection with hyperbolic metrics of constant negative curvature
with cusps at the marked points. For genus g > 2 one can letn = 0 and
consider the space /\/lg — /\/lg,o of hyperbolic surfaces without cusps.
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Multicurves

Consider now several pairwise nonintersecting essential simple closed curves
Y1, - - -,7YE ON @ sSmooth surface Sg,n of genus g with n punctures. We have
seen that in the presence of a hyperbolic metric X on Sg,n the simple closed
curves become simple closed geodesics.
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Multicurves

Consider now several pairwise nonintersecting essential simple closed curves
Y1, - - -,7YE ON @ sSmooth surface Sg,n of genus g with n punctures. We have
seen that in the presence of a hyperbolic metric X on Sg,n the simple closed
curves become simple closed geodesics.

Fact. For any hyperbolic metric X the simple closed geodesics representing
Y1, - - -,7YE do not have pairwise intersections.
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Example: primitive multicurves on a surface of genus two

The picture below illustrates all possible types of primitive multicurves on a
surface of genus two without punctures.

Note that contracting all components of a multicurve we get a “stable curve” —
a Riemann surface degenerated in one of the several regular ways. In this way
the “topological types of primitive multicurves” on a smooth surface Sg’n of
genus g with n punctures are in the natural bijective correspondence with
boundary classes of the Deligne—Mumford compactification Mg,n of the
moduli space of pointed complex curves.




Simple closed multicurve, its topological type and underly Ing
primitive multicurve

The first homology H1 (MQ; 7.) of the surface is great to study closed curves,
but it ignores some interesting curves. The fundamental group 7r1(M2) IS also
wonderful, but it is mainly designed to work with self-intersecting cycles.
Thurston invented yet another structure to work with simple closed multicurves;
In many aspects it resembles the first homology, but there is no group structure.

A general multicurve p:

the canonical representative v = 31 + 2 + 273 in its orbit Mods - p under
the action of the mapping class group and the associated reduced multicurve.

v =371+ 2+ 273 Vreduced = Y1 + V2 + V3
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Geodesic representatives of multicurves

Consider now several pairwise nonintersecting essential simple closed curves
Y1, - - -,7YE ON @ sSmooth surface Sg,n of genus g with n punctures. We have
seen that in the presence of a hyperbolic metric X on Sg,n the simple closed
curves become simple closed geodesics.
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Hyperbolic length of a multicurve

We can consider formal linear combinations ~y := Zle a;"y; of such simple
closed curves with positive coefficients. When all coefficients a; are integer
(respectively rational), we call such -y integral (respectively rational) multicurve.
In the presence of a hyperbolic metric X we define the hyperbolic length of a
multicurve y as £, (X) := Zle a;lx (7;), where £x (~;) is the hyperbolic
length of the simple closed geodesic in the free homotopy class of ;.
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Hyperbolic length of a multicurve

We can consider formal linear combinations ~y := Zle a;"y; of such simple
closed curves with positive coefficients. When all coefficients a; are integer
(respectively rational), we call such -y integral (respectively rational) multicurve.
In the presence of a hyperbolic metric X we define the hyperbolic length of a
multicurve y as £, (X) := Zle a;lx (7;), where £x (~;) is the hyperbolic
length of the simple closed geodesic in the free homotopy class of ;.

Denote by sx (L, ) the number of simple closed geodesic multicurves on X
of topological type || and of hyperbolic length at most L.
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Main counting results

Theorem (M. Mirzakhani, 2008). For any rational multi-curve v and any
hyperbolic surface X in M, ,, one has

C
Sx(L,’y) ~ ,uTh(BX) ° (fY) L [09702n ae T +00 .

Here the quantity p11, (Bx ) depends only on the hyperbolic metric X (it is the
Thurstom measure of the unit ball Bx in the metric X); b, ,, is a global
constant depending only on g and n (which is the average value of B(X) over
Mg n); c(y) depends only on the topological type of v (expressed in terms of
the Witten—Kontsevich correlators).
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Main counting results

Theorem (M. Mirzakhani, 2008). For any rational multi-curve v and any
hyperbolic surface X in M, ,, one has

C(’Y) N S e PNy SN

sx(L,7y) ~ prn(Bx) -

Here the quantity p11, (Bx ) depends only on the hyperbolic metric X (it is the
Thurstom measure of the unit ball Bx in the metric X); b, ,, is a global
constant depending only on g and n (which is the average value of B(X) over
Mg n); c(y) depends only on the topological type of v (expressed in terms of
the Witten—Kontsevich correlators).

Corollary (M. Mirzakhani, 2008). For any hyperbolic surface X in M, ,,, and
any two rational multicurves -1, 2 on a smooth surface Sg,n considered up to
the action of the mapping class group one obtains

lim SX(Lavl) _ C(fyl)

L—+oo Sx(L,7v2)  c(y2)
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Example

A simple closed geodesic on a hyperbolic sphere with six cusps separates the
sphere into two components. We either get three cusps on each of these
components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic
geometry excludes other partitions.
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Example

Example. (M. Mirzakhani, 2008); confirmed experimentally in 2017 by M. Bell;
confirmed in 2017 by more implicit computer experiment of V. Delecroix and by
other means.

Number of (3 4 3)-simple closed geodesics of length at most L. 4

lim = =
L—+oo Number of (2 + 4)- simple closed geodesics of length at most L.~ 3
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Separating versus non-separating simple closed curves in g =2

Ratio of asymptotic frequencies (Mirzakhani’08). Genus g = 2

Number of separating simple closed geodesics of length at most L 1

lim —
L—+oco Number of non-separating simple closed geodesics of length at most L. 6
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Separating versus non-separating simple closed curves in g =2

Ratio of asymptotic frequencies (Mirzakhani’08). Genus g = 2

. Number of separating simple closed geodesics of length at most L 1
111 —
L—-+oco Number of non-separating simple closed geodesics of length at most . 24

after correction of a tiny bug in Mirzakhani’s calculation.
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Separating versus non-separating simple closed curves in g =2

Ratio of asymptotic frequencies (Mirzakhani’08). Genus g = 2

. Number of separating simple closed geodesics of length at most L 1
111 —
L—+o0o Number of non-separating simple closed geodesics of length at most .~ 48

after further correction of another trickier bug in Mirzakhani’s calculation.
Confirmed by crosscheck with Masur—Veech volume of Qs computed by

E. Goujard using the method of Eskin—Okounkov. Confirmed by calculation of
M. Kazarian; by independent computer experiment of V. Delecroix; by
extremely heavy and elaborate recent experiment of M. Bell. Most recently it
was independently confirmed by V. Erlandsson, K. Rafi, J. Souto and by

A. Wright by methods independent of ours.
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Multicurves on a surface of genus two and their frequencies

The picture below illustrates all topological types of primitive multicurves on a
surface of genus two without punctures; the fractions give frequencies of
non-primitive multicurves v having a reduced multicurve v,eqyceq Of the
corresponding type.

In genus 3 there are already 41 types of multicurves, in genus 4 there are 378
types, in genus 5 there are 4554 types and this number grows faster than
exponentially when genus g grows. It becomes pointless to produce tables: we
need to extract a reasonable sub-collection of most common types which
ideally, carry all Thurston’s measure when g — +00.
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Bordered hyperbolic surfaces

Cutting a hyperbolic surface by several pairwise disjoint simple closed
geodesics we get one or several bordered hyperbolic surfaces with geodesic

boundary components. ;
4
b1 ' '\

3

b2
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Bordered hyperbolic surfaces

Cutting a hyperbolic surface by several pairwise disjoint simple closed
geodesics we get one or several bordered hyperbolic surfaces with geodesic

boundary components. ;
4
b1 ' '\

3

bo
Denote by /\/lg,n(bl, ..., by) the moduli space of hyperbolic surfaces of genus
g with n geodesic boundary components of lengths b1, ..., b,.

By convention, the zero value b; = 0 corresponds to a cusp so the moduli
space M, ,, corresponds to M, (0, ..., 0) in this more general setting.
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Hyperbolic pairs of pants

Topologically, a hyperbolic pair of pants P € M 3(b1, bz, b3) is a sphere with
three holes. For any triple of nonnegative numbers (b1, bs, b3) € Ri there

exists a unique hyperbolic pair of pants P (b1, b2, b3) with geodesic boundaries
of given lengths (assuming that the boundary components of PP are numbered).
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Topologically, a hyperbolic pair of pants P € M 3(b1, bz, b3) is a sphere with
three holes. For any triple of nonnegative numbers (b1, bs, b3) € Ri there

exists a unique hyperbolic pair of pants P (b1, b2, b3) with geodesic boundaries
of given lengths (assuming that the boundary components of PP are numbered).

Two geodesic boundary components 71, y2 of any hyperbolic pair of pants P
can be joined by a single geodesic segment /1 2 orthogonal to both 7 and ~s.
Thus, every geodesic boundary component -y of any hyperbolic pair of pants
might be endowed with a canonical distinguished point.
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Hyperbolic pairs of pants

Topologically, a hyperbolic pair of pants P € M 3(b1, bz, b3) is a sphere with
three holes. For any triple of nonnegative numbers (b1, bs, b3) € Ri there

exists a unique hyperbolic pair of pants P (b1, b2, b3) with geodesic boundaries
of given lengths (assuming that the boundary components of PP are numbered).

Two geodesic boundary components 71, y2 of any hyperbolic pair of pants P
can be joined by a single geodesic segment /1 2 orthogonal to both 7 and ~s.
Thus, every geodesic boundary component -y of any hyperbolic pair of pants
might be endowed with a canonical distinguished point.

The construction can be extended to the situation, when both remaining
boundary components of the pair of pants are represented by cusps.
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Twist parameter

Two hyperbolic pairs of pants P’ (b}, b5, ) and P" (Y, b5, ¢) sharing the same
length £ > 0 of one of the geodesic boundary components can be glued
together. The hyperbolic metric on the resulting hyperbolic surface Y is
perfectly smooth and the common geodesic boundary of P’ and P” becomes
a simple closed geodesic v on Y.
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Twist parameter

Two hyperbolic pairs of pants P’ (b}, b5, ) and P" (Y, b5, ¢) sharing the same
length £ > 0 of one of the geodesic boundary components can be glued
together. The hyperbolic metric on the resulting hyperbolic surface Y is
perfectly smooth and the common geodesic boundary of P’ and P” becomes
a simple closed geodesic v on Y.

Each geodesic boundary component of any pair of pants is endowed with a
distinguished point. These distinguished points record how the pairs of pants
P’ and P” are twisted with respect to each other. Hyperbolic surfaces Y (7)
corresponding to different values of the twist parameter 7 in the range [0, ¢| are
generically not isometric.
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Fenchel-Nielsen coordinates

Any hyperbolic surface X of genus g with n geodesic boundary components
admits a decomposition in hyperbolic pairs of pants glued along simple closed
geodesics 71, . . ., Y3g—3+n. Lengths £, (X) of the resulting simple closed
geodesics y; involved in pants decomposition of X and twists 7., (X') along
them serve as local Fenchel-Nielsen coordinates in M, ,, (b1, ..., by).
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Any hyperbolic surface X of genus g with n geodesic boundary components
admits a decomposition in hyperbolic pairs of pants glued along simple closed
geodesics 71, . . ., Y3g—3+n. Lengths £, (X) of the resulting simple closed
geodesics y; involved in pants decomposition of X and twists 7., (X') along
them serve as local Fenchel-Nielsen coordinates in M, ,, (b1, ..., by).

By the work of W. Goldman /\/lg,n(bl, ..., by) carries a natural closed
non-degenerate 2-form wyyp called the Weil-Petersson symplectic form.
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Fenchel-Nielsen coordinates

Any hyperbolic surface X of genus g with n geodesic boundary components
admits a decomposition in hyperbolic pairs of pants glued along simple closed
geodesics 71, . . ., Y3g—3+n. Lengths £, (X) of the resulting simple closed
geodesics y; involved in pants decomposition of X and twists 7., (X') along
them serve as local Fenchel-Nielsen coordinates in M, ,, (b1, ..., by).

By the work of W. Goldman /\/lg,n(bl, ..., by) carries a natural closed
non-degenerate 2-form wyyp called the Weil-Petersson symplectic form.

S. Wolpert proved that wyyp has particularly simple expression in
Fenchel-Nielsen coordinates. No matter what pants decomposition we chose,
we get

3g—34n

WWp = Z df%. N dT%. :
1=1
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Mirzakhani—Weil-Petersson volumes

The wedge power w™ of a symplectic form on a manifold M?™ of real
dimension 2n defines a volume form on M?™.
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Mirzakhani—Weil-Petersson volumes

The wedge power w” of a symplectic form on a manifold M?™ of real
dimension 2n defines a volume form on M?".

The volume V ,, (b1, . .., by) of the moduli space M, (b1, ..., b,) with

1
3g—3+n .
respect to the volume form oy, IS called the
P (3g —3+n)! WP
Mirzakhani—Weil-Petersson volume of the moduli space /\/lg,n(bl, Cee bn); it

IS known to be finite.
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Mirzakhani—Weil-Petersson volumes

The wedge power w” of a symplectic form on a manifold M?™ of real
dimension 2n defines a volume form on M?".

The volume V ,, (b1, . .., by) of the moduli space M, (b1, ..., b,) with
1

3g—3+n .
respect to the volume form - W Is called the
P (3g —3+n)! WP
Mirzakhani-Weil-Petersson volume of the moduli space M ,, (b1, ..., by); it

IS known to be finite.

Example: Mji.

1
Volwe My 1(b1) = o7 (b7 + 47?) .
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Mirzakhani—Weil-Petersson volumes

The wedge power w” of a symplectic form on a manifold M?™ of real
dimension 2n defines a volume form on M?".

The volume V ,, (b1, . .., by) of the moduli space M, (b1, ..., b,) with

1
3g—3+n .
respect to the volume form oy, IS called the
P (3g —3+n)! WP
Mirzakhani—Weil-Petersson volume of the moduli space /\/lg,n(bl, Cee bn); it

IS known to be finite.

Example: Mji.

1
Volwe My 1(b1) = o7 (b7 + 47?) .

Example: Mj 2.

1
Volwp M1 2(b1,bs) = 0 (b7 + b3 + 47°) (b7 + b3 + 127°) .
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Averaging the counting function: statement of results

We are interested in counting the number s x (L, ) of simple closed geodesic

multicurves on X € M, ,, of topological type || and of hyperbolic length at
most L. Following Mirzakhani, we shall count first the average of the quantity
sx(L,~y) over M, with respect to the Weil-Petersson volume element:

P(L,~) := /M sx(L,v)dX .

g,n
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Averaging the counting function: statement of results

We are interested in counting the number s x (L, ) of simple closed geodesic
multicurves on X € M, ,, of topological type || and of hyperbolic length at
most L. Following Mirzakhani, we shall count first the average of the quantity
sx(L,~y) over M, with respect to the Weil-Petersson volume element:

P(L)i= [ sx(Loy)ax.
Mg,'n,
Theorem (M. Mirzakhani, 2008). The average number P(L, ) of closed
geodesic multicurves of topological type [’y] and of hyperbolic length at most L
is a polynomial in L of degree 6g — 6 + 2n. The leading coefficient of this
olynomial
Y c~ = lim P(L,7)
v L5400 1,69—6+2n

IS expressed in terms of the Welil-Petersson volumes of the associated moduli
space of bordered hyperbolic surfaces, or, more precisely, in terms of the

appropriate characteristic numbers of the form

/ ‘111... ffjjz where dy + -+ -+ dp, = 39; — 3 +n; .
M

gq,1q
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Convenient cover: model case

Consider the cover MY , over M 1 where the point of the cover /\/111 is a
hyperbolic surface X eﬁdowed with a distinguished simple closed geodesic «.
The fiber of the cover can be identified with Mod ; -|y], where + is a essential
simple closed curve on a once punctured torus.

twist 7 where 0 < 7 < x(«)
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Convenient cover: model case

Consider the cover MY , over M 1 where the point of the cover /\/li1 is a
hyperbolic surface X eﬁdowed with a distinguished simple closed geodesic .
The fiber of the cover can be identified with Mod ; -|y], where + is a essential
simple closed curve on a once punctured torus.

twist 7 where 0 < 7 < x(«)

The cover M | admits global coordinates. Namely, given (X, a) € M7 | cut
X open along ’the closed geodesic . We get a hyperbolic pair of pants
P(l,1,0); two geodesic boundary components of it have the same length

| = /x («) and the third boundary component is the cusp. Reciprocally, from
any hyperbolic pair of pants P([,1,0) we can glue a hyperbolic surface X
endowed with a distinguished simple closed geodesic «.. Constructing X from
the pair of pants P(l,[,0) we have to chose the value of the twist parameter 7

in the interval |0, [[, where [ = {x («) is the length of the geodesic boundary.
|
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Integration over M 4

Mirzakhani observed that having a continuous function f-(X) on M ; of the form

LX) = > fllx(e)

[a]eMody, 1 -[7]

we can integrate it over M ; as follows

/M Z fwo‘(X)) dX = f(goz(X)) dl dr =

Y
[a]€Mod 1 -[A] M

:/Ooof(l)/oldldfz/ooof(l)ldl.
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Integration over M 4

Mirzakhani observed that having a continuous function f-(X) on M ; of the form
LX) = > fllx(e)
[a]eMody,1 -[7]

we can integrate it over M ; as follows

/M Z f(go‘(X)) dX = f(goz(X)) dl dr =

Y
[a]€Mod 1 -[A] M

:/Ooof(l)/oldldfz/ooof(l)ldl.

Note that our counting function s x (L, 7y) is exactly of this form with f = x ([0, L]).
In this particular case we get

00 L 2
P(L,~) = /M sX(L,fy)dX:/O X([O,L])mz:/o zdz:%.
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Integration over the moduli space M,

Let v be a nonseparating simple closed curve on .S,. Consider the analogous
cover /\/lg over M, where the point of the cover is a hyperbolic surface X
endowed with a distinguished simple closed geodesic «v. Cutting X open along
o we get a bordered hyperbolic surface Y ({,1) in M,_12(l,1), where

| =Ux(a).
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Integration over the moduli space M,

Let v be a nonseparating simple closed curve on .S,. Consider the analogous
cover /\/lg over M, where the point of the cover is a hyperbolic surface X
endowed with a distinguished simple closed geodesic «v. Cutting X open along
o we get a bordered hyperbolic surface Y ({,1) in M,_12(l,1), where

| =/lx(a). For f = x(]0,L])we can integrate the function

sx(Ly)= Y flx@)= > x([0,L])(¢x(a))

[a]eMody - [7] [a]eMody [7v]

over M, as before:

P(L,) = /M sx(LA)dX = [ f(ex(e)dX -

1 L
0

g
1 L [
:—/ // deldT:—/ Volwp (./\/lg_l,z(l,l))ldl.
2 Jo Jo JMy_1000) 2
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Integration over the moduli space M,

Let v be a nonseparating simple closed curve on .S,. Consider the analogous
cover /\/lg over M, where the point of the cover is a hyperbolic surface X
endowed with a distinguished simple closed geodesic «v. Cutting X open along
o we get a bordered hyperbolic surface Y ({,1) in M,_12(l,1), where

| =/lx(a). For f = x(]0,L])we can integrate the function

sx(Ly)= Y flx@)= > x([0,L])(¢x(a))

[a]eMody -[7] [a]eMody [7v]

over M, as before:

P(L,7) = / sx(Ly)dX = [ fx(a))dX =
My M
1 L [ 1 L
:—/ // deldT:—/ Volwp (Mg_1.2(1,1)) Ldl.
2 0 0 JMg_12(1) 2 0

Mirzakhani proved that Volyyp (Mg_l’g(l, l)) is an explicit polynomial in [ of
degree 6(g — 1) — 6 + 2 - 2, so P(L, ) is a polynomial of degree 6g — 6.
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