
AG codes; codes over rings

F. Nemenzo Lecture: AG codes, Codes over rings(8 Dec 2023)



Recall: Let χ be a non-singular projective curve over Fq. The free
abelian group generated by the points of χ is called the divisor
group of the curve. A element D of the group, called a divisor on
χ, is a finite formal sum

∑
P∈χ(Fq)

nPP of points on χ. The

support of D is supp(D) := {P | nP ̸= 0}. Two divisors
D =

∑
nPP and D ′ =

∑
n′PP are added as

D + D ′ =
∑

P∈χ(Fq)

(nP + n′P)P.

If nP for all P, the divisor D is effective (D ≥ 0). The degree of D
is
∑

nPdegP.
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The space of rational functions associated to D is

L(D) := {f ∈ Fq(C ) | div (f ) + D ≥ 0} ∪ {0}.

Let P = (P1,P2, . . . ,Pn) be a set of n distinct F-rational points on
the curve. The map ϕ : L(D) −→ Fn

q with f 7→ (f (P1), . . . , f (Pn))
is linear, hence the image ϕ(L(D)) is a linear code over Fq. We
denote this code by C (χ,P,D), the algebraic geometric code
associated to χ, P and D.
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parameters of C (χ,P ,D)

The map ϕ is injective (i.e. its kernel is {0}), therefore the
dimension of C (χ,P,D) is dim L(D).

If deg D > 2g − 2 (where g is the genus of χ), by the
Riemann-Roch Theorem, k = dimC (χ,P,D) = deg D + 1− g .

Let d be the minimum distance of C (χ,P,D). Then there is a
rational function f ∈ L(D) such that ϕ(f ) = (f (P1), . . . , f (Pn))
has weight d > 0. Assume f (Pi ) ̸= 0 for i = 1, . . . , d and
f (Pi ) = 0 for i = d + 2, . . . , n.
Thus f ∈ L(D − Pd+1 − Pd+2 − · · · − Pn). (i.e.
div (f ) + D −

∑n
i=d+1 Pi ≥ 0). This means the divisor

D −
∑n

i=d+1 Pi has non-negative degree. So deg D − (n− d) ≥ 0,
therefore d ≥ n − deg D.
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parameters of C (χ,P ,D)

Theorem. Let χ be a non-singular projective curve over Fq, with
genus g . Let P be a set of n distinct Fq-rational points on χ, and
let D be a divisor on χ such that 2g − 2 < deg D < n. Then
C (χ,P,D) is a linear code of length n, dimension =
deg D + 1− g and minimum distance d where d ≥ n − deg D.

Recall the Singleton Bound: d + k ≤ n + 1. Combining this with
d ≥ n − deg D and k = deg D + 1− g , we get
n + 1− g ≤ d + k ≤ n + 1.

Hence, if the underlying curve has genus = 0 (i.e. built from the
projective line), the AG code is an MDS code.
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generator matrix of C (χ,P ,D)

Let {f1, f2, . . . , fk} be a basis for L(D). Since the AG code
C (χ,P,D) is the image of L(D) under ϕ, it has basis
{ϕ(f1), ϕ(f2), . . . , ϕ(fk)}. Thus a generator matrix for C (χ,P,D)
is:

G =


f1(P1) f1(P2) . . . f1(Pn)
f2(P1) f2(P2) . . . f2(Pn)

...
...

...
fk(P1) fk(P2) . . . fk(Pn)

 .

F. Nemenzo Lecture: AG codes, Codes over rings(8 Dec 2023)



Let C = C (χ,P,D). Under some conditions, we get the relative
parameters

RC = k
n = degD+1−g

n and δC = d
n ≥ n−degD

n

We want RC + δC large:

RC + δC ≥ degD+1−g
n + n−degD

n

= n
n + 1

n − g
n

For long codes, we consider the limit as n increases.
(Correspondingly, a sequence of AG codes with increasing length.)
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To construct these codes, we need a sequence of curves χi , with
genus gi , a set of ni points Pi on χi and a chosen divisor Di on χi .

So, limn→∞(R + δ) ≥ 1− limi→∞
gi
ni

Since we want (R + δ) big, we want limn→∞
g
n as small as possible.

For a curve χ of genus g over Fq, let Nq(χ) := #χ(Fq)
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For g ≥ 0, let Nq(g) be the number of points on the largest
possible curve over Fq with genus g . Define

A(q) := limg→∞
Nq(g)

g

Suppose we have a sequence of curves χi over Fq with genus gi
and size Ni such that limi→∞

Ni
gi

= A(q).

For each i , choose Qi ∈ χi (Fq), and set Pi = χi (Fq) \ {Qi}. Pick
ri ∈ N such that 2gi − 2 < ri < Ni − 1 = #Pi .

Consider the AG code Ci = C (χi ,Pi , riQi ) which has parameters
[Ni , ri + 1− gi , di ] with di ≥ Ni − 1 + ri .
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If Ri and δi are the relative parameters of Ci , then

Ri + δi ≥ ri+1−gi
Ni−1 + Ni−1−ri

Ni−1

= Ni−gi
Ni−1

= 1 + 1
Ni−1 + gi

Ni−1

Let R := limi→∞ Ri and δ := limi→∞ δi . We get

R + δ ≥ 1− 1
A(q)

R ≥ −δ + 1− 1
A(q)

Recall: αq(δ) := lim supn→∞
1
n logAq(n, ⌊δn⌋).

Thus αq(δ) ≥ −δ + 1− 1
A(q) .
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The line R = −δ+ 1− 1
A(q) has negative slope, hence will intersect

the GV bound at 0, 1 or 2 points.
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So we need to look at the value of A(q).

Given genus g , how big can χ(Fq)? Since

P2(Fq) =
{(α : β : 1) | α, β ∈ Fq} ∪ {(α : 1 : 0) | α ∈ Fq} ∪ {(1 : 0 : 0)}

the size of plane curves has upper bound q2 + q + 1.

In general, if χ is a non-singular projective curve of genus g over
Fq, then | #χ(Fq)− (q + 1) |≤ 2g

√
q. (Hasse-Weil)

A curve that meets the bound (i.e. #χ(Fq) = q + 1 + 2g
√
q) is

”maximal”. Here is J.P. Serre’s improvement of the Hasse-Weil
bound : | #χ(Fq)− (q + 1) |≤ g⌊2√q⌋.
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Theorem. (Drinfeld, Vladut). If q is a prime power, then
A(q) ≤ √

q − 1.

Theorem. (Ihara, Tsfasman, Vladut, Zink) Let q = p2m. There
exists a sequence of curves χi over Fq with genus gi such that

limi→∞
#χi (Fq)

gi
=

√
q − 1.

Theorem. (Tsfasman, Vladut, Zink) Let q be a perfect square.
Then
αq(δ) ≥ −δ + 1− 1√

q−1 .

This gives us the line that will intersect the GV bound at exactly 2
points, when q ≥ 49.
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The Tsfasman-Vladut-Zink line, R = −δ + 1− 1√
q−1 intersects the

GV bound at 2 points, whenever q ≥ 49.
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non-linear codes

Let A be an alphabet. If A is a field, a linear code over A is a
subspace of An. If a subset of An is not a vector space, it is a
non-linear code over A.

It is known that there is no binary linear code [16, 8, 6]2. But in

1967, a binary but non-linear (16, 28, 6) code was found by
Nordstrom and Robinson. The code has a high degree of regularity
and symmetry.

Generalizations of the Nordstrom-Robinson code were found later:

Preparata codes (for m ≥ 2) : (22m, 22
2m−4m, 6)

Kerdock codes (for m ≥ 2 ): (22m, 24m, 22m−1 − 2m−1).
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Codes over finite rings

Generalizations of Nordstrom-Robinson code: Preparata, Kerdock
codes, etc.

Recent interest in codes over rings is due to the discovery that
certain non-linear binary codes can be constructed as images of
codes over the finite ring Z4 := Z/4Z.

Definition. The Gray map ϕ : Z4 −→ Z2
2 is given by

0 7−→ 00, 1 7−→ 01, 2 7−→ 11, 3 7−→ 10.

We can extend this to ϕ : Zn
4 7−→−→ Z2n

2 .
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Codes over finite rings

Theorem. (Hammons, Kumar, Calderbank, Sloane and Solé,
1992) Let (O) (the ”octacode”) be the linear (23, 256, 6)Z4 code
with generator matrix

G =


3 3 2 3 1 0 0 0
3 0 3 2 3 1 0 0
3 0 0 3 2 3 1 0
3 0 0 0 3 2 3 1

 .

Then ϕ((O) = Nordstrom-Robinson code.

The non-linear binary
codes are Gray map images of linear codes over Z4.
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Codes over finite rings

Theorem. (Hammons, Kumar, Calderbank, Sloane and Solé,
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with generator matrix

G =


3 3 2 3 1 0 0 0
3 0 3 2 3 1 0 0
3 0 0 3 2 3 1 0
3 0 0 0 3 2 3 1

 .

Then ϕ((O) = Nordstrom-Robinson code. The non-linear binary
codes are Gray map images of linear codes over Z4.

F. Nemenzo Lecture: AG codes, Codes over rings(8 Dec 2023)



Further reading

1) Høholdt, van Lint, and Pellikaan. Algebraic geometry codes, in
Handbook of Coding Theory (Pless, Huffman and Brualdi, eds.), Vol. 1,
(1998).
2) Katsman, Tsfasman, and Vladut. ”Modular curves and codes with a
polynomial construction”. IEEE Trans. Inform. Theory 30(2) (1984),
353-355.
3) Tsfasman, Vladut, and Zink. ”Modular curves, Shimura curves, and
Goppa Codes, better than the Varshamov-Gilbert bound”. Math.
Nachrichten, 109 (1982), 21-28.
4) van Lint, and van der Geer. ”Introduction to coding theory and
algebraic geometry”, DMV Seminar, Vol. 12, Birkhauser (1988)

5) Hammons, Kumar, Calderbank, Sloane, Sole. ”The Z4-linearity of

Kerdock, Preparata, Goethals, and related codes”, IEEE Trans. Inform.

Theory IT-40 (1994), 301-319.

F. Nemenzo Lecture: AG codes, Codes over rings(8 Dec 2023)


