AG codes; codes over rings

Recall: Let χ be a non-singular projective curve over \mathbb{F}_{q}. The free abelian group generated by the points of χ is called the divisor group of the curve. A element D of the group, called a divisor on χ, is a finite formal sum $\sum_{P \in \chi\left(\mathbb{F}_{q}\right)} n_{P} P$ of points on χ. The support of D is $\operatorname{supp}(D):=\left\{P \mid n_{P} \neq 0\right\}$. Two divisors $D=\sum n_{P} P$ and $D^{\prime}=\sum n_{P}^{\prime} P$ are added as

$$
D+D^{\prime}=\sum_{P \in \chi\left(\mathbb{F}_{q}\right)}\left(n_{P}+n_{P}^{\prime}\right) P
$$

If n_{P} for all P, the divisor D is effective $(D \geq 0)$. The degree of D is $\sum n_{P} \operatorname{deg} P$.

The space of rational functions associated to D is

$$
L(D):=\left\{f \in \mathbb{F}_{q}(C) \mid \operatorname{div}(f)+D \geq 0\right\} \cup\{0\}
$$

Let $P=\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ be a set of n distinct \mathbb{F}-rational points on the curve. The map $\phi: L(D) \longrightarrow \mathbb{F}_{q}^{n}$ with $f \mapsto\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)$ is linear, hence the image $\phi(L(D))$ is a linear code over \mathbb{F}_{q}. We denote this code by $C(\chi, P, D)$, the algebraic geometric code associated to χ, P and D.

parameters of $C(\chi, P, D)$

The map ϕ is injective (i.e. its kernel is $\{0\}$), therefore the dimension of $C(\chi, P, D)$ is $\operatorname{dim} L(D)$.

If deg $D>2 g-2$ (where g is the genus of χ), by the Riemann-Roch Theorem, $k=\operatorname{dim} C(\chi, P, D)=\operatorname{deg} D+1-g$.

Let d be the minimum distance of $C(\chi, P, D)$. Then there is a rational function $f \in L(D)$ such that $\phi(f)=\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)$ has weight $d>0$. Assume $f\left(P_{i}\right) \neq 0$ for $i=1, \ldots, d$ and $f\left(P_{i}\right)=0$ for $i=d+2, \ldots, n$.
Thus $f \in L\left(D-P_{d+1}-P_{d+2}-\cdots-P_{n}\right)$. (i.e. $\left.\operatorname{div}(f)+D-\sum_{i=d+1}^{n} P_{i} \geq 0\right)$. This means the divisor $D-\sum_{i=d+1}^{n} P_{i}$ has non-negative degree. So $\operatorname{deg} D-(n-d) \geq 0$, therefore $d \geq n-\operatorname{deg} D$.

parameters of $C(\chi, P, D)$

Theorem. Let χ be a non-singular projective curve over \mathbb{F}_{q}, with genus g. Let P be a set of n distinct \mathbb{F}_{q}-rational points on χ, and let D be a divisor on χ such that $2 g-2<\operatorname{deg} D<n$. Then $C(\chi, P, D)$ is a linear code of length n, dimension $=$ $\operatorname{deg} D+1-g$ and minimum distance d where $d \geq n-\operatorname{deg} D$.

Recall the Singleton Bound: $d+k \leq n+1$. Combining this with $d \geq n-\operatorname{deg} D$ and $k=\operatorname{deg} D+1-g$, we get $n+1-g \leq d+k \leq n+1$.

Hence, if the underlying curve has genus $=0$ (i.e. built from the projective line), the AG code is an MDS code.

generator matrix of $C(\chi, P, D)$

Let $\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ be a basis for $L(D)$. Since the AG code $C(\chi, P, D)$ is the image of $L(D)$ under ϕ, it has basis $\left\{\phi\left(f_{1}\right), \phi\left(f_{2}\right), \ldots, \phi\left(f_{k}\right)\right\}$. Thus a generator matrix for $C(\chi, P, D)$ is:

$$
G=\left[\begin{array}{cccc}
f_{1}\left(P_{1}\right) & f_{1}\left(P_{2}\right) & \ldots & f_{1}\left(P_{n}\right) \\
f_{2}\left(P_{1}\right) & f_{2}\left(P_{2}\right) & \ldots & f_{2}\left(P_{n}\right) \\
\vdots & \vdots & & \vdots \\
f_{k}\left(P_{1}\right) & f_{k}\left(P_{2}\right) & \ldots & f_{k}\left(P_{n}\right)
\end{array}\right] .
$$

Let $C=C(\chi, P, D)$. Under some conditions, we get the relative parameters

$$
R_{C}=\frac{k}{n}=\frac{\operatorname{deg} D+1-g}{n} \text { and } \delta_{C}=\frac{d}{n} \geq \frac{n-\operatorname{deg} D}{n}
$$

We want $R_{C}+\delta_{C}$ large:

$$
\begin{aligned}
R_{C}+\delta_{C} & \geq \frac{\operatorname{deg} D+1-g}{n}+\frac{n-\operatorname{deg} D}{n} \\
& =\frac{n}{n}+\frac{1}{n}-\frac{g}{n}
\end{aligned}
$$

For long codes, we consider the limit as n increases.
(Correspondingly, a sequence of AG codes with increasing length.)

To construct these codes, we need a sequence of curves χ_{i}, with genus g_{i}, a set of n_{i} points P_{i} on χ_{i} and a chosen divisor D_{i} on χ_{i}. So, $\lim _{n \rightarrow \infty}(R+\delta) \geq 1-\lim _{i \rightarrow \infty} \frac{g_{i}}{n_{i}}$
Since we want $(R+\delta)$ big, we want $\lim _{n \rightarrow \infty} \frac{g}{n}$ as small as possible.
For a curve χ of genus g over \mathbb{F}_{q}, let $N_{q}(\chi):=\# \chi\left(\mathbb{F}_{q}\right)$

For $g \geq 0$, let $N_{q}(g)$ be the number of points on the largest possible curve over \mathbb{F}_{q} with genus g. Define

$$
A(q):=\lim _{g \rightarrow \infty} \frac{N_{q}(g)}{g}
$$

Suppose we have a sequence of curves χ_{i} over \mathbb{F}_{q} with genus g_{i} and size N_{i} such that $\lim _{i \rightarrow \infty} \frac{N_{i}}{g_{i}}=A(q)$.

For each i, choose $Q_{i} \in \chi_{i}\left(\mathbb{F}_{q}\right)$, and set $P_{i}=\chi_{i}\left(\mathbb{F}_{q}\right) \backslash\left\{Q_{i}\right\}$. Pick $r_{i} \in \mathbb{N}$ such that $2 g_{i}-2<r_{i}<N_{i}-1=\# P_{i}$.

Consider the AG code $C_{i}=C\left(\chi_{i}, P_{i}, r_{i} Q_{i}\right)$ which has parameters $\left[N_{i}, r_{i}+1-g_{i}, d_{i}\right]$ with $d_{i} \geq N_{i}-1+r_{i}$.

If R_{i} and δ_{i} are the relative parameters of C_{i}, then

$$
\begin{aligned}
R_{i}+\delta_{i} & \geq \frac{r_{i}+1-g_{i}}{N_{i}-1}+\frac{N_{i}-1-r_{i}}{N_{i}-1} \\
& =\frac{N_{i}-g_{i}}{N_{i}-1} \\
& =1+\frac{1}{N_{i}-1}+\frac{g_{i}}{N_{i}-1}
\end{aligned}
$$

Let $R:=\lim _{i \rightarrow \infty} R_{i}$ and $\delta:=\lim _{i \rightarrow \infty} \delta_{i}$. We get

$$
\begin{aligned}
R+\delta & \geq 1-\frac{1}{A(q)} \\
R & \geq-\delta+1-\frac{1}{A(q)}
\end{aligned}
$$

Recall: $\alpha_{q}(\delta):=\lim \sup _{n \rightarrow \infty} \frac{1}{n} \log A_{q}(n,\lfloor\delta n\rfloor)$.
Thus $\alpha_{q}(\delta) \geq-\delta+1-\frac{1}{A(q)}$.

The line $R=-\delta+1-\frac{1}{A(q)}$ has negative slope, hence will intersect the GV bound at 0,1 or 2 points.

So we need to look at the value of $A(q)$.
Given genus g, how big can $\chi\left(\mathbb{F}_{q}\right)$? Since
$\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)=$

$$
\left\{(\alpha: \beta: 1) \mid \alpha, \beta \in \mathbb{F}_{q}\right\} \cup\left\{(\alpha: 1: 0) \mid \alpha \in \mathbb{F}_{q}\right\} \cup\{(1: 0: 0)\}
$$

the size of plane curves has upper bound $q^{2}+q+1$.

In general, if χ is a non-singular projective curve of genus g over \mathbb{F}_{q}, then $\left|\# \chi\left(\mathbb{F}_{q}\right)-(q+1)\right| \leq 2 g \sqrt{q}$. (Hasse-Weil)

A curve that meets the bound (i.e. $\left.\# \chi\left(\mathbb{F}_{q}\right)=q+1+2 g \sqrt{q}\right)$ is "maximal". Here is J.P. Serre's improvement of the Hasse-Weil bound:

$$
\left|\# \chi\left(\mathbb{F}_{q}\right)-(q+1)\right| \leq g\lfloor 2 \sqrt{q}\rfloor .
$$

Theorem. (Drinfeld, Vladut). If q is a prime power, then $A(q) \leq \sqrt{q}-1$.

Theorem. (Ihara, Tsfasman, Vladut, Zink) Let $q=p^{2 m}$. There exists a sequence of curves χ_{i} over \mathbb{F}_{q} with genus g_{i} such that $\lim _{i \rightarrow \infty} \frac{\# \chi_{i}\left(\mathbb{F}_{q}\right)}{g_{i}}=\sqrt{q}-1$.

Theorem. (Tsfasman, Vladut, Zink) Let q be a perfect square. Then
$\alpha_{q}(\delta) \geq-\delta+1-\frac{1}{\sqrt{q}-1}$.
This gives us the line that will intersect the GV bound at exactly 2 points, when $q \geq 49$.

The Tsfasman-Vladut-Zink line, $R=-\delta+1-\frac{1}{\sqrt{q}-1}$ intersects the GV bound at 2 points, whenever $q \geq 49$.

non-linear codes

Let A be an alphabet. If A is a field, a linear code over A is a subspace of A^{n}. If a subset of A^{n} is not a vector space, it is a non-linear code over A.

It is known that there is no binary linear code $[16,8,6]_{2}$. But in
1967, a binary but non-linear $\left(16,2^{8}, 6\right)$ code was found by Nordstrom and Robinson. The code has a high degree of regularity and symmetry.

Generalizations of the Nordstrom-Robinson code were found later:
Preparata codes (for $m \geq 2):\left(2^{2 m}, 2^{2^{2 m}-4 m}, 6\right)$
Kerdock codes (for $m \geq 2$): $\left(2^{2 m}, 2^{4 m}, 2^{2 m-1}-2^{m-1}\right)$.

Codes over finite rings

Generalizations of Nordstrom-Robinson code: Preparata, Kerdock codes, etc.

Recent interest in codes over rings is due to the discovery that certain non-linear binary codes can be constructed as images of codes over the finite ring $\mathbb{Z}_{4}:=\mathbb{Z} / 4 \mathbb{Z}$.

Definition. The Gray map $\phi: \mathbb{Z}_{4} \longrightarrow \mathbb{Z}_{2}^{2}$ is given by

$$
0 \longmapsto 00,1 \longmapsto 01,2 \longmapsto 11,3 \longmapsto 10 .
$$

We can extend this to $\phi: \mathbb{Z}_{4}^{n} \longmapsto \longrightarrow \mathbb{Z}_{2}^{2 n}$.

Codes over finite rings

Theorem. (Hammons, Kumar, Calderbank, Sloane and Solé, 1992) Let (\mathcal{O}) (the "octacode") be the linear $\left(2^{3}, 256,6\right)_{\mathbb{Z}_{4}}$ code with generator matrix

$$
G=\left[\begin{array}{llllllll}
3 & 3 & 2 & 3 & 1 & 0 & 0 & 0 \\
3 & 0 & 3 & 2 & 3 & 1 & 0 & 0 \\
3 & 0 & 0 & 3 & 2 & 3 & 1 & 0 \\
3 & 0 & 0 & 0 & 3 & 2 & 3 & 1
\end{array}\right] .
$$

Then $\phi((\mathcal{O})=$ Nordstrom-Robinson code.

Codes over finite rings

Theorem. (Hammons, Kumar, Calderbank, Sloane and Solé, 1992) Let (\mathcal{O}) (the "octacode") be the linear $\left(2^{3}, 256,6\right)_{\mathbb{Z}_{4}}$ code with generator matrix

$$
G=\left[\begin{array}{llllllll}
3 & 3 & 2 & 3 & 1 & 0 & 0 & 0 \\
3 & 0 & 3 & 2 & 3 & 1 & 0 & 0 \\
3 & 0 & 0 & 3 & 2 & 3 & 1 & 0 \\
3 & 0 & 0 & 0 & 3 & 2 & 3 & 1
\end{array}\right]
$$

Then $\phi((\mathcal{O})=$ Nordstrom-Robinson code. The non-linear binary codes are Gray map images of linear codes over \mathbb{Z}_{4}.

Further reading

1) Høholdt, van Lint, and Pellikaan. Algebraic geometry codes, in Handbook of Coding Theory (Pless, Huffman and Brualdi, eds.), Vol. 1, (1998).
2) Katsman, Tsfasman, and Vladut. "Modular curves and codes with a polynomial construction". IEEE Trans. Inform. Theory 30(2) (1984), 353-355.
3) Tsfasman, Vladut, and Zink. "Modular curves, Shimura curves, and Goppa Codes, better than the Varshamov-Gilbert bound". Math. Nachrichten, 109 (1982), 21-28.
4) van Lint, and van der Geer. "Introduction to coding theory and algebraic geometry", DMV Seminar, Vol. 12, Birkhauser (1988)
5) Hammons, Kumar, Calderbank, Sloane, Sole. "The \mathbb{Z}_{4}-linearity of Kerdock, Preparata, Goethals, and related codes", IEEE Trans. Inform. Theory IT-40 (1994), 301-319.
