AG codes; codes over rings

F. Nemenzo Lecture: AG codes, Codes over rings(8 Dec 2023)

イロト イ団ト イヨト イヨト

E

Recall: Let χ be a non-singular projective curve over \mathbb{F}_q . The free abelian group generated by the points of χ is called the divisor group of the curve. A element D of the group, called a divisor on χ , is a finite formal sum $\sum_{P \in \chi(\mathbb{F}_q)} n_P P$ of points on χ . The support of D is supp $(D) := \{P \mid n_P \neq 0\}$. Two divisors $D = \sum n_P P$ and $D' = \sum n'_P P$ are added as

$$D+D'=\sum_{P\in\chi(\mathbb{F}_q)}(n_P+n'_P)P.$$

If n_P for all P, the divisor D is effective $(D \ge 0)$. The degree of D is $\sum n_P \deg P$.

(四) (日) (日)

The space of rational functions associated to D is

$$L(D) := \{ f \in \mathbb{F}_q(C) \mid \text{div} (f) + D \ge 0 \} \cup \{ 0 \}.$$

Let $P = (P_1, P_2, ..., P_n)$ be a set of *n* distinct \mathbb{F} -rational points on the curve. The map $\phi : L(D) \longrightarrow \mathbb{F}_q^n$ with $f \mapsto (f(P_1), ..., f(P_n))$ is linear, hence the image $\phi(L(D))$ is a linear code over \mathbb{F}_q . We denote this code by $C(\chi, P, D)$, the **algebraic geometric code** associated to χ , *P* and *D*. The map ϕ is injective (i.e. its kernel is {0}), therefore the dimension of $C(\chi, P, D)$ is dim L(D).

If deg D > 2g - 2 (where g is the genus of χ), by the Riemann-Roch Theorem, $k = \dim C(\chi, P, D) = \deg D + 1 - g$.

Let *d* be the minimum distance of $C(\chi, P, D)$. Then there is a rational function $f \in L(D)$ such that $\phi(f) = (f(P_1), \ldots, f(P_n))$ has weight d > 0. Assume $f(P_i) \neq 0$ for $i = 1, \ldots, d$ and $f(P_i) = 0$ for $i = d + 2, \ldots, n$. Thus $f \in L(D - P_{d+1} - P_{d+2} - \cdots - P_n)$. (i.e. div $(f) + D - \sum_{i=d+1}^{n} P_i \ge 0$). This means the divisor $D - \sum_{i=d+1}^{n} P_i$ has non-negative degree. So deg $D - (n - d) \ge 0$, therefore $d \ge n - \deg D$.

イロト イポト イラト イラト

Theorem. Let χ be a non-singular projective curve over \mathbb{F}_q , with genus g. Let P be a set of n distinct \mathbb{F}_q -rational points on χ , and let D be a divisor on χ such that $2g - 2 < \deg D < n$. Then $C(\chi, P, D)$ is a linear code of length n, dimension = $\deg D + 1 - g$ and minimum distance d where $d \ge n - \deg D$.

Recall the Singleton Bound: $d + k \le n + 1$. Combining this with $d \ge n - \deg D$ and $k = \deg D + 1 - g$, we get $n + 1 - g \le d + k \le n + 1$.

Hence, if the underlying curve has genus = 0 (i.e. built from the projective line), the AG code is an MDS code.

イロト イポト イラト イラト

Let $\{f_1, f_2, \ldots, f_k\}$ be a basis for L(D). Since the AG code $C(\chi, P, D)$ is the image of L(D) under ϕ , it has basis $\{\phi(f_1), \phi(f_2), \ldots, \phi(f_k)\}$. Thus a generator matrix for $C(\chi, P, D)$ is:

$$G = \begin{bmatrix} f_1(P_1) & f_1(P_2) & \dots & f_1(P_n) \\ f_2(P_1) & f_2(P_2) & \dots & f_2(P_n) \\ \vdots & \vdots & & \vdots \\ f_k(P_1) & f_k(P_2) & \dots & f_k(P_n) \end{bmatrix}$$

同下 イヨト イヨト

Let $C = C(\chi, P, D)$. Under some conditions, we get the relative parameters

$$R_C = rac{k}{n} = rac{\deg D + 1 - g}{n}$$
 and $\delta_C = rac{d}{n} \ge rac{n - \deg D}{n}$

We want
$$R_C + \delta_C$$
 large:
 $R_C + \delta_C \ge \frac{\deg D + 1 - g}{n} + \frac{n - \deg D}{n}$
 $= \frac{n}{n} + \frac{1}{n} - \frac{g}{n}$

For long codes, we consider the limit as n increases. (Correspondingly, a sequence of AG codes with increasing length.)

■ ► < ≡ ► < ≡ ►</p>

To construct these codes, we need a sequence of curves χ_i , with genus g_i , a set of n_i points P_i on χ_i and a chosen divisor D_i on χ_i . So, $\lim_{n\to\infty} (R+\delta) \ge 1 - \lim_{i\to\infty} \frac{g_i}{n_i}$ Since we want $(R+\delta)$ big, we want $\lim_{n\to\infty} \frac{g}{n}$ as small as possible. For a curve χ of genus g over \mathbb{F}_q , let $N_q(\chi) := \#\chi(\mathbb{F}_q)$ For $g \ge 0$, let $N_q(g)$ be the number of points on the largest possible curve over \mathbb{F}_q with genus g. Define $A(q) := \lim_{g \to \infty} \frac{N_q(g)}{g}$

Suppose we have a sequence of curves χ_i over \mathbb{F}_q with genus g_i and size N_i such that $\lim_{i\to\infty} \frac{N_i}{g_i} = A(q)$.

For each *i*, choose $Q_i \in \chi_i(\mathbb{F}_q)$, and set $P_i = \chi_i(\mathbb{F}_q) \setminus \{Q_i\}$. Pick $r_i \in \mathbb{N}$ such that $2g_i - 2 < r_i < N_i - 1 = \#P_i$.

Consider the AG code $C_i = C(\chi_i, P_i, r_i Q_i)$ which has parameters $[N_i, r_i + 1 - g_i, d_i]$ with $d_i \ge N_i - 1 + r_i$.

If R_i and δ_i are the relative parameters of C_i , then

$$\begin{array}{rcl} R_{i}+\delta_{i} & \geq & \frac{r_{i}+1-g_{i}}{N_{i}-1}+\frac{N_{i}-1-r_{i}}{N_{i}-1} \\ & = & \frac{N_{i}-g_{i}}{N_{i}-1} \\ & = & 1+\frac{1}{N_{i}-1}+\frac{g_{i}}{N_{i}-1} \end{array}$$

Let $R := \lim_{i \to \infty} R_i$ and $\delta := \lim_{i \to \infty} \delta_i$. We get

$$egin{array}{rcl} R+\delta &\geq & 1-rac{1}{A(q)} \ R &\geq & -\delta+1-rac{1}{A(q)} \end{array}$$

Recall: $\alpha_q(\delta) := \limsup_{n \to \infty} \frac{1}{n} \log A_q(n, \lfloor \delta n \rfloor).$

Thus $\alpha_q(\delta) \ge -\delta + 1 - \frac{1}{A(q)}$.

• • = • • = •

The line $R = -\delta + 1 - \frac{1}{A(q)}$ has negative slope, hence will intersect the GV bound at 0, 1 or 2 points.

伺 ト く ヨ ト く ヨ ト

So we need to look at the value of A(q).

Given genus g, how big can $\chi(\mathbb{F}_q)$? Since

$$\begin{split} \mathbb{P}^2(\mathbb{F}_q) &= \\ \{(\alpha:\beta:1) \mid \alpha, \beta \in \mathbb{F}_q\} \cup \{(\alpha:1:0) \mid \alpha \in \mathbb{F}_q\} \cup \{(1:0:0)\} \\ \text{the size of plane curves has upper bound } q^2 + q + 1. \end{split}$$

In general, if χ is a non-singular projective curve of genus g over \mathbb{F}_q , then $| \#\chi(\mathbb{F}_q) - (q+1) | \leq 2g\sqrt{q}$. (Hasse-Weil)

A curve that meets the bound (i.e. $\#\chi(\mathbb{F}_q) = q + 1 + 2g\sqrt{q}$) is "maximal". Here is J.P. Serre's improvement of the Hasse-Weil bound : $| \#\chi(\mathbb{F}_q) - (q+1) | \le g \lfloor 2\sqrt{q} \rfloor.$

ヨト イヨト イヨト

Theorem. (Drinfeld, Vladut). If q is a prime power, then $A(q) \leq \sqrt{q} - 1$.

Theorem. (Ihara, Tsfasman, Vladut, Zink) Let $q = p^{2m}$. There exists a sequence of curves χ_i over \mathbb{F}_q with genus g_i such that $\lim_{i\to\infty} \frac{\#\chi_i(\mathbb{F}_q)}{g_i} = \sqrt{q} - 1$.

Theorem. (Tsfasman, Vladut, Zink) Let q be a perfect square. Then

$$\alpha_q(\delta) \ge -\delta + 1 - \frac{1}{\sqrt{q}-1}.$$

This gives us the line that will intersect the GV bound at exactly 2 points, when $q \ge 49$.

ヨト イヨト イヨト

The Tsfasman-Vladut-Zink line, $R = -\delta + 1 - \frac{1}{\sqrt{q-1}}$ intersects the GV bound at 2 points, whenever $q \ge 49$.

<ロト < 同ト < ヨト < ヨト -

Let A be an alphabet. If A is a field, a linear code over A is a subspace of A^n . If a subset of A^n is not a vector space, it is a non-linear code over A.

It is known that there is no binary linear code $[16, 8, 6]_2$. But in

1967, a binary but non-linear $(16, 2^8, 6)$ code was found by Nordstrom and Robinson. The code has a high degree of regularity and symmetry.

Generalizations of the Nordstrom-Robinson code were found later:

Preparata codes (for $m \ge 2$) : $(2^{2m}, 2^{2^{2m}-4m}, 6)$ Kerdock codes (for $m \ge 2$): $(2^{2m}, 2^{4m}, 2^{2m-1} - 2^{m-1})$.

同下 イヨト イヨト

Generalizations of Nordstrom-Robinson code: Preparata, Kerdock codes, etc.

Recent interest in codes over **rings** is due to the discovery that certain non-linear binary codes can be constructed as images of codes over the finite ring $\mathbb{Z}_4 := \mathbb{Z}/4\mathbb{Z}$.

Definition. The *Gray map* $\phi : \mathbb{Z}_4 \longrightarrow \mathbb{Z}_2^2$ is given by

 $0\longmapsto 00,\ 1\longmapsto 01,\ 2\longmapsto 11,\ 3\longmapsto 10.$

We can extend this to $\phi : \mathbb{Z}_4^n \longmapsto \mathbb{Z}_2^{2n}$.

伺下 イヨト イヨト

Theorem. (Hammons, Kumar, Calderbank, Sloane and Solé, 1992) Let (\mathcal{O}) (the "octacode") be the linear $(2^3, 256, 6)_{\mathbb{Z}_4}$ code with generator matrix

$$G = \begin{bmatrix} 3 & 3 & 2 & 3 & 1 & 0 & 0 & 0 \\ 3 & 0 & 3 & 2 & 3 & 1 & 0 & 0 \\ 3 & 0 & 0 & 3 & 2 & 3 & 1 & 0 \\ 3 & 0 & 0 & 0 & 3 & 2 & 3 & 1 \end{bmatrix}$$

Then $\phi((\mathcal{O}) = \text{Nordstrom-Robinson code}.$

• • = • • = •

Theorem. (Hammons, Kumar, Calderbank, Sloane and Solé, 1992) Let (\mathcal{O}) (the "octacode") be the linear $(2^3, 256, 6)_{\mathbb{Z}_4}$ code with generator matrix

$$G = \begin{bmatrix} 3 & 3 & 2 & 3 & 1 & 0 & 0 & 0 \\ 3 & 0 & 3 & 2 & 3 & 1 & 0 & 0 \\ 3 & 0 & 0 & 3 & 2 & 3 & 1 & 0 \\ 3 & 0 & 0 & 0 & 3 & 2 & 3 & 1 \end{bmatrix}$$

Then $\phi((\mathcal{O}) = \text{Nordstrom-Robinson code}$. The non-linear binary codes are Gray map images of linear codes over \mathbb{Z}_4 .

• • = • • = •

1) Høholdt, van Lint, and Pellikaan. *Algebraic geometry codes*, in Handbook of Coding Theory (Pless, Huffman and Brualdi, eds.), Vol. 1, (1998).

2) Katsman, Tsfasman, and Vladut. "Modular curves and codes with a polynomial construction". IEEE Trans. Inform. Theory **30(2)** (1984), 353-355.

3) Tsfasman, Vladut, and Zink. "Modular curves, Shimura curves, and Goppa Codes, better than the Varshamov-Gilbert bound". *Math. Nachrichten*, **109** (1982), 21-28.

4) van Lint, and van der Geer. "Introduction to coding theory and algebraic geometry", DMV Seminar, Vol. 12, Birkhauser (1988)

5) Hammons, Kumar, Calderbank, Sloane, Sole. "The Z₄-linearity of Kerdock, Preparata, Goethals, and related codes", IEEE Trans. Inform. Theory **IT-40** (1994), 301-319.

イロト イポト イヨト イヨト