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Introduction

Introduction

In this lecture, we will construct the Khovanov homology for virtual
knots. The main difficulty is algebraic: for virtual knots which do not
admit source-sink structure (“orientable atoms”), the differential
complex defined “in a natural way”, does not satisfy 8% = 0. To
overcome this difficulty, we introduce twisted coefficients.The results
of this lecture are due to the author [6, 7].

Since the Khovanov homology theory for virtual knots appeared, it
was natural to look for Lee—Rasmussen’s theory.

Note that when we restrict ourselves to virtual knots with oriented
atoms and a special sort of cobordism where all sections are virtual
knots with oriented atoms, the results of the previous lecture can be
extended verbatim. For general virtual knots, there are two
generalisations of Lee-Rasmussen theory which give bounds for slice
genus estimates. The theory due to Dye, Kaestner and Kauffman [20]
is based on the result of this lecture.

The theory due to William Rushworth relies on another complex
called double Khovanov complex, see [37].
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Introduction

Recollections

Recall that the Khovanov chain complex (for classical knots) is
defined by the axioms:

[0]] = (0= Z—0), [[OK]] = Ve [K],
(X0 = F (0= D4 [EX{1} — 0).

Here V is a vector space of graded dimension q + q~! , the operator

{1} is the operation of grading shift by 1, F is the flatten operation
which sets a double complex to a single complex by taking direct
sums along diagonals, and d is a differential. The Khovanov invariant
is the homology of a renormalization of the Khovanov complex. The
Khovanov invariant is indeed a link invariant and its graded Euler
characteristic is the unnormalised Jones polynomial.

This passage from polynomials to (bi)graded complexes is also called
categorification: Complexes form a category in which there are
natural morphisms generated, for example, by cobordisms.

This theory has many generalisations and led to solutions of many
problems in classical knot theory (for example, a simple proof of
Milnor’s conjecture about the Seifert genus of torus links).
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Introduction

Recollections

An important generalisation in the theory of extraordinary homology
of links was the construction of categorification for a set of
polynomials of type HOMFLY, made by Khovanov and

Rozansky [29, 30]. Polynomials of type HOMFLY have more
complicated relations and the problem of categorification for them
was elegantly solved by means of instruments of matrix factorisations
and Koszul complex. Khovanov and Rozansky [31] devoted their
paper to the categorification of the so(N)-type Kauffman polynomial
in which virtual knots are also used besides matrix factorisations.
The Khovanov homology possesses important properties coming from
algebraic topology: the (projective) functoriality. In the given case,
the morphisms are cobordisms of knots. Thus, the Khovanov
homology is extended to invariants of knot cobordisms representing
two-dimensional surfaces with boundary in R? x I. The projective
functoriality (i.e. functoriality up to the overall minus sign) was first
established by Jacobsson [24], see also [17, 19, 34].
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Introduction

Introduction

The functoriality allows one to construct invariants of cobordisms of
two-dimensional surfaces in R* from the Khovanov complex; a
particular case of cobordisms is the cobordism between two links
consisting of an empty set of components. In the case of projective
functoriality, a cobordism invariant is defined up to an inverse element
of the ground ring. In this case the Khovanov construction gives an
invariant of two-dimensional knots, and two-dimensional surfaces
embedded in R? x I ¢ R%. The accurate functoriality was established
by Clark, Morrison, and Walker [19], see also [14]. For Lee theory,
such a functoriality is described explicitly in the previous lectures.
One of the most natural problems in the theory of virtual knots is the
problem of generalisation of the Khovanov complex for virtual knots.
An immediate attempt to generalise the theory leads to an algebraic
difficulty: By writing down all necessary equations for the Khovanov
complex to be invariant, we conclude that the main ring of coefficients
should be the two-element ring. The indicated generalisation was
done in [3]. Some difficulties of the immediate approach can be
avoided by using geometrical constructions related to atoms.
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Introduction

Introduction

The main goal of this lecture is the construction of a chain complex
for a virtual diagram with the homology being invariant under the
generalised Reidemeister moves.

Note that the Khovanov homology for knots in thickened surfaces and
in bundles over surfaces S, whose fiber is an interval (by using some
additional gradings for curves in a given surface) was also constructed
by Asaeda, Przytycki and Sikora [13], see also [12]. This homology
does not lead to the Khovanov homology for virtual knots, since it
depends on a concrete surface S, and is not invariant under
destabilisations and homeomorphisms of the surfaces onto itself.

A further development of the Khovanov homology theory for virtual
knots representing a generalisation of the paper [13], and the results
of this lecture, are given in [8, 9], see also [21, 12]. In these papers
topological and combinatorial coefficients at terms in the Kauffman
bracket polynomial are “lifted” to new gradings in the Khovanov
homology.
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3asic constructions: The Jones polynomial

In the sequel, we shall deal with bigraded complexes C = @ CH,
where i is called the homological grading, and j is called the
(quantum) grading. The differential in the complex does not change
the quantum grading and increases the homological grading by one.
As usual, we make the substitution a = 1/(—q~!) in the Kauffman
bracket. Then, instead of the Jones polynomial we shall get its
modified version J. Let us consider the polynomial J = J - (q+q~!).
More precisely, J is defined as follows. Let K be an oriented virtual
diagram, and let |K| be the corresponding unoriented virtual diagram
obtained from K by forgetting the orientation, let ny and n_ be the
numbers of positive and negative classical crossings of K, and

n =ny +n_ be the total number of crossings. We set:

JK) = (=1)" g™ [K],

where [K] is the modified Kauffman bracket defined according to the

rule [O] = (q+q7"), [KUO] = (q+q7) - [K], [X] = qf2 €.
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Basic constructions: The Jones polynomial

The polynomial J has the following conceptually important
description in terms of the state cube. Taking away the normalising
factor (—1)"-q"+ 2"~ we get a (slightly modified) Kauffman bracket
> (=@)P®(q+q~1)7). This means that we take the sum over all
vertices of the cube, of the following products (—q)! x (q+q~1)#O,
where h is the height of the vertex, and #() is the number of circles
in the state corresponding to the given vertex of the cube.

Thus, in order to compute the polynomial, one has to associate with
every circle the Laurent polynomial (q + q~!), and then multiply
these polynomials taken with some coefficients of the form +q¥, and
take the sum of the obtained polynomials over all vertices of the cube.
Consequently, the Jones polynomial can be restored from the
information about the number of circles in each of the Kauffman
states. If we also take into account how these circles interfere when
passing from one state to another, we would be able to construct the
Khovanov complex.
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Khovanov homology with Zs-coeffi

From grading reasongings, it is easy to guess what the partial
differentials can be in the case of V> V®Vand V'V — V.

They are just the same as in the case of classical Khovanov homology.
Moreover, it follows from the grading argument that the partial
differential in the case V — V can be nothing by zero.

When considering all possible faces (atoms with 2 vertices) we will see
one new relation: mo A = 0 meaning that the composition of a
comlutiplication followed by a multiplication should give zero. The
standard Khovanov homology construction gives us X - X® X — 0
which is fine but 1 - 1 ® X + X ® 1 = 2X which is zero if we deal over
the field of characteristic two.

This is why the Khovanov homology for virtual knots is easy to
construct in the case of Zs-coefficients.
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Khovanov homology with Zs-coeffi

Let K be an oriented diagram of a virtual link with n classical
crossings.

Consider the bifurcation cube of K. As usual, with each circle in each
state of the cube we associate the linear space V over the field Zo
generated by two vectors v (also 1) and v_(also X) having grading
+1, resp. Thus, qdimV = (q + q~!). For each vertex s = {a,...,a,}
of the cube, we have a certain number of circles to be denoted by ~(s).
With such a vertex, we associate the vector space VYIS0 a;}
obtained from the tensor power of the space V by a grading shift.

In the sequel, we shall use the same notation V for the
two-dimensional free module generated by the elements 1, X of
grading +1 considered over an arbitrary ring of coefficients.
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In this lecture, we consider the symmetric tensor product for which
for elements x; € Vi, i =1,...,n, the following equality

Xp(1) @+ @ Xgm) = X1 ® -+ ® Xy holds for any arbitrary permutation
o. We shall also call this product unordered. In Section 7, we shall
consider the tensor product where the sign is the sign of the
permutation when identifying products in different orders (this is also
called signed tensor product).

v

We have defined the chain groups of our graded complex. This yields
that whatever differentials we take for this complex (provided that
0? = 0), the Euler characteristic of this complex will not depend on
them. Namely, x(Kh(K)) = J(K), where Kh(K) denote the bigraded
homology of the complex we are going to construct.
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As in the previous lectures, define the partial differentials between the
chain groups, acting along the edges of the cube according to the edge
directions; i.e. from a smoothing of type A to a smoothing of type B,
in the following way. Let an edge of the bifurcation cube correspond
to a passage from a state s to a state s’ in such a way that | circles are
not incident to the crossing in question. These circles do not change
when passing from s to s’. At the crossing of |K|, corresponding to the
edge either one circle splits into two circles or two circles merge into
one. In the first two cases, we shall define the partial differential as it
was defined in the case of classical knots [16], namely, on an edge
increasing the number of circles we set A @ Id®'{1} and on an edge
decreasing the number of circles we set m @ Id®'{1}.
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Here the identical mapping Id is referred to the circles which are not
incident to the crossing in question, and the maps m: V® V — V and
A:V — V®YV are defined by formulas (1) and (2). The map m:

1eX—X,1®1—1,
{ )

X®1=X,X®X 0

The map A :
1—19X+X®l1 2)
X—=X®X.

For those chains corresponding to the fixed vertex of the cube, the
differential 0 is a sum of all partial differentials (each to be denoted
by &', possibly, with an index indicating to the edge along which the
partial differential acts) along all edges emanating from the given
vertex of the cube (oriented in a way increasing the sum of
coordinates).

In the general case, the main problem is to define the differential of
type (1 — 1) in a way compatible with differentials of types (1 — 2)
and (2 — 1) to make the cube anticommutative. For coefficients from
Zo this difficulty is easy to overcome.
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Namely, in the case of bifurcation of type (1 — 1) we define the
partial differential on the edge as the map taking the whole space to
zero. Thus, we get the bifurcation cube, where in comparison with the
state cube we additionally indicate how the partial differentials 8" act.
Denote the obtained set of the bigraded groups (the cube) by [[K]]. In
order for the differential to be well defined, the cube has to be
anticommutative, i.e. for every two-dimensional face of the cube, the
composition of the maps corresponding to one pair of consecutive
edges is equal to minus the composition of the maps corresponding to
the other pair of consecutive edges connecting the same pair of points.
Note that in this case (for the field Zy) the anticommutativity and
commutativity are the same.

Let us define the differential 9 as the sum of all differentials 9'.

The cube [[K]] defined above is commutative.
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This statement is verified by a routine check analogous to that from
Lecture 12. It is left to as an exercise. Namely, we check the
anticommutativity for every face of the cube.

Here we give an example; see Fig. 1.

%

Figure 1: The commutativity check for a 2-face of the cube.
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Later on, we shall see (Sections Khovanov homology of double knots
and Khovanov complex for virtual knots) that every 2-face of the
cube generates a certain atom.

In the present case (Fig. 1), it is necessary to check that the map

mo A: V — V takes the whole space V to zero. Indeed, for such a
map we have: X - XX +—0,1—>1X+X®1+— 2X =0 over Zs.
Note that this case is the only essential “non-classical” case where a
bifurcation of type 1 — 1 takes place. Indeed, from the parity
arguments it follows that on every 2-face of the cube the number of

1 — 1-bifurcations is either equal to zero or it is at least two. For
more details see Section Khovanov complex for virtual knots. If there
are no such bifurcations, then the problem is reduced to one of the
classical cases (all such cases were considered in Lecture 12).

The most difficult part of our work is to construct a well-defined
complex.

The proof of the invariance of its homology is standard; it is based on
the fact that the map m is surjective and A is injective.
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If we consider the case when there are two or four such bifurcations,
then in the 2-face of the cube in question,

veaf1y 2y yebio)
rt Tt
vee Py yedf)

either each of the compositions t o p and s o r contains a zero map
corresponding to 1 — 1-bifurcation (for example, in the case

a =Db, ¢ = d the maps p and s are both zero) or the above case takes
place.

We set (cf. [26]), C(K) = [[K]]{n+ — 2n_}[—n_]. In this case C(K) is a
well-defined chain complex. Denote the homology groups of the
complex C(K) by Kh(K) (or by Khy,(K) in the case when we have to
emphasise that the Khovanov complex is considered over the field Zs).

Theorem 3.4 ([3, 4])

The graded homology Kh(K) is an invariant of the link K; the graded
Euler characteristic x(Kh(K)) is equal to the Jones polynomial.
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The second statement of the theorem follows from the fact that the
Euler characteristic defined as the alternating sum of (graded)
dimensions of homology groups is equal to the alternating sum of the
graded dimensions of chain spaces.

The proof for the homology to be invariant under the Reidemeister
moves just repeats the proof for the case of classical links (see the
main theorem in Lecture 12).

Recall that the height h(Kh(K)) of the Khovanov homology of a
virtual link K is the difference between the leading and lowest
non-zero quantum gradings of non-zero Khovanov homology of K.
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By construction it is clear that

span(K) .

h(Kh(K)) =2 > 2

Note that the complex C(K) splits into the direct sum of two
complexes: the complex with an even grading and the complex with
an odd grading (recall that the differential preserves the grading).
We get two types of the Khovanov homology: the even one Kh® and
the odd one Kh°.

They correspond to monomials of the Jones polynomial, having
degrees congruent to two modulo four (Kh®), and monomials the
degrees of which are divisible (congr= 0 mod 4) by four (Kh®). A
classical (or even virtual; i.e. virtual link having a diagram with
orientable atom) link has only one of these two types, more precisely,
the following theorem holds.
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For a classical (and even virtual) link with even number of
components the isomorphism Kh® = 0 holds. For a classical link with
odd number of components the isomorphism Kh® = 0 holds.

This theorem is completely analogous to Theorem 7.4 in [10] about
degrees of monomials occurring in the Jones polynomial.

Moreover, it is easy to check that this theorem is true not only for
classical links but also for virtual links having a diagram with
orientable atom.
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Example

Let us consider the diagram K depicted in Fig. 2 (left).
R

~_

Figure 2: A virtual knot with orientable atom with genus 2.

The chord diagram corresponding to the leading state of the
Kauffman bracket polynomial is depicted in the picture on the right.
In this state there exists one circle, and in any of four crossings this
circle can be transformed into one circle by using the corresponding
dashed chord (with framing 1).
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We assert that this link has no diagrams with orientable atoms.
Indeed, for the given diagram both complexes Kh® and Kh® (with
coefficients in Zs) have non-trivial homology. Actually, the A-state of
the diagram with one circle with a label 1 gives a non-trivial cycle
(since all differentials coming from the A-state to neighboring states
are zero). Further, in states where one crossing is B-smoothed and the
other three crossings are A-smoothed there exists exactly one circle.
Let us consider the chain equal to the sum of chains having label 1 at
each of these four states. It is easy to check that this chain is a cycle.
Further, it cannot be a boundary, since all chains in the A-state are
cycles.

Thus, there are two homology groups, whose quantum gradings differ
by 1, therefore, the link has no diagram with orientable atoms.

In particular, we have shown that the atom genus (the Turaev genus)
of the link (see Chapter 16 in [10]) is equal to one.

S. Kim, and V.O. Manturov Lecture 14. Khovanov Homology of Virtual Knots



Note that this fact cannot be revealed by using the Kauffman bracket
polynomial. Indeed, in the A-state (as well as in the B-state) there
exists exactly one circle, at each state with one (or three) crossing
A-smoothed we have one circle, and if we have two A-smoothed
crossings and two B-smoothed crossings, then in two cases we shall
have one circle and in the remaining four cases we shall have two
circles. Therefore, the Kauffman bracket polynomial of K looks like:

(K)=a'+4a’ +24+4(-a? —a ) +4a 2 +at=a+2+a*

All terms of this Kauffman bracket polynomial have degrees
congruent to each other modulo four. Therefore, in the given case the
Khovanov homology is more sensitive to non-orientability of atoms
than the Kauffman bracket polynomial.
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Note that the constructed Khovanov complex with coefficients in Zs is
completely defined by the structure of the bifurcation cube and the
numbers ny, n_. Therefore, the Khovanov Zs-homology does not
change under the virtualisation of the given link.

In the next section, we shall give another approach to the construction
of the Khovanov complex (for framed links) which is sensitive to the
virtualisation. The Khovanov complex given here coincides with the
general Khovanov complex with coefficients in Zs in the classical case;
in this case it is easy to overcome the difficulty with bifurcations of
type 1 — 1. Later on, we shall construct the Khovanov complex for
not all diagrams of virtual links but only for “right” virtual diagrams,
which have no partial differentials of type 1 — 1 on the cube. As we
shall see later, “right” virtual diagrams are those diagrams which
orientable atoms correspond to. Then we shall construct a “right”
virtual diagram for each virtual diagram by some invariant way and
see how the Khovanov homology of the corresponding “right” virtual
diagram changes under the generalised Reidemeister moves applied to
the initial diagram (not necessarily “right”). In the next section we
shall construct the Khovanov complex for framed links where the
double diagram plays the role of a “right” diagram.
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Let us take the virtual knot diagram considered in the example on
Page 54 of Lecture 13. (See Fig. 3.) This knot can be reduced to the
unknot with virtualisations and generalised Reidemeister moves.
Thus, the Khovanov Zs-homology of the knot depicted in Fig. 3
coincides with the Khovanov Zs-homology of the unknot.

A

Figure 3: A virtual knot reduced to the unknot by the virtualisation and
the generalised Reidemeister moves.

S. Kim, and V.O. Manturov Lecture 14. Khovanov Homology of Virtual Knots



Contents

@ Khovanov homology of double knots

7.0. Manturov Lecture 14. Khovanov Homol f ual Knots



In the next three sections, we shall use the construction connecting
atoms with virtual knots. Recall this construction given in

Chapter 16 of [10] which assigns to a height atom a classical link.
This construction is as follows. We embed the frame of an atom in
the plane with its A-structure preserved, and each crossing is
equipped with the over/undercrossing structure according to the
B-structure of the atom.

Let an arbitrary atom be given. Let us immerse its frame in the plane
with the A-structure preserved, construct a virtual diagram K from
the atom in the way given in Chapter 16 of [10].

The equivalence class of K is well defined up to virtualisations.
Here we construct a map: (all links) —> (links with orientable
atoms). For the latter, we have a well-defined Khovanov homology
over Z. Hence, we get an invariant of the former links.
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Let K be a virtual diagram with an orientable atom.

Define the complex C(K) as follows. Fix a ring R of coefficients and
two-dimensional free module V over this ring such that

qdimV =q+q~ L.

The chain space of our complex is the same as in the case of
coefficients from Zo. After that a differential is defined as the sum of
partial differentials with signs, and partial differentials are defined
with the maps m and A.

In the case of coefficients from the field Zs the commutativity of each
face is equivalent to its anticommutativity. In the case of coefficients
from Z one can make an anticommutative cube from a commutative
cube in the following way.

As in our last lecture, assign to all edges of the cube {0,1}" sequences
consisting of elements from {0, 1, x} and having length n and one
element *. Each such edge connects two vertices obtained by
replacing * by one and zero.

Thus, if we denote the map corresponding to an edge £ by 9;, then
the differential looks like:

o= > (-1)fo;.
{l¢]=r}
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Now we have to explain what the sign (—1)¢ means and define the
map O¢. To well define the operator 0 such that the property

000 = 0 holds, it is sufficient to show that partial differentials 52 on
two-dimensional faces of the cube are anticommutative diagrams.

Now, we slightly reformulate the conventions from Lecture 12 and 13.
A commutative cube can be transformed to an anticommutative cube
as follows. First, we have to construct maps on edges such that each
two-dimensional face is a commutative diagram, and then we shall
equip partial differentials 6& with signs. A sign is defined by the
following rule. Vertices of the cube are ordered (the homology will not
depend on an order). To each vertex of the cube we assign the
numbers of all its unit coordinates in the increasing order: iy, is, ..., ik
and the formal exterior product x;, A xj, A--- Ax;, . For example, for
n = 3 we assign to the vertex {1,0,1} the exterior product x; A xs.
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Each edge of the cube, increasing some jth coordinate, can be treated
as the exterior multiplication on the right by x;. If as a result of
application of this exterior multiplication to a “lower” vertex we get
an exterior product assigned to an “upper” vertex, we put the sign
“plus” on the edge, and the sign “minus” otherwise. For example, for
the edge {1, *, 1} we have the sign minus since

(Xl /\Xg) /\X2 = —X3 /\Xg /\X3.

Thus, we got a collection of chain groups [[K]] with the differential 0.
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Exercise 4.1

The frame of an atom admits a source—sink structure if and only if
the atom is orientable.

From Exercise 4.1, it follows that if the atom corresponding to a virtual
diagram is orientable, then there is no bifurcation of type 1 — 1 in the
bifurcation cube corresponding to the diagram. Indeed, let us consider the
frame I of the corresponding atom. Each state of the diagram is an atom
having the frame I'. Circles of the state serve for pasting black cells to the
frame I". According to Exercise 4.1, the new atom is also orientable.
Therefore, this atom cannot have a black cell approaching to itself in the
non-orientable way (the way the smoothing at the crossing where this cell
touches itself, does not change the number of circles).

Thus, bifurcation cubes are well defined for virtual diagrams with
orientable atoms, namely, all bifurcations have the following types 1 — 2
and 2 — 1; partial differentials are defined by the maps m and A; the
differential is defined as the sum of partial differentials with signs, and the
statement that 92 = 0 is checked analogously to the classical case.

Note the following two important lemmas.

S. Kim, and V.O. Manturov Lecture 14. Khovanov Homology of Virtual Knots



Lemma 4.2 and its proof

Let K be a virtual diagram with an orientable atom. Then the
collection of the groups [[K]] together with the differential O gives a
complex; i.e. 9% = 0.

We have to check that each two-dimensional face of the cube [[K]] is
anticommutative. This is equivalent to the verification of the
commutativity of two-dimensional faces before putting the signs +1.

Each two-dimensional face of the cube [[K]] represents the atom with two
vertices. Each two-dimensional face of the cube corresponds to a smoothing
of some (n — 2) classical crossings of the diagram K; see Fig. 12. The
remaining two crossings can be smoothed arbitrarily; four possibilities of
such a smoothing correspond to vertices of the two-dimensional face.

In these four states there are some number of common circles not being
incident to the two crossings under consideration. After deleting these
circles, we get an atom with two vertices.

Thus, we have to check that each two-dimensional face which can
correspond to some atom with two vertices represents an anticommutative
diagram.
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Since the atom corresponding to K is orientable, then the atom
corresponding to any two-dimensional face of the corresponding
complex is also orientable.

Let us now use the theorem from [1] which tells us that all orientable
atoms with two vertices are height atoms.

This means that each atom corresponding to a two-dimensional face
of the bifurcation cube corresponding to an orientable atom occurs in
the classical case. All such two-dimensional faces are sorted out

in [15] and for them the commutativity of the corresponding diagrams
is proved (before placing signs in differentials).

After that the proof follows line-by-line the proof in the classical case
(see, e.g. [15]) and from the verification of properties of the maps m
and A.

Thus, we have shown that the collection of chains [[K]] with the
differential 0 represents an anticommutative cube. Therefore, the
complex C(K) is well defined.

Denote the homology of the complex by Kh(K).
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Lemma 4.3 and its proof

Let K, K’ be two virtual diagrams with orientable atoms, herewith K’
differs from K by applying a detour move or one of the three classical
Reidemeister moves. Then there exists an isomorphism of the
Khovanov homology Kh(K) = Kh(K’).

¢

By applying the detour move, the structure of classical crossings does
not change. Thus, the state cube does not change either, and,
therefore, the complex does not change.

In the case of the classical Reidemeister moves we use the same proof
based on the cancellation principle which was earlier used for the
Khovanov homology of classical links. It is local; i.e. it uses only the
local structure of Reidemeister moves (not depending on the fixed
part of the link under the move). Therefore, the proof passes
verbatim for virtual knots under the condition that all complexes are
well defined. O

™ il = =

v
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Exercise 4.4

Let K be a diagram of a virtual link. Then the atom corresponding to
the double diagram D4 (K) is orientable.

Taking into account Exercise 4.4 and Lemma 4.2 we conclude that the
Khovanov complex for cables Doy, (K) is well defined for any ring of
coefficients. The map K — Do, (K) is almost invariant (it is invariant
under all combinations of Reidemeister moves which do not change
the writhe number). Therefore, it is natural to expect that the
homology of the Khovanov complex for double diagrams of a knot is
an invariant of framed links. Namely, the following statement is true.
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Exercise 4.5

Let K, K’ be two diagrams of equivalent framed virtual links. Then
there exists a collection of diagrams

DQ(K) = KO, Kl, 0oo ,Kn = DQ(K/) such that:

(1) all atoms corresponding to the diagrams K; are orientable;

(2) for eachi=0,...,n— 1 the diagram K;;, is obtained from the
diagram K; by applying one of the generalised Reidemeister
moves.

Note that it suffices to consider only classical Reidemeister moves,
since the detour move does not change an atom.

So, let us consider all classical Reidemeister moves.

If diagrams K and K’ differ by applying the first or third Reidemeister
move, then the local source—sink structure for the diagram K is in
one-to-one correspondence with the local source—sink structure for K’
such that outside the domain of the application of the move these
diagrams coincide. Here the source—sink structure of lines depicted by
dashed lines is defined as opposite to “thick” lines joining to them; see
Fig. 4.
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Figure 4: Labeling for the doubling moves 21 and 3.

The second Reidemeister move has two principal different cases,
depicted in Fig. 5. In the first case (the upper picture), we have two
opposite directed arcs (according to the orientation of the source—sink
structure), and in the second case we have two arcs going in the same
direction.
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Admissible variant of the second Reidemeister move
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Inadmissible variant of the second Reidemeister move

Y

Figure 5: Labeling for the doubling move .

In the first case, it is mentioned how the local labeling and the
source-sink structure change.

The second case is not possible; i.e. it can lead to the fact that after
applying the second Reidemeister move the atom becomes
non-orientable.
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Thus, the (increasing) second Reidemeister move is the only move
from the classical Reidemeister moves which can violate the
orientability of the atom. All moves from Exercise 4.5 do not violate
the orientability.

One can consider the set of diagrams of virtual knots with orientable
atoms and the set of moves on it consisting of all Reidemeister moves
not violating the property of orientability (i.e. the detour move, the
first and third classical Reidemeister moves and the “orientable”
version of the second classical Reidemeister move).

This set was investigated by Kamada under the name alternating
virtual links.

In particular, from the arguments given above (Lemma 4.3), it follows
that the Khovanov complex is well-defined over any ring of coefficients
and invariant in the category of orientable virtual links.

V.
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Let n be a natural number. Then Kh(Ds,(K)) is an invariant of
framed virtual links.

According to Exercise 4.4, C(D2,(K)) is a well-defined complex. Let
K, K’ be two diagrams of equivalent framed virtual links. Then by
virtue of Exercise 4.5, there exists a collection of virtual diagrams
Doy (K) = Ko, . .., Kiy = Doy (K’) corresponding to orientable atoms
such that the diagram Kj,; is obtained from the diagram K; by
applying generalised Reidemeister moves. By Lemma 4.2 for each of
the diagrams K;j the homology Kh(Ds,(Kj)) is well defined. The
invariance of the homology Kh under the detour move is obvious by
construction. Thus, by virtue of Lemma 4.3 (which asserts the

invariance under the classical Reidemeister moves), we get
Kh(D3n(K)) = Kh(K;) = - -- = Kh(Dza(K')). O
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Note that the double diagram of K and the double diagram of K’
obtained from K by virtualizing one crossing, have different state
cubes. Thus the complex constructed in the section can a priori
distinguish framed virtual diagrams obtained from each other by
virtualisation.

However, the “double” Khovanov complex constructed in this section
essentially differs from the “general” Khovanov complex for classical
knots. In the classical case as well as in the virtual case we have to
double and after that we have to calculate the Khovanov homology.
It is natural to raise the question whether the “general” Khovanov
homology Kh(K) is invariant in the case of diagrams with orientable
atoms. The positive answer to this question will be given (with some
restrictions) in the next section and (completely) in the sections
devoted to the Khovanov homology for virtual links.
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Atoms

Definition 5.1

An atom is a pair: a connected 2-manifold M? without boundary and
a graph I' € M2 such that M2\T is a disconnected union of cells that
admit a chessboard colouring (with black and white colours).

The graph I' is said to be the frame of the atom. The genus
(respectively, Euler characteristic) of the atom is that of its first
component.

The complexity of the atom is the number of vertices of its frame.

Atoms are considered up to natural isomorphism: two atoms are
called isomorphic if there exists a one—to—one map of their first
components taking frame to frame and black cells to black cells.
Atoms can be generated by Morse functions on 2-surfaces: an atom’s
frame is just the critical level with several critical points on it.
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Definition 5.2

An atom is called a height (or a vertical) atom if it is isomorphic to
an atom obtained by the third projection function on some closed
2-manifold embedded in R3.

Each atom (more precisely, its equivalence class) can be completely
restored from the following combinatorial structure:
@ the frame (four—valent graph);
@ the A-structure (dividing the outgoing half—edges into two pairs
according to their disposition on the surface); and the

@ B-structure (for each vertex, we indicate some two pairs of
adjacent half-edges (also: two angles) that constitute a part of
the boundary of black cells).

Any orientable atom with two vertices is height (can be given by a
height function of a surface embedded in R?).
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The main goal of this section is the construction of the Khovanov
homology by means of two-sheeted coverings. This will lead us to the
following

Statement 5.3

Let F be a field, and let K, K’ be two equivalent virtual diagrams
with orientable atoms. Then there exists an isomorphism of graded
homology Khr(K) = Khp(K').

Note that the general assertion about the invariance of this homology
with arbitrary coefficients follows from the parity arguments (see
below) and from the explicit construction of the Khovanov homology
for virtual knots.
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The main construction is as follows.

For each virtual diagram K one can consider the atom At(K)
corresponding to it. Later on, we shall use the techniques of
orientable covering. Namely, if the atom At(K) is orientable, we
consider two copies of At(K); if it is not, then we consider the atom
At(K) which is the orientable two-sheeted covering over the atom
At(K). It is defined as the two-sheeted covering over the
corresponding surface; here, the preimage of the frame is a graph
which we consider as the frame, the preimage of a black cell is a pair
of black cells, and the preimage of a white cell is a pair of white cells.
The atom obtained in such a way can be either two-component or
one-component, and it depends on the orientation of the initial atom.
Denote the virtual diagram corresponding to the atom At(K) by K.
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If we apply a classical Reidemeister move €; to the initial diagram K,
then the move €2; will be applied to the diagram K in two places; here
in the case of the move {2, the admissible variant of the second
Reidemeister move will be applied to K twice.

This construction can be treated as follows: We consider two sets of
vertices of the atom with the A-structure at them and connect
vertices by edges.

Thus, for each virtual knot we can consider its “covered version”:

K — At(K) — At(K) — Khp(K).

In terms of a knot diagram, this construction is described as follows.
Let a virtual diagram K be given; this diagram has n classical
crossings vi,...,Vvy. These crossings are connected with each other in
some way. Thus, we have a graph I' immersed in the plane. Each
crossing v; has four (adjacent) ends viy, vie, Vi3, vi4 enumerated, for
example, in clockwise manner, with crossings connected by branches
of the diagram which edges of the atom correspond to. Let an edge e;
connect the ends vjj, and vj,j,, where jo, j4 € {1,2,3,4}.
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The diagram K is constructed as follows. It contains 2n crossings

Vi, .o, v, v, ..., vl which are connected by edges. Each edge e; of
the initial diagram has two preimages: eJ1 and ejz. Each of two edges ei
connects an end sz or sz with an end VJSM or VJ3J4 For each edge
ej we have to choose which ends are connected (v' or v'’). Here we
have an ambiguity. The matter is that before describing edges we
have not had a natural ordering of vertices: Which of the vertices v/
or v{’ is the “first” and which one is the “second”? To overcome thls
dlfﬁculty let us choose some spanning tree T for I' and say that all

edges e1 corresponding to edges of this graph connect ends sz with
v (thereby edges e

Vigia connect ends v{; and vi’; ).
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Another choice of the tree will correspond to some change of notation:
vi and v’ swap places in some pairs. After that the rule for
connecting the remaining ends by edges el and e? follows. In order to
indicate which pairs of ends are connected by an edge e, we shall
either connect them by the edge e} or e?: the “symmetric” pair of
ends corresponding to it obtained by swapping v/ <— v will also be
connected by an edge. Henceforth, for constructing a virtual diagram
it is not important for us to remember the notation for these edges.
We shall not pay attention to how we place edges ef* on the plane.
The resulting class of virtual link will not depend on it (by
construction, diagrams will differ from each other by applying a finite
sequence of detour moves).
So, we have fixed a maximal tree T C I'. Each edge ej not belonging
to this tree represents the minimal cycle on the subgraph T Ue; C T'.
In the case when this cycle is good (see below) we connect the ends

/

v}, and v}, by the edge ef, and the ends v{/; and vi’; by the edge

ej2. In the case of a bad cycle we connect the ends v ]2 and V;; i by

the edge e , and the ends vJ i, and Vm4 by the edge e . The notion of

good and bad edges goes back to orientable and non- orlentable cycles
on the corresponding atom.
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An edge is called good if the corresponding cycle is orientable. Under
the covering of the atom, orientable cycles are taken to cycles, and
non-orientable cycles are sent to paths (with some ends in vi,v{/). Let
us define the notion of a good edge (for edges not belonging to T),
and the notion of a good (orientable) cycle in terms of a diagram of
the virtual link. For this we consider all edges of the given cycle

€j1, €y, -+ €y, €, = €j;, Where edges ej;, ej,, meet at a vertex
(indices i are taken modulo k) and let us try to define locally the
source-sink structure along them. Let us orient the edge e;, in some
way. Further, if the edge e;, is opposite to the edge e;, at a vertex,
then we orient e;, such that either both edges e;, and e;, come into
the vertex, or both edges emanate from it; in the case when the edges
are not opposite, we shall make one of them come into the vertex and
the other emanate from it. Further, we do the same for the
orientation of ej,, ej,,.... If the process converges; i.e. we have the
orientation of e;,, = e;, coincides with the initial one, we call the
cycle good, and bad otherwise. Namely, a cycle is called good
(orientable) if the number of its transversal passages through classical
crossings, vertices of the atom, is even.
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For a plane diagram the parity of the number of transverse passages
through classical crossings coincides with the parity of passages
through virtual crossings (all these passages are transverse).

S. Kim, and V.O. Manturov Lecture 14. Khovanov Homolo, of Virtual Knots



It is easy to check that this definition of a good cycle coincides with
the definition of an orientable cycle on the atom defined by the
A-structure. Setting successively orientations of edges according to
the source—sink structure, we define orientations of black cells
approaching (locally) to these edges. The first vector of the basis is
directed along the orientation of the edge, and the second one is
directed inward the black cell. If we return to the initial edge with the
same orientation, then this means that we have traveled along an
orientable cycle, and a non-orientable cycle otherwise. Indeed, if we
pass through a classical crossing, then orientations of neighboring cells
defined in such a way, are opposite to each other. Thus, getting a
compatible orientation means precisely that our path goes
transversely evenly many times.

So, we have defined the notion of a good (orientable) cycle and a good
edge (for edges not belonging to the tree T). Therefore, we have
completely constructed the virtual diagram K. Note that the
definition of a good cycle does not depend (up to detour moves) on
the choice of the tree T.
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Moreover, from the atom At(K) the knot corresponding to the
two-sheeted covering is restored up to virtualisations; we have already
mentioned the explicit way of constructing the diagram K with the
diagram K; it corresponds to some immersion of the frame of the
atom At(K) (with preserving the A-structure).

It is easy to see that the detour move in the initial diagram K of the
link induces some combinations of the detour moves on the diagram
K. Moreover, the following lemma takes place.

By applying one of the classical Reidemeister moves to a diagram K
the diagram K will change in the following way: The same
Reidemeister move is applied to it in two places. Herewith, the atom
corresponding to the “middle” diagram obtained from K by applying
the second Reidemeister move in one place (any of two places) is
orientable.

The proof of the lemma is left as an exercise.
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According to Lemma 4.2, the homology Kh(K) is well defined.
Therefore, by Lemma 4.3 the Khovanov homology of a “covered” link
does not change under applying the Reidemeister move to the initial
knot. This leads us to the following

Theorem 5.6

The map K — Kh(K) gives a well-defined invariant of virtual links.

Note that only the second Reidemeister move 25 can change the type
of the corresponding atom (i.e. it can convert a non-orientable atom
to an orientable one and vice versa). If, for example, we have an

orientable atom At(K) and two components of the atom At(K), then
the application of the second Reidemeister move (non-admissible
version) to K can “connect” these components into one (this
corresponds to the fact that after applying the second Reidemeister
move, the atom may become non-orientable).

Herewith the moves €q, 23 preserve the orientability of the atom.
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Now let the atom corresponding to a diagram K be orientable. Then
K consists of two copies of the atom corresponding to K. Since F is a
field, we have Khp(K) = Khy(K)®?.

Therefore, the homology Kh(K) is obtained from the invariant
homology Kh(IN{) by “extracting of the tensor square root”. In the
case when the ring of coefficients is a field, we have the Poincaré
polynomial 8 in two variables with all integer non-negative
coefficients. From this polynomial we have to extract the “square
root”; i.e. to find the Laurent polynomial £ in the same two variables
with integer non-negative coefficients (coefficients are non-negative
since they are the ranks of Khovanov homology groups) such that the
equality Q2 = holds. It is obvious that if we can do this, then it
can be done uniquely. Since this operation is unique, if it exists, we
get the claim of Theorem 5.3.
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Moreover, from these discussions we get the following

Let F be a field, and let for a virtual diagram K the graded homology
Khp(K) cannot be represented as the tensor square. Then K has no
diagram with an orientable atom. In particular, the virtual link

generated by K is not classical.

It is natural that the Khovanov complex constructed in this section cannot
detect non-triviality of the virtual knot depicted in Fig. 3, since this knot is
obtained from the unknot by generalised Reidemeister moves and
virtualisations.

The question about whether two non-isotopic classical links can be
obtained from each other by a finite sequence of generalised Reidemeister
moves and virtualisations is an important and interesting conjecture
(virtualisation conjecture). Note that the virtualisation conjecture is true
for the unknot (i.e. if a classical diagram of a knot is obtained from a
diagram of the unknot by applying a finite sequence of the generalised
Reidemeister moves and the virtualisation, then the classical diagram
represents the unknot), since the Khovanov homology detects the unknot,
see [33]. The Khovanov complex gives a partial answer to.this question.

S. Kim, and V.O. Manturov Lecture 14. Khovanov Homology of Virtual Knots



From Theorem 5.3 and the invariance of the Khovanov homology
under virtualisation, we have the following theorem.

If a classical link is obtained from a classical link by applying
generalised Reidemeister moves and virtualisations, then these links
have the same Khovanov homology with coefficients from any
preassigned field.

Later we shall show that this theorem is true for arbitrary coefficients
(e.g. from the ring Z), see Theorems 7.8 and 7.12.
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Assume there exists a map f sending the set of diagrams of virtual
knots into itself and having the following properties:

@ for each virtual diagram K the diagram f(K) is a virtual diagram
with an orientable atom;

@ if a diagram K has an orientable atom, then f(K) = K;

@ if two diagrams K and K’ are equivalent by means of

Reidemeister moves, then f(K) and f(K’) are equivalent by means
of Reidemeister moves, where all intermediate diagrams

connecting the diagrams f(K) and f(K’) have orientable atoms.

The map K — Kh(f(K)) is an invariant of virtual links.
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Atoms and twisted virtual knots Khovanov complex for v
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Atoms and twisted virtual knots Khovanov c

Bifurcations of types 2 — 1 and 1 — 2 in the Khovanov complex will
(see Section 2) correspond to partial differentials &'; the differential 9
consists of (see below); the bifurcation of type 2 — 1 corresponds to
the multiplication m, and the bifurcation of type 1 — 2 corresponds
to the comultiplication A.

The complete information about the number of circles in states of the
diagram can be extracted from the corresponding atom. In other
words, the state cube can be completely restored from the atom.

An actual problem is the problem of finding the the minimal genus of
atoms corresponding to diagrams of the virtual link. Classical link
diagrams of genus zero are the connected sums of alternating
diagrams.
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Atoms and twisted virtual knots Khovanov c

This genus is called the virtual link genus or the Turaev genus due
to [38], cf. Definiton 5.1. It turned out [32] that this genus had an
important significance in studying Heegaard—Floer homology of
classical knots.

We shall construct the Khovanov complex starting with a given
virtual link diagram. As we shall see, the homology of the complex
constructed in this way really depends only on the corresponding
atom. Thus the homology will be invariant under virtualisation. This
supports the virtualisation conjecture mentioned above.

Twisted virtual knots [18, 40] are close relatives of virtual knots.
They are represented by knots in oriented thickenings of not
necessarily orientable surfaces modulo stabilisation/destabilisation.
A particular case of the theory of twisted virtual knots is the theory
of knots in RP?3 (cf. Chapter 23, [10]).
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Atoms and twisted virtual knots Khovanov ¢

An orientable thickening of a two-dimensional surface M is an
orientable three-dimensional I-bundle over M, where I is a segment.

Let us consider a non-orientable surface S and construct the canonical
oriented I-bundled over it. It represents a three-dimensional manifold
SxI with boundary.

A nice example of such a thickened surface is RP?xI, which is
homeomorphic to RP3\{*}. Thus, by constructing the Khovanov
homology for such knots, we shall get the Khovanov homology theory
for knots in RP3.

Given a surface M and its thickening M xI, then links in MxI can be
considered by means of their diagrams: projections on M.
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Atoms and twisted virtual knots Khovanov c

There are two types of stabilisation/destabilisation of such thickening
surfaces: along orienting cycles and along non-orienting cycles. In the
second case, we add/remove a thickened M&bius band.

In general position, a projection is a framed 4-graph. In order to
restore the link, one should indicate for each crossing how the two
branches behave in a neighbourhood of this crossing. In the orientable
case, one just indicates which branch should be over, and which
branch should be under. However, in the non-orientable case this
indication is relative. While walking along a non-orienting circuit, the
direction upwards changes to the direction downwards. So, for
example, knots in RP?\+ = RP2XI can be represented by diagrams in
RP? such that all crossings lie inside the disc D2 C RP?; when passing
the boundary of the disc the direction changes; see Fig. 6. To handle
this, we choose an affine chart such that the complement to this chart
in S is one-dimensional. For this chart we have a well-defined notion
of an over/undercrossing,.
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Atoms and twisted virtual knots Khovanos

Figure 6: A branch AB forms overcrossing in the left picture and
undercrossing in the right picture.

Note that links in such surfaces are well described by atoms. Indeed,
fix (once for all) an orientation on MxI. Now, for a link diagram in
M, we already have the frame of the atom: a framed 4-graph.
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Atoms and twisted virtual knots Khovanov c

Now, the way for attaching black cells is the following (see Fig. 7).
For a vertex v, we take two emanating non-opposite half-edges a and
b. The corresponding virtual link contains two points projected in the
vertex v, one of which is incident to the edge corresponding to a, and
the other one is incident to the edge corresponding to b. In a
neighbourhood of v, denote by ¢ the small vector going from a point
on the edge a to a point on b. If the basis (a,b,c) is positively
oriented in our three-dimensional manifold, then the angle between
half-edges a and b is decreed to be white, as well as the opposite
angle. Otherwise they are both black.

Note that this choice does not depend on the ordering of the pair

(a, b), nor on their directions.

In the case of general virtual links which are a particular case of
twisted virtual links, the way of pasting black cells described above is
agreed with the way described in Chapter 16, [10].
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Atoms and twisted virtual knots Khovanov complex for v

Figure 7: Constructing the atom from a diagram.

This leads to the following theorem.

There is a well-defined map from the set of twisted virtual knots to
the set of virtual knots modulo virtualisation.

ecture 14. Khovanov Homol f ual Knots



Atoms and twisted virtual knots Khovanov c

Knots in such surfaces were considered by Asaeda, Przytycki and
Sikora in [13], and Viro [40] (Bourgoin first considered stabilisations
that led to twisted virtual knots). In [13] a Khovanov homology
theory for such surfaces was constructed by using an additional
topological information coming from surfaces. See also [12].

From Theorem 7.2 and the invariance of the Khovanov homology
under virtualisation (Lemma 7.9), it follows immediately that the
Khovanov homology constructed below can be generalised for twisted
virtual knots.
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Atoms and twisted virtual knots Khovanov complex for v
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Atoms and twisted virtual knots Khovanov complex for v

Our aim is to define a homology theory for virtual knots (with
arbitrary atoms) over an arbitrary ring in such a way that:

Q@ the homology we are defining is invariant under the (generalised)
Reidemeister moves;

@ for the case of virtual knots with orientable atoms (also known as
alternatible virtual knots) this homology theory coincides with
the one constructed in the previous sections;

@ the tensor product of the complex with Zs coincides with the
theory constructed in Sec. 3;

@ the graded Euler characteristic of the complex which will be
constructed coincides with the Jones polynomial.

The invariant of Rushworth [37] violates the last condition.
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Atoms and twisted virtual knots Khovanov complex for v

The coefficient ring might be an arbitrary abelian group with unit, for
example, Z.

For the sake of simplicity we shall sometimes abuse the notation and
call modules over rings “linear spaces”, not depending on whether the
ring is a field or not.

If no 1 — 1-bifurcations occur, we may construct the Khovanov cube
by using the standard differentials, the multiplication m (for

2 — 1-bifurcations) and the comultiplication A (for

1 — 2-bifurcations).
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Atoms and twisted virtual knots Khovanov complex for v

The situation with the 1 — 1-bifurcation (the essential phenomenon
of the theory of virtual knots appearing because of the existence of
non-orientable atoms) makes the problem more complicated. Indeed,
if we wish to construct a grading-preserving theory without
introducing any new grading, this partial differential should be
identically equal to zero because of the grading reasons (there should
be a map from V to V that lowers the grading by one). In the space
V, the basis consists of two elements with gradings +1 and —1. If we
set this partial differential to be equal to zero with all other
differentials (m and A) defined in the standard way, we get a
straightforward generalisation for the Zo case.

Below we involve two additional structures: The basis change in the
space V corresponding to a circle and generated by {1, X} (the
homology group of the unknot) while passing from one crossing to
another and the exterior product of “circles” instead of their usual
tensor products.
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Atoms and twisted virtual knots Khovanov complex for v

Notational agreement. Given an unordered set of vector spaces,
enumerate them arbitrarily: Vy,..., V,. We shall define a new space
not depending on the ordering of the spaces, which will be denoted?!
by Vi AVa A--- A Vy as follows. Consider all possible tensor products
of these spaces and identify them according to the following rule. Let
xi €V, i=1,...,n. Weset x5, @+ ®@Xy, =5ign(o)x1 ® - @ Xy.
We shall denote such tensor product x; ® - - - ® x,, of elements x; € V;
by x1 Axa A -+ Ax,. We call this space the ordered tensor product.

To avoid confusion, note that, in writing X A X, we always assume
that the first X and the second X belong to different (but possibly
isomorphic) spaces; thus X A X is not zero (unlike the wedge product
of 1-forms).

n the case of coincidence of the linear spaces V = V; = --. = V;, we shall use
also the notation V™.
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Let us consider a virtual diagram K.
To handle it and to make the whole cube anticommutative we have to
add two ingredients, sensitive to orientability of the atom.

@ With each circle C in each state we associate a vector space of
graded dimension? equal to q + q~'. Namely, given an
orientation o of the circle C; we associate with this circle the
graded vector space generated by elements 1 and X¢ , of
gradings 1 and —1, respectively. The orientation change of the
circle (passing to —o) leads to X¢,—o = —Xc,0-

@ Given a state s of a virtual link diagram K having 1 circles
Cq,...,C;, with this state, we associate an ordered tensor
product VAl as a basis of this product we take the product

(pl)cal A (P2)0a2 ARERWA (Pl)cal, where (pi)cai represents an
element from V¢, .

2From now on, we have passes from the notation 1 and X to the notation 1 and
X (before 1 play the role of unity). This leads to the same homology theory up to
a grading shift and a normalization. In the sequel we should not pay attention to
these normalizations and shifts, this agrees with [11] in verbatim.
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Thus, we have defined the chain space of the complex corresponding
to the virtual diagram K. We denote it by [[K]]. All the basis elements
of this space correspond to some states of K with an additional choice
of the elements £1 or £X. Let s be a state of K with the set of circles
Cq,...,C;, whence for these circles we have chosen elements

Y1, ..,7, each of them being +1 or £X. Then these elements form a
chain of the complex [[K]] having the height h, where h is the number
of B-smoothings of s, and the grading which is equal to h + #1 — #X,
where #1 is the number of elements of type +1 among ~1,...,v, and
#X is the number of elements +X among ~1,..., 7.

Our next goal is the description of the differential 9 in this complex,
which increases the height by one and does not change the grading.

Set n; = the number of crossings X, n_ = the number of crossings
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Denote by C(K) the complex obtained from [[K]] by the height shift
and the grading shift: C(K) = [[K]]{ny — 2n_}[—n_]; i.e. the height of
each chain decreases by n_, and the grading increases by (ny — 2n_);
all differentials change respectively. Here we assume that [[K]] is a
complex, this fact will be proved below.

Whatever the differential 9 is, from the construction of chains of the
complex C(K) follows Theorem 7.5.

For any virtual diagram K we have y(C(K)) = J(K).
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Consider a state s of a diagram of an oriented virtual link. Choose a
classical crossing and consider all circles of the state s incident to this
crossing. There are one or two such circles. Fix orientations on these
circles according to the orientation of the edge emanating upwards to
the right (and opposite to the orientation of the edge incoming to the
crossing from the bottom left; see Fig. 8, upper part). As we shall see
further, in the case of one circle, these two orientations defined locally
can be uncoordinated, but this case can be treated easily.

Thus, the orientations of these circles of the state s locally agree with
the orientation of the edge emanating upwards to the right (as well as
with the edge incoming from the bottom-right) and disagree with the
orientation on the left side. We orient the half-edges as shown in the
lower-left part of Fig. 8. Thus, we have fixed a choice of the generator
X for any circle incident to a given crossing. Note that for another
crossing for the same circle the choice of X may differ from this one
by a sign.
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Differentials will be defined according to the orientations of circles at
classical crossings and local orderings of components with the
following rule.

The orientations described above are well defined unless the case
when the edge corresponding to the crossing of the diagram bifurcates
one circle to one circle. In such cases, we set the partial differential to

KX
XX

Figure 8: Definition of a basis at a crossing.
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Assume we have a 1 — 2 or 2 — 1-bifurcation at a crossing.

If we deal with two circles incident to the crossing from the opposite
sides, we order them in such a way that the upper (respectively, left)
circle is locally first; the lower (respectively, right) one is thus, the
second. In the sequel, when defining partial differentials we assume
that all circles are ordered in such a way that the circles we deal with
are in the very first position in our tensor product; this can always be
obtained by means of a permutation, which might lead to a sign
change. The map on the other circles is identical.

Let there be given an edge of the bifurcation cube where the number
of circles is changed by one. This bifurcation corresponds to a certain
crossing; we have two options 2 — 1 or 1 — 2. In those states when
we have two circles incident to the crossing, the circles are ordered.
Moreover, all three circles are oriented, thus, we have chosen a basis
for the space corresponding to each of these circles.
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Now we define the maps A: V- VAVand m: VAV — V locally
according to the prescribed choice of generators at the crossing and
local ordering (see Fig. 9):

A(l) =1 A X+ X1 Alyg; A(X) =X; ANXsy (3)

and

Figure 9: Defining operations m and A.
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Note that the map m is surjective and the map A is injective.

If we have some circles C1, ..., Cj not incident to the crossing in question,
and elements 71, ..., on them, the formulae for the partial differentials &’
are written as:

FAAY A AN)=AMAL A~ Am
=L AXo AT A AN+EXiAL AT A A, (5)
FXANA AN =AXKANA--An=XiAXaAy1 A Ay

(in the case of a 1 — 2-bifurcation) and

M AL Ay A Am)=m(li Al) Ay A Ay
=1AymA---Am,

FXiAla Ay A Ap) =0 (11 AXa Ayt A=+ Am)
=mXiAl) Ay A Am (6)
=m(li AX) A7 A= Am
=XAv A Am,

(X AXe Ay A Am) =m(X; AX) Ay A Ay =0

(in the case of a 2 — 1-bifurcation).
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After that we define the differential 0 on the chain space
corresponding to the state s as the sum of partial differentials acting
on the state s.

Thus, if we wish to comultiply the second factor X5 in X; A Xs, we
get X1 /\XQ = 7X2 /\X1 — 7X2 /\X3 /\Xl = 7X1 /\X2 /\Xg, where
X3 belongs to the newborn third component (under the condition
that at the crossing of splitting the circle X5 is locally first (i.e. upper
and left), and the circle X3 is locally second).

Given an oriented diagram K of a virtual link, we have constructed a
set of bigraded groups with the differential 9. Denote the set of
groups by [[K]]. The differential increases the height and does not
change the grading.
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Our goal is to prove the main theorem.

-

Theorem 7.7

The set of groups [[K]] together with the differential d is a
well-defined bigraded complex, i.e. 92 = 0. Herewith the differential
preserves the grading and increases the height by one.

The complex C(K) is obtained from [[K]] by the height shift and
grading shift. From the constructions it will follow that the homology
of the complex C(K) coincides with the homology constructed for the
case of virtual knots with orientable atoms.

Further, from the proof of Theorem 7.7 the claim of Theorem 7.5
follows by construction.

The complex with coeflicients in Zy coincides with the complex over
Zso described in Sec. 3.
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The homology of the bigraded complex C(K) is an invariant of the
virtual link K under generalised Reidemeister moves.

We first prove Theorem 7.7. After that, we shall prove Theorem 7.8;
its proof will be more technical and it will follow the standard scheme
described above some additional sign checks for partial differentials,
appearing while ordering and orienting the circles, will be needed. We
shall also show that the homology of C(K) coincides with the
homology constructed for the case of virtual knots with orientable
atoms.

We first prove two lemmas that establish some properties of our
complex C(K) and simplify further arguments.
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Let K be a virtual diagram. Consider a classical crossing v of it. Let
the diagram K’ be the diagram obtained from K by the virtualisation
of v. Then there exists a one-to-one correspondence between the sets
of classical crossings of the diagrams K and K’. It generates a
one-to-one correspondence ¢ between the states (for the
corresponding vertices we have either A-smoothings or B-smoothings).
Note that such a bijection does not change the number of circles in
the states; it follows from the fact that all states can be restored from
the atom, and the atom does not change under virtualisations. Let us
orient circles of corresponding states identically outside the crossing v.
This identification defines the map g: [[K]] — [[K']] of the chain spaces
according to the following rule. For any state s and the corresponding
state ¢(s), the diagrams K and K’ look identical outside a
neighbourhood of v. Thus, we can establish the bijection between
oriented circles of s and oriented circles of ¢(s), that leads to the
definition of g. We shall use the same notation g for maps of vector
spaces (modules) corresponding to the circles in states s and ¢(s).
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Let Cs be the subspace of the space [[K]] associated with a state s of
the diagram K. Denote the corresponding space for K’ by Cy .

Let K, K’ be two diagrams obtained one from another by the
virtualisation. Then there is a grading-preserving chain map

f: [[K]] — [[K']] that maps Cs isomorphically to Cy and commutes
with the local differentials.

In particular, if [[K]] is a well-defined complex, then so is [[K']];
herewith their homology groups are isomorphic.
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Suppose the diagram K’ is obtained from the diagram K by the
virtualisation at a crossing v.

The map f is constructed according to the crossing type of v (X or

)\) By construction, partial differentials of the complex [[K']]
coincide with the images of partial differentials of [[K]] under g,
except, maybe, those partial differentials corresponding to the crossing
v. Furthermore, differentials corresponding to v split our cube to the
“lower subcube” and the “upper subcube”, as shown in Fig. 10.

N . k-3 e

c /Q\ .
K/l a b ¢ jgt ja b s
DI¢ X

Figure 10: The behaviour of the cube under the virtualisation.

Now, the remaining partial differentials differ possibly by signs on
edges corresponding to the crossing v. Our goal is to show that they
cither all agree or all differ by —1 sign, as shown’in Fig. 10.
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Indeed, the bases at all crossings but v agree for K and K’. This leads
to the identification of chains of the corresponding complexes. For
this isomorphism for every circle C incident to v and the circle g(C)
corresponding to it in the corresponding state of the diagram K’ we
have g(Xc,ox) = —Xg(C) 0., » Where o and ox: are the orientations of
the circles C and C’ at the crossing v of the diagrams K and K’
chosen according to the rule depicted in Fig. 8. The latter identity
holds because in any state s the circle C that tends from the
upper-right to the crossing v of K, corresponds to the circle ¢.(C) in
the state ¢(s) that tends to v from the upper-left, this corresponds to
the change X to —X in the local basis of spaces V corresponding to
circles of the state incident to the given crossing; see Fig. 8. If we
dealt with the usual tensor product case regardless of the circle
ordering, the transformation X — —X would leave m invariant and
change A to —A.
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Assume now that the crossing v is positive (:Xi). All maps of type m
corresponding to v, represent bifurcations of two circles (a left one
and a right one) into one circle. After the virtualisation, the circles
interchange their roles; see Fig. 11.

Figure 11: Virtualisation.
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Globally we get a sign change for all m-type partial differentials. For
partial differentials of type A we have one circle that bifurcates into
two ones, the upper one, and the lower one; the “up-down” position
remains unchanged under virtualisation, that preserves all A-type
partial differentials. The first component is shown locally by solid
line, whence the second component is shown by a dashed line.
Summing up (and recalling the sign change of the partial differential
A because of passing X — —X), we see that the virtualisation of a
positive crossing changes the signs of all partial differentials
corresponding to this crossing.
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Now divide the chain space [[K]] and [[K']] into two parts each,
according to the smoothing of v; we call one part of the cube “upper”,
the remaining part being lower. Now set f: [[K]] — [[K']] as g for all
elements from the lower subcube and as —g for the upper subcube.
Evidently, this map commutes with partial differentials. Indeed, the
commutativity of the map f with partial differentials inside one of the
subcubes follows from the fact that the map g is anticommutative;
therefore, the map f commutes.

Thus if the initial cube were anticommutative, then the constructed
map would be an isomorphism in homology.

Similar arguments show that the virtualisation of a negative crossing
does not change the cube at all. The minus sign that appears on
edges corresponding to A is canceled by the minus sign caused by the
permutation of circles (the right one and the left one). This completes
the proof of the lemma.
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This lemma means that the homology of a virtual diagram with two
classical crossings (if well defined) can be restored from an atom
endowed with an orientation of the link components.

Thus, to prove that the cube [[K]] anticommutes, we can make some
preliminary virtualisations for classical crossings of K and consider
the analogous question for the obtained diagram K’.

To check the anticommutativity of the cube [[K]] we have to consider
all 2-faces of it. Each 2-face is represented by fixing a way of
smoothing some (n — 2) classical crossings of K; see Fig. 12. The
remaining two crossings can be smoothed arbitrarily; the four
possibilities correspond to the vertices of the 2-face.

In Fig. 12 the bifurcation cube is shown in the left part and the 2-face
and the corresponding atom are shown in the right part. The atom
can be restored from a knot diagram, as described above in

Chapter 16 of [10].

S. Kim, and V.O. Manturov Lecture 14. Khovanov Homology of Virtual Knots



Atoms and twisted virtual knots Khovanov complex for v

Figure 12: A 2-face generates an atom.

Knot
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Now, for these four states, there are some “common” circles which do
not touch any of the two vertices in question (in the case depicted in
Fig. 12 there are no such circles). After removing these circles, we get
an atom with two vertices.

What we actually have to check is that any face corresponding to any
possible atom with two vertices anticommutes.

For the two vertices of such an atom, we have some local orientations
of the link at each of these vertices; they are needed to fix the local
ordering of components (see Fig. 8) when defining the differentials.
Note that globally these orientations might not agree on the circles;
namely, an edge of the atom with two vertices consists of several edges
of the diagram which might have opposite orientations; see Fig. 13.
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Figure 13: Orientation for atom crossings.

It turns out, however, that these local orientations can be chosen
arbitrarily without losing the anticommutativity property and
without changing the homology.
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Namely, fix an atom with two vertices. All possible occurrences of this
atom in the cube correspond to local orientations of edges at these
vertices. Fix an orientation for one crossing v; and choose two
distinct orientations for the second crossing vy that differ from each
other by the clockwise §-turn of the arrows; see Fig. 14. Thus, we get
two pictures and two two-dimensional discrete cubes, Q; and Q.
These cubes coincide as sets of linear spaces. Let Vg and V be linear
spaces of Q1 and Qs corresponding to some fixed state s and the state
s’ corresponding to it.

Figure 14: Q1 and Q2.
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If Qq is anticommutative, then so is Q2. Moreover, there exists a
grading preserving chain map f: Q; — Qs that takes Vg
isomorphically to Vg and commutes with partial differentials.
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The proof of Lemma 7.10 is very much similar to that of Lemma 7.9.
A sketch of the proof goes as follows. After rotating all arrows at vo
in the counterclockwise direction, we get the local sign change of X
for all circles incident to this crossing. Analogously to Lemma 7.9, we
consider two complexes and identify their chain spaces by means of
the map g (analogous to the map g from Lemma 7.9) in such a way
that the differentials corresponding to any other crossing coincide.
After that we correct g, as in Lemma 7.9, to get a map f that
commutes with all partial differentials, which would yield the
statement of the lemma. If we dealt with the usual unordered tensor
product, this would lead to the sign change of all partial differentials
of type A corresponding to vs.

Furthermore, in the case of a positive crossing, all differentials of type
m corresponding to this crossing, change their sign, too.

In the case of negative crossings, partial differentials of type 2 — 1 do
not change, and 1 — 2-bifurcations change the sign again. Thus, we
have the same situation as in Lemma 7.9, which completes the proof
of Lemma 7.10. O
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Let us continue the proof of Theorem 7.7.

Lemma 7.10 means that in order to check the anticommutativity of
all possible faces, it is sufficient to enumerate all atoms with two
vertices and check the anticommutativity for each of them. We first
fix a representation of such an atom in R? (i.e. an immersion of its
frame preserving the A-structure); such immersions differ by a
possible virtualisation which does not change the complex (up to
isomorphism) by Lemma 7.9; then we choose a local orientation,
which does not matter either by Lemma 7.10.

Note that among atoms with two vertices there are disconnected
atoms; i.e. those for which each edge connects some vertex with itself.
For such atoms in the case of ordinary tensor product we get by
evident reasons commutative 2-faces. In the case of ordered tensor
products the corresponding faces will obviously anticommute.
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Some (connected) atoms with two vertices are inessential in the
following sense. We have set the 1 — 1 differential to be zero. By
parity reasons, in the 2-face of any atom there might be 0, 2 or 4 such
edges. The case when we have no such edges is orientable. When we
have four edges representing differentials of type 1 — 1, then the
proof follows from the identity 0 = 0. The same takes place in the
case when in the diagram, the anticommutativity of which we prove,
we have two compositions of maps and one of the maps at each
composition is zero.

There are some inessential atoms, where two vertices are not
connected to each other. For any of them, anticommutativity is
obvious. There are six essential connected atoms with two vertices, as
shown in Fig. 15. All these atoms except the first one are orientable.
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Figure 16: The non-orientable atom.
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Indeed, the lower composition is zero. Substituting X into the upper
composition, we get £X A X at the first step and zero at the second
step. If we start with 1, we get 1170v1 A ngo\q + Xl,ovl A 1270V1 at the
first step; here the first index is the local number of the circle (the
first circle is big and the second one is small), and the second index is
the name of the vertex. When passing to the second vertex vy, the
first and second circles change their roles: The circle number 1
becomes the lower one and number 2 becomes the upper one. Also,
for the big circle, X changes to —X. Thus we get — X A1+ 1A X
which is mapped by m to zero.

Let us now check orientable atoms. For any of them, we fix an
orientation as shown in Fig. 15. Such an orientation gives a
coordinated orientation of circles at two crossings which are under
consideration in the sense of Fig. 8. After that, we can fix the bases
{1,X} for all circles at vertices according to the rule shown in Fig. 8.
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Now, the anticommutativity is checked as follows. If we dealt with the
usual (unordered) tensor product case, everything would commute.
Now, the enumeration of circles might cause minus signs on some
edges. We have to check that for any of these five atoms the total sign
would be minus.
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For instance, in Fig. 17 we have an oriented atom with two vertices.
The analogous check of the unordered tensor product case means the
usual associativity m o (m ® Id) = m o (Id ® m), where the circles are
enumerated from the left to the right. In the left part of the figure,
one pair of numbers of the circles 1 and 2 is drawn upside down to
underline which circle is assumed to be locally the first (left); the
other one is the second (right).

vy vy

AXSO
OGO CCO
he'oee

Figure 17: An orientable two-vertex atom.
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Here we have to take into account the global ordering of the
components. Note that for three components, we always have to
apply m A Id first, taking those components to be multiplied with the
first and second positions.

Thus, m o (m A Id) applied to A; A As A Aj gives us
m(m(Aq1,As),Az) = —(A1 - Ag - A3); here - means the usual
multiplication in Khovanov’s sense:
X-X=0;X-1=1-X=X;1-1=1. Here the minus sign appears at
the second crossing; we have two branches oriented downwards; thus,
the rightmost circle occurs to be locally the left one.

On the other hand, if we consider the second crossing first, we get
Al/\Ag/\Ag = (Ag/\Ag)/\Al = —(A3/\A2)/\A1 —

7(A2 . Ag) AN A1 = A1 AN (A2 . Ag) Applylng m to that, we get

Ay Ay As.

All other atoms are checked analogously. Note that our setup gives
directly an anticommutative cube, unlike the Khovanov original
setup, where we got an anticommutative cube from a commutative
one by adding some minus signs on edges. Thus, Theorem 7.7 is
proven. Therefore, Theorem 7.5 is also proven.
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Proof of Theorem 7.8

Let us prove Theorem 7.8.

Throughout the rest of the proof of Theorem 7.8, we shall not care
about height and degree shifts. The proof of their coincidence for
diagrams differed by Reidemeister moves repeats verbatim that in the
classical case.

First, note that the complex C(K) itself does not change at all if we
perform the detour move. Therefore, the homology does not change.
In the case of classical Reidemeister moves, the proof goes along the
line of the proof for classical links.

Let us be more specific. The case of the first Reidemeister move is
evident (see the main theorem in Lecture 12).

As in the case of the first Reidemeister move, the invariance under the
second Reidemeister move repeats the proof given in the classical case
(see the main theorem in Lecture 12).
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In addition to the classical case, we should pay attention to orientations of
circles when we prove the invariance under the second Reidemeister move.
But for the second Reidemeister move, we can choose orientations of all
circles incident to a given crossing locally agreed (such that under passing
along one circle from one crossing to the other one the variable X does not
change the sign); see Fig. 18.

\

/SN

Figure 18: Orientations of upper-right agrees for €2,.
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Let us now consider the third Reidemeister move shown in Fig. 19
(page 114).

It is well known (see, e.g. [36]) that any variant of the third
Reidemeister move can be obtained as a composition of 1, Q5 and
one prefixed version of the third Reidemeister moves, in which a
choice for over/undercrossing and orientations of edges is chosen.
Consider only one case, shown in Fig. 21, with crossing smoothings as
in Fig. 19.

At any crossing in Fig. 21 there is a local rule for orientations for all
edges incident to it, according to the rule shown in Fig. 8. If two
crossings are adjacent, the orientation might or might not be
coordinated. We see that the orientation (defined according to Fig. 8)
in the third crossing (left picture) does not agree with the orientations
in the first and second crossings analogously; for the right picture, the
second crossing disagrees with the first one and with the third one.
Note that the rule in Fig. 8 does not depend on types of crossings, but
does depend on the orientations of branches.
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Figure 19: Behaviour of Khovanov’s complex under 23
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Apply virtualisations to crossings 1, 2 of the first diagram and to the
second crossing of the second diagram; after that, all local orientations
(in the sense of variable X) will be coordinated; see Fig. 20.

& 2
B ;/ T(@ J - /%_/\\ /}
o}
@Ljé/ IQG’EK ‘ %6

S G
Figure 20: The diagrams after the virtualisation.

The positive smoothings at crossing 1 are the same (up to
virtualisations) for both diagrams. The negative smoothing of them
gives rise to two pictures obtained one from another by a sequence of
(virtualisations and) two classical Reidemeister moves.
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Thus, the complexes of the two diagrams in question can be
rearranged to have coinciding bottom levels, and top levels having the
same homology (in both cases we applied 25).

Figure 21: Virtualizing crossings under (23 to make all bases agree.
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The main thing to check is that the differentials going upwards agree
for these complexes; i.e. the “upwards” maps in both cases either
coincide or differ by a sign. These complexes are shown in Fig. 22.
In our situation, the only difference from the classical case which may
occur is that they differ by a minus sign (because of ordered tensor
products taken instead of the usual tensor products).

In the classical case the final complexes (after factorising) have the
form shown in Fig. 22. In Fig. 22 the virtualisation applied by us in
Fig. 21 is not designated. The picture shows only what circles are
transformed, but does not show what circle is the first at a crossing,
and what circle is the second (for this it is necessary to take into
consideration the virtualisation in Fig. 21.
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Here 1 =0 (v4 = 0) in the left upper corner of Fig. 22 means that the
space corresponding to the given state is factorised by the subspace
where the small circle is marked by 1. Here 71 and 75 are not
differentials; they are chain maps taking an element to the element
which is minus homologous to the initial one.

To establish the isomorphism in homology, it is sufficient to show that
71 0 d1x01 = daxo1 and dix19 = 72 0 dos19. In this case we shall show
that all the maps “upwards” in both complexes differ by a sign (since
in both cases 7; is minus the identity in homology). After that the
homotopy equivalence of the two complexes corresponding to the
third Reidemeister move is proved as in Lemma 7.9: By means of a
natural map that identifies lower subcubes and minus that map that
corresponds to the complex which the upper subcube is reduced to.
The ordered tensor product case differs from the usual one, possibly,
by signs on edges.
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Let us check that the signs agree in our setup. We shall show that

71 0 d1401 = doxo1 (the remaining case di.10 = T2 0 dayio is completely
analogous).

Let us view Fig. 22 and take into account the virtualisation of the
right and left diagrams at crossings. The required identity will look
like p=qo A~ o A; see Fig. 23.

Figure 23: Checking the invariance under 3.
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Here di,; is a 1 — 2-bifurcation (we denoted it by A); 74 = v o AL,
where v is a partial differential and A~! is assumed as an operation
inverse to A (note that the space in the upper-left corner in which the
element (31 stays is factorised by 1 = 0; i.e. the space associated with
the small circle C, is one-dimensional with generator X). Then, the
comultiplication map for which C is a resulting circle becomes an
isomorphism.

View Fig. 23. For each of the maps in the brackets the number of a
crossing is indicated which this map is applied to.

The maps p and q are just the usual local differentials, either both
multiplications, or both comultiplications, or both zeros.

If p = q = 0, there is nothing to prove.
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Consider the remaining cases. We have three fragments of circles

a, B, 6. In the very initial state (which the map p in the right picture
and A in the left picture are applied to) they may belong to one, two
or three different circles. We shall first consider the case when all
fragments containing «, 3, d belong to three different circles.

For simplicity we denote the elements of the algebra V (of type 1 or
+X) related to these circles, by the same letters as fragments «, 3, 6.
In our case, both operations p and q are multiplications.

Starting with a A 8 A §, we get on the right picture the map douo1:

p:aABAS—= (a-B)NS,

where (« - f) means an ordinary product in the Frobenius algebra.
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On the left picture we have:
aABAS=6AaABBSAXAQAB.

Here we applied the comultiplication to ¢ to get two circles at the
crossing number 1; the two resulting circles are denoted by J (the
upper one) and X (the lower one).

Now, SAXAaAB=—-BAXAaASF. We then perform A1 at
crossing 3. This map joins the two circles marked by S and X.

At this crossing the generator X is related to the left circle, and 3 is
related to the right circle. Thus, we have

CBAXAQAS=XABAQAS™S BAQAS

Now, the operation q is the comultiplication at crossing 2, where the
circle marked by S is the first (upper), and the one marked by « is
the second one (lower). Thus, we get: (a - 8) Ad.
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Now assume that « and 8 form one circle (in the initial state), and ¢
forms a separate circle. Denote the mark (an element from V)
corresponding to the first circle by A, and the mark corresponding to
the second circle by §.

The map p looks like:

ANG S A AALAG,
where ). Aj 1 ® Aj 2 is the result of application of the

comultiplication to A in the ordinary sense (in the case of unordered
tensor product); see Fig. 24.
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In the further proof for simplicity of writing we shall not use the sum

sign > ..

In the left picture we have
ANd=—-NA—- —0NXANA

(at the first crossing the marking ¢ corresponds to the upper circle
and X corresponds to the lower circle).
Then for the map A~! at crossing 3 we have

—SANXANA=-XANANS—>—-ANAD

(here X was on the left side, and A was on the right side).
Finally, the map q at crossing 2 gives us

—ANO— —AiJ A ALQ AJ.

Here A; 1 corresponds to the locally upper component s at crossing 2,
and A o is locally lower component t. But, in the right picture they
have opposite ordering. More precisely, we have

—As 15 ANAj2 g AO.
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In the first case (the map p) we had
A1t ANAjo s NO=—Aja s NAj 1 NG

These two results coincide because of cocommutativity of A in the
ordinary case.

One can consider the remaining cases analogously.

Suppose that o and § belong to one circle (the corresponding element
being denoted by «), and 8 belongs to another circle. Then we have
the following maps.

In the simplest case (the map p) we have

alf = (a-f).
On the left picture we have

aANB—=aANXAB=XABANa—=BAa— (8- a).
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Consider the case of multiplication when 8 and § form one circle (the
corresponding element being denoted by 3). We get:

anf—(a-p)
on the right picture (the map p) and
aNfB=—-PBAha— —BAXANa=XABANa—=BAha— (B -a)

on the left picture.
Finally, consider the case when at the beginning we have exactly one
diagram, we get two comultiplications:

A=A 1t NAigg
in the simplest case (the map p) and
A ANX=-XANA— —-A— 7Ai7175 AN Ai,Q,t = A1727t AN ALLS'

Thus, we have proved the equality 71 0 d1401 = da2x01- The proof of the
equality di.10 = T2 0 das10 is completely analogous.
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Let K be a virtual diagram for which the corresponding atom is
orientable. Then the homology Kh(K) coincides with the Khovanov
homology constructed in Lemma 4.2.

During the proof of this theorem, we denote our complex and our
homology by C(K) and Kh(K), respectively, and the ones constructed
in Section Khovanov homology of double knots by C’(K) and Kh'(K)
respectively.
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Proof of Theorem

First we note that the shifts for C and C’ are performed in the same
manner. Thus, we can forget about additional normalizations of type
[-n_]{n; —2n_}.

First, we assume the diagram of K is chosen in such a way that all X’s
for all crossings and circles agree (that is, for a given state circle,
while passing from one classical crossing P to another one Q, we get
Xc,op = XC,0qs 10t Xgop = fXQOQ). This is possible since the atom
corresponding to K is orientable. Indeed, since the atom
corresponding to K is orientable, we can globally define the
orientation of all edges to be compatible with the orientation of the
circles in each state. At each crossing of K this orientation may agree
or disagree with the local orientation of edges determined by Fig. 8
(the orientation originates from the source—sink structure). Let us
apply the virtualisation to all crossings of K where these orientations
disagree. By Lemma 7.9, the homology of the complex C(K) remains
the same, and the orientations of circles given locally at crossings
according to the rule in Fig. 8 become compatible.
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After that, we should just care about signs of local differential and
enumeration of circles for any crossing.

We construct a homology-preserving map between two cubes. Fix an
enumeration of the classical crossings of K. Let us associate the
spanning tree for the cubes C(K) and C’'(K) as follows. This tree

consists of all edges of the form (a1,...,a1,%,0,...,0),5 € {0,1}; i.e.
an edge in the direction x;41 belongs to this tree if all the coordinates
of xj49,...,x, vanish; see Fig. 25.
3
2y 2

> 1

Figure 25: Choosing a spanning tree.
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With each state s of the complex C(K) we associate the ordered tensor
power VA and with the corresponding state for the complex C’(K)
we associate VO, where 1 is the number of circles in the state s.
Enumerate the circles in the A-state in some way. Then the ordering
determines a map between the space corresponding to the A-state s in
C(K) and the space corresponding to some state g(s) of the complex
C'(K). After that we can successively renumber the circles at all
vertices of the tree in order that the identification of the chains in the
corresponding states of the complexes C(K) and C'(K) commute with
the partial differentials acting along the edges of the spanning tree.
Thus we have constructed a map between the whole chain space of
C(K) and the chain space of C'(K).

This map g commutes with all the partial differentials for the
following reasons. Let 9, 3" be the partial differentials corresponding
to the same edge of the complexes C and C’. Then we have

god =40"og.
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If the compatibility holds for three of four edges of some
two-dimensional face, then it also holds for the fourth edge, since both
complexes are anticommutative and no one of the partial differentials
is the identical zero.

To complete the proof, we note that all the edges of the cube can be
exhausted if we start from the spanning tree and successively add the
missing edges of the two-dimensional faces (add the fourth edge
provided that we have three).

As it was done in the definitions from the last lecture, we call by the
height h(Kh(K)) of the Khovanov homology of a virtual link K the
difference between the leading and lowest non-zero quantum gradings
of non-zero Khovanov homology groups of the virtual link K. From
Theorem 7.12 it follows that the definition given in Sec. 3 (using
Khovanov homology for orientable atoms) is agreed with the definition
for the ordinary case based on the construction of the present section.
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Spanning tree decomposition for Khovanov homology considered in
Chapter 7 of [10] (Theorem 7.9) remains valid for virtual links.

The non-normalised Khovanov complex of a diagram K of a virtual
link is isomorphic to some complex whose chain group looks like

D Als K){A(s) + 2w(Ks)}, (7)

sEV:

where A is the homology group of the unknot and V) is the set of
states with one circle.

v

Note that in the proof of Theorem 8.1 we have not used the fact that
a link is classical. Therefore, everything can be generalised word by
word for virtual links in the case of the field on which the initial
Khovanov complex is well defined.
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We assert that this proof fits for all models of the Khovanov complex
of virtual knots in those cases when this complex is well defined.
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The Khovanov theory of virtual knots described earlier in this lecture
is not unique to what one can get by looking at the Kauffman model
and the (anti)commutative state cube. The present section is devoted
to a generalisation of the Khovanov theory which uses Frobenius
extensions for classical and virtual links.

Below, we show that Khovanov’s universal construction (A, R) works
in the case of orientable atoms straightforwardly, and write down the
algebraic equations the partial differentials have to satisfy for the case
of arbitrary virtual links.

S. Kim, and V.O. Manturov Lecture 14. Khovanov Homology of Virtual Knots



Geometrical generalisations by means of atoms Algebraic

Contents

© The Khovanov polynomial and Frobenius extensions
@ Geometrical generalisations by means of atoms

7.0. Manturov Lecture 14. Khovanov Homol f ual Knots



Geometrical generalisations by means of atoms Algebraic

With each virtual link diagram having an orientable atom, the
universal (R, .A)-construction associates some bifurcation cube, the
bigraded chain space with partial differentials, whose homology leads
to an invariant of virtual links (after a normalization).

Here, with the state cube and the bifurcation cube we associate
bigraded complexes with tensor powers of the ring A over the ring R
staying in vertices of the cube; the tensor power corresponds to the
number of circles in the given state; partial differentials in these cubes
are defined by using m and A, and differentials are sums of partial
differentials with signs.

From Khovanov’s theory [27] it follows that there exists a local proof
of the invariance for the universal (R, .4)-construction; i.e. there is a
number of algebraic steps (equivalences, analogous to the cancellation
principle and short exact sequences) which leads to the following.
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Let us fix a classical Reidemeister move €2;. Then for any classical diagrams
K and K’ which differ locally by a Reidemeister move §2;, there exists, see
ahead, a consequence of algebraic transformations taking Khy(K) to
Khy(K') and not depending explicitly on the behaviour of partial
differentials of the Khovanov complexes for K and K’ except for those
whose explicit form (u or A) follows from the structure of our Reidemeister
move ;.

This argument leads to the fact that the universal (R, .A)-construction can
be generalised for virtual diagrams with orientable atoms. Namely, given a
diagram K with an orientable atom, we can construct the corresponding
bifurcation cube with differentials, corresponding to the multiplication and
comultiplication operations (with signs) and calculate its homology.
Furthermore, if two diagrams K, K’ have orientable atoms and are obtained
from each other by some classical Reidemeister move €2;, then according to
the principle described above, there is an isomorphism between the graded
homologies Khy(K) = Khy(L’). Since the universal (R, .A)-constructionis
tautologically invariant under the detour move (the bifurcationcube does
not change), the following analogue of Lemma 4.3 holds.
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Let K, K’ be two diagrams with orientable atoms such that K’ differs
from K by an application of a detour move or one of the three
classical Reidemeister moves. Then Khy(K) 2 Khy (K').

This argument together with Lemmas 4.5, 5.5 yields that the
universal (R, .A)-construction works for

o the construction of the Khovanov homology theory Khy for
framed virtual links by taking the 21 parallel copies;

o the construction of the Khovanov homology theory Khy for
virtual knots by taking two-sheeted orienting coverings over the
corresponding atoms.

o the construction of the Khovanov homology theory Khy for
virtual knots obtained by taking parity projections, see [2].
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More precisely, the following theorem holds.

Theorem 9.2

(1) Let 1 be a natural number. Then Khy (D9 (K)) is an invariant of
the framed virtual link K.

(2) The map K — Khy(K) gives a well-defined invariant for virtual
links.
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As we have shown above, for virtual knots with orientable atoms the
Khovanov homology with Zs-coefficients can be defined
straightforwardly if we set all partial differentials of type 1 — 1 to be
Zero.

Let us now consider the universal (R, .4)-construction , and let us
generalise it for the case of virtual knots.

Note that if with each knot we associate a well-defined complex,then
the homology of this complex will be automatically invariant under
classical Reidemeister moves (according to the locality of the
invariance proof) and the detour move (there is nothing to prove in
this case).
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Thus, we have reduced the problem of finding an extension for the
ring A in order to construct the Khovanov homology theory for
arbitrary virtual link diagrams, to the following problem. Find an
operator (a homomorphism of R-modules) J: A — A corresponding
to maps of type 1 — 1 in such a way that for every virtual diagram
the bifurcation cube with partial differentials obtained from m, A, 7,
is anticommutative.

Thus, we require the commutativity of the cube in order to turn it
into an anticommutative cube (just as it was done in the usual case).
This problem is purely algebraic. In order to solve it, one has to
consider all possible 2-faces of the bifurcation cube for a diagram Kj;
there are finitely many such types (with each face, one associates
some atom with two vertices). For each face, one has to check some
algebraic conditions for the maps J, A and m.

Algebraic
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For the space A, let us take the basis {1,X}, and for the space A® A
we take the basis {1® 1,19 X,X® 1, X ® X}.

Then in these bases the maps A and m are represented by the
following matrices:

~h
10 100 ¢
A=l 1 o | m_<011h)’
0 1

After that we shall use the sign of matrix multiplication instead of the
composition of the operators. So, for example, we write p - A instead
of ;1o A. One of the particular cases given here, is considered in detail
in [39].
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We look for a matrix

r s

which corresponds to bifurcations of type 1 — 1 and gives, at the
same time, the (anti)commutativity of the bifurcation cube.

Let a coefficient ring R containing elements h and t with gradings 2
and 4, respectively, be given. Denote the obtained bifurcation cube by
[K]]z. Let us define the differential as the sum of the partial
differentials corresponding to edges (of type m, A, J) with signs
arranged as it was done in previous lectures.
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Lemma 9.3 and its proof

Lemma 9.3

The bifurcation cube [[K]]z is anticommutative if and only if the
following properties hold:

m- A= (7)%
A-T=0®1)-A=(117J)-A, (8)
Jm=m-J®1l)=m-(117). 9)

To check the (anti)commutativity of the state cube it is necessary for us to
consider all possible sorts of faces of the cube. Later on, we disregard
additional signs on edges and prove the commutativity.

In the “simple” case where we have the field Zs and null-differentials
corresponding to bifurcations of type 1 — 1, everything was reduced to the
“classical” cases, and as well as to the case depicted in Fig. 1.

For the (R, .A)-theory we have to check more cases, since maps of type

1 — 1 are not assumed to be zero, and the maps m (multiplication) and A
(comultiplication) are more complicated than in the case of the homology
Kh.
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Lemma 9.3 and its proof

Each two-dimensional face of the cube represents a collection consisting of
four states, see Section Khovanov homology of double knots. When pasing
from one state to another, some circles are reconstructed and the others
persist. Denote these four states by soo, So1, s10 and si11 depending on the
values of two changing coordinates. Delete “common components” of the
states s;;j; i.e. those components of the state soo which do not connect to the
crossings at which the substitution of the smoothing occurs. Then the given
two-dimensional face of the cube will represent some virtual knot and,
therefore, the atom corresponding to it. This atom will have exactly two
vertices. If the atom is height, then the corresponding diagram is realized
by a bifurcation of embedded circles into the plane, thus, the
(anti)commutativity of the corresponding face belongs to the number of
classical cases checked in [28, 39].

For atoms with disconnected frames the check is obvious. Further, each
orientable atom with the connected frame having two vertices is height.
Thus, the required verification is reduced to sorting out unoriented atoms
with two vertices (all of them by definition are not height). Sorting out
these atoms, eventually we shall come to relations which are satisfied
identically, e.g. Jo u = J o u; see Fig. 26. Three atoms giving non-trivial
relations pointed out in the claim of the lemma are given<n Figs. 27; 28
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We met the first equation already in the case of the general Khovanov
homology C (there the composition m - A looks simpler). In the case
of the universal (R, A)-theory we have:

—h 2t
m-A= ( 9 h ) .

If we want to construct a Z-graded theory, then it is necessary for us
that the matrix J increases the grading of elements of the ring R by
one. This means that all elements p, q, r, s € R should be
homogeneous. In this case deg p =1, deg q =2, deg r =0, deg s = 1;
herewith it is possible that any of the elements p, q, r, s are equal to
zero (in this case the grading is not defined). Then from the equality

(3)2 =m - A it follows deg (2t) = deg t = 3, which leads us to a
contradiction, if 2 # 0.

S. Kim, and V.O. Manturov Lecture 14. Khovanov Homology of Virtual Knots



s of atoms Algebraic

Thus (as well as in the case of the general Khovanov homology),
under this approach the Z @ Z-bigraded homology theory is possible
only in the case of a field of characteristic two.

Let us consider the case of a field of characteristic two. It turns out
that in this case we have a simple non-trivial solution. Namely, in the
case 2 = 0 the matrix m - A is turned into the diagonal matrix

h 0
m-A—( 0 h )
Let us add to the ring R a new element u = vh, deg u = 1.

Now set R’ = Zs[u, t], herewith the algebra A takes the form
A’ =R'[x]/(X? — u?X — t), where deg X =2, deg t = 4, deg u = 1.
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Set

3:(8 g) (10)

In this case the matrix J is scalar, and Egs. (8) and (9) are satisfied
automatically.
Thus, we conclude with the following theorem.

Over the field Z, the pair of algebras (R', A’) together with
multiplication m, comultiplication A defined by
AD)=10X+X®1-1?-101, AX)=X®X +t1®1 and the
scalar map J looking like (10), gives an invariant homology theory for
virtual links.
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In the general case; i.e. in the case of the Khovanov homology for
virtual links, we have the following.

The restriction of Khovanov’s universal theory for the case h =0 (no
restrictions on t) can be extended to virtual links by the method
suggested in the section of Khovanov homology for virtual links.

The main idea of the proof of Theorem 9.5 is the following. A and m
behave nicely under the involution I: 1 — 1, X — —X that takes place
while inverting the circle: The multiplication m does not change, and
A changes the sign. Note that this takes place only for h = 0 (for
arbitrary t). The case when h # 0 can be handled by using a more
sophisticated twisting.

This generalises straightforwardly for the case when h = 0 (where all
differentials of type 1+ 1 are assumed to be zero). As a particular
case, this leads to an analogue of Lee’s theory, see [22, 23, 37].
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In the classification and tabulation of (virtual) knots the important
step is to describe diagrams having a minimal number of (classical)
crossings. One of the main achievements in the development of knot
theory is Kauffman—Murasugi—Thistlethwaite theorem and the
classification of alternating links by Menasco and Thistlethwaite [35]
following from this theorem.

In this section we shall mention theorems establishing the minimality
of virtual and classical diagrams, see also [25, 5]. The proofs are
analogous to the classical case.
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By thickness (width) T(K) of the link diagram K we mean the
maximum of all T (K) over all rings R without additional grading.

The thickness T(K) of a virtual diagram K measures the number of
diagonals between the two extreme diagonals in the Khovanov
homology of K.

For any diagram K (with a connected atom) of a virtual link we have:
T(K) < g(K) + 2, where g(K) is the genus of the atom corresponding
to K.

Definition 10.3

Let us call a virtual diagram K 2-complete, if T(K) = g(K) + 2.
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Theorem 10.4

Let T(K) = g + 2, span (K) = s. Then the number of classical
crossings of a connected diagram of the virtual link generated by K
cannot be smaller than s/4 + g.

In particular, if a diagram with n crossings and the atom with genus g
is 1-complete and 2-complete, then it is minimal.

Theorem 10.4 holds in any category in which the Khovanov complex
is well defined and invariant. So, if we are interested in the invariance
of a classical diagram in the category of classical diagrams, we can
consider the thickness in the classical category.
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Problems

@ Investigate the functoriality of Khovanov homlogy with
Z-coefficients under cobordisms

@ Conjecture: can two non-isotopic classical links can be obtained
from each other by a finite sequence of generalised Reidemeister
moves and virtualisations?
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