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1 Preliminaries: Necessary and Sufficient Optimality Conditions

We consider optimization problems of the form

min
x∈X

f (x),

where x = (x1, . . . , xn) is a decision variable, X ⊆ Rn is a constrained set of variables (also called
a feasible set), and f : Rn→ R is an objective cost. We often assume that f is twice continuously
differentiable. If X = Rn, the problem is called an unconstrained problem. Otherwise, it is called
a constrained problem.

• Linear program is a special case when f (x) = c′x is a linear function and X is characterized
by a set of linear constraints.

• Nonlinear program refers to the case where f (x) is a nonlinear function and X ⊆ Rn is a
continuous set of decision variables.

Definition 1. x∗ is called a local minimum if ∃ε > 0 such that f (x∗) ≤ f (x),∀x ∈ X with
∥x − x∗∥< ε. If this inequality holds strictly, x∗ is called a strict local minimum.

Definition 2. x∗ is called a global minimum if f (x∗) ≤ f (x),∀x ∈ X . If this inequality holds
strictly, x∗ is called a strict global minimum.

Remark 1. Local and global maximum are defined similarly by replacing f with − f .

Proposition 3 (Necessary Optimality Conditions). Let x∗ be a local minimum for the uncon-
strained problem minx∈Rn f (x), where f is continuously differentiable in an open set containing
x∗. Then,

∇ f (x∗) = 0, (first order necessary condition)
∇2 f (x∗)≥ 0. (second order necessary condition)
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Proof: Fix a direction d ∈ Rn, and consider the scalar function g(α) = f (x∗ +αd). Then,

0≤ lim
α→0+

f (x∗ +αd)− f (x∗)
α

=
d

dα
g(0) = d ′∇ f (x∗),

where the first inequality holds because x∗ is a local minimum. By repeating the same argument
when d is replaced by −d, we get d ′∇ f (x∗) ≤ 0. Therefore, d ′∇ f (x∗) = 0,∀d ∈ Rn ⇒
∇ f (x∗) = 0.

Next assume f is twice continuously differentiable, and let d be any vector in Rn. For all
α ∈ R, the second order expansion yields

f (x∗ +αd)− f (x∗) = α∇ f (x∗)′d +
α2

2
d ′∇2 f (x∗)d + o(α2).

For sufficiently small α→ 0, we have o(α2)
α2 → 0. Since ∇ f (x∗) = 0, we have

0≤ lim
α→0

f (x∗ +αd)− f (x∗)
α2

=
1
2

d ′∇2 f (x∗)d, ∀d ∈ Rn ⇒ ∇2 f (x∗)≥ 0.

□

Proposition 4 (Sufficient Condition). Let f : Rn→ R be twice continuously differentiable over
an open set S. If x∗ ∈ S satisfies ∇ f (x∗) = 0 and ∇2 f (x∗)> 0, then, x∗ is a strict local minima
of f . In particular, ∃ ε,γ > 0 : f (x)> f (x∗) + γ2∥x − x∗∥2,∀x : ∥x − x∗∥< ε.

Proof: Since ∇2 f (x) is positive definite, its smallest eigenvalue denoted by λ must be positive,
and in particular for any d ∈ Rn, we have,

d ′∇2 f (x∗)d ≥ d ′(λI)d = λ∥d∥2.

Using this relation into a second order approximation and because ∇ f (x∗) = 0, we have
f (x∗+d)− f (x∗) =∇ f (x∗)d+ 1

2 d ′∇2 f (x∗)d+o(∥d∥2)≥ λ2∥d∥
2+o(∥d∥2) = (λ2 +

o(∥d∥2)
∥d∥2 )∥d∥

2.

Thus, if ∥d∥ is sufficiently small (e.g. ∥d∥< ε), the term (λ2 +
O(∥d∥2)
∥d∥2 ) is strictly bounded above

zero (e.g., greater than γ2), and we get:

f (x∗ + d)≥ f (x∗) +
γ

2
∥d∥2,∀d : ∥d∥< ε.

□

Definition 5. A subset C ⊆ Rn is called convex if αx + (1−α)y ∈ C ,∀x , y ∈ C ,∀α ∈ [0, 1]. A
function f : C → R is called convex if f (αx +(1−α)y)≤ α f (x)+ (1−α) f (y),∀x , y ∈ C ,∀α ∈
[0, 1]. If in addition f is continuously differentiable, one can show that f is convex if and only if

f (y)≥ f (x) +∇ f (x)′(y − x),∀x , y ∈ C .

We say f is strictly convex if the above inequalities hold strictly. A continuously differentiable
function f is called σ-strongly convex (for some σ > 0) if

f (y)≥ f (x) +∇ f (x)′(y − x) +
σ

2
∥y − x∥2,∀x , y ∈ C .

Finally, f is (stictly/strongly) concave if − f is (stictly/strongly) convex.
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Proposition 6. Let X be a convex set and f : X → R be a convex function.

(a) If f is continuously differentiable, then ∇ f (x∗)′(x − x∗) ≥ 0, ∀x ∈ X is necessary and
sufficient for a vector x∗ ∈ X to be a global minimum of f over X .

(b) If X is an open set and f is continuously differentiable over X , then∇ f (x∗) = 0 is a necessary
and sufficient condition for a vector x∗ ∈ X to be a global minimum of f over X .

Proof: (a) By convexity f (x) ≥ f (x∗) +∇ f (x∗)′(x − x∗),∀x ∈ X =⇒ f (x) ≥ f (x∗), ∀x ∈ X .
Conversely, if x∗ minimizes f over x , for any x ∈ X we have,

f (x∗)′(x − x∗) = lim
α→0+

f (x∗ +α(x − x∗))− f (x∗)
α

≥ 0 (1)

(b) If ∇ f (x∗) = 0, the optimality of x∗ follows as a special case of part (a). Conversely, if x∗

minimizes f over X , and X is an open set. Using the necessary condition in the previous
proposition, we have ∇ f (x∗) = 0.

□

Definition 7. Let X ⊆ Rn be a closed convex set and ∥ · ∥ be the Euclidean norm. The projection
of an arbitrary vector x ∈ Rn on X is defined by [x]+ = argmin

y∈X
∥y − x∥.

Lemma 8. The function f : Rn→ X defined by f (x) = [x]+ is continuous and non-expansive,
i.e., ∥[x]+ − [y]+∥ ≤ ∥x − y∥,∀x , y ∈ Rn.

2 Gradient Methods

The goal is to develop an iterative scheme to solve minx∈Rn f (x), or obtain a stationary point,
i.e., a point x∗ at which ∇ f (x∗) = 0. Gradient method refers to a class of algorithms to achieve
this task and are generally in the form of:

xk+1 = xk +αkdk, k = 0,1, 2, . . . ,

where αk ≥ 0 is the stepsize, and dk is the update direction and often is taken such that results in
a descent in the objective value, i.e., f (xk+1)< f (xk). If dk is a descent direction, the gradient
method is called a gradient descent method. One way to ensure dk is a descent direction is as
follows:

f (xk+1) = f (xk +αkdk) = f (xk) +αk∇ f (xk)′dk + o(αk)

If dk is chosen such that ∇ f (xk)′dk < 0 and αk is sufficiently small, then f (xk+1) < f (xk).
There are a large variety of choices for dk and αk in gradient methods. Following are just a few:

2.1 Descent Direction

dk = −Dk∇ f (xk), where Dk is a positive definite matrix. Then,

∇ f (xk)′dk =∇ f (xk)′Dk∇ f (xk)< 0,

which satisfies the descent direction criterion. Some special choices for Dk include:

3



• Steepest Descent: Dk = I , ∀k− 0,1, 2, .... Among all directions dk that have unit norm
∥dk∥= 1, the choice dk = − ∇ f (xk)

∥∇ f (xk)∥ attains the minimum value for ∇ f (xk)′dk. However,
the steepest descent often suffers from slow convergence, especially if the gradient at an
iterate is orthogonal to the direction that leads to a minimum.

• Newton’s Method: Dk = (∇2 f (xk))−1, k = 0, 1,2, ..., provided ∇2 f (xk) is positive
definite. Newton’s method often converges fast in a neighborhood of a local minimum.
However, it requires more computation per iteration.

2.2 Stepsize Rules

There are many rules for choosing the stepsize in gradient methods. Some popular ones include:

• Minimization Rule: Given direction dk, choose αk that the cost is minimized along dk,
i.e.,

αk = argmin
α≥0

f (xk +αdk)

This requires solving a scalar minimization problem that is often done by a line search, to
approximate αk. Limited minimization rule is an alternative way that limits the feasible
range for α in the above minimization to some interval, say [0, S], i.e.,

αk = arg min
α∈[0,S]

f (xk +αdk)

.

• Constant Stepsize: Here a fixed stepsize s > 0 is selected and αk = s, ∀k = 1, 2, . . .
However, if s is chosen too large, divergence will occur, while if s is too small, the rate of
convergence may be very slow.

• Diminishing Stepsize: Choose αk such that limk→∞α
k = 0 and
∑∞

k=1α
k =∞. The

difference between this stepsize rule and previous ones is that it does not guarantee descent
at each iteration (although it becomes more likely as αk → 0). The second condition
ensures that the stepsize does not diminish so fast that iterates stay away from a stationary
point.

3 Convergence of Gradient Methods

In order for the iterates {xk} to converge to a stationary point, we need to avoid the situation that
the direction dk become asymptotically orthogonal to the gradient direction, i.e., as x approaches
a nonstationary point, we should not have ∇ f (xk)′dk → 0. Otherwise, there is a chance that
{xk} will get stuck near a non-stationary point. That motivates the following definition:

Definition 9. Let {xk, dk} be a sequence generated by a given gradient method. We say the
directional sequence {dk} is gradient related to {xk} if for any subsequence {xk}k∈K that
converges to a nonstationary point, the corresponding subsequence {dk}k∈K is bounded and
satisfies lim supk→∞,k∈K∇ f (xk)′dk < 0.

Theorem 10. Let {xk} be a sequence generated by a gradient method xk+1 = xk +αkdk, and
assume that {dk} is gradient related and αk is chosen by the minimization rule or the limited
minimization rule. Then every limit point of {xk} is a stationary point for minx∈Rn f (x).
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3.1 Convergence Results for L-Smooth Functions

Definition 11. A function f (x) is called L-smooth (or has L-Lipschitz gradient) if

∥∇ f (x)−∇ f (y)∥ ≤ L∥x − y∥ ∀x , y ∈ Rn.

Lemma 12. [Descent Lemma] Let f : Rn → R be continuously differentiable and L-smooth.
Then

f (y)≤ f (x) +∇ f (x)′(y − x) +
L
2
∥y − x∥2 ∀x , y.

Proof: Let t ∈ [0, 1] be a scalar, and define g(t) = f (x+ tz). Then, using the chain rule we have
d
d t

g(t) = z′∇ f (x + tz).

We can write

f (x + z)− f (x) = g(1)− g(0) =

∫ 1

0

d
d t

g(t)d t =

∫ 1

0

z′∇ f (x + tz)d t

≤ |
∫ 1

0

z′ (∇ f (x + tz)−∇ f (x)) d t|+
∫ 1

0

z′∇ f (x)d t

≤
∫ 1

0

z′∇ f (x)d t + ∥z∥
∫ 1

0

∥∇ f (x + tz)−∇ f (x)∥d t

≤ z′∇ f (x) + ∥z∥
∫ 1

0

Lt∥z∥d t

= z′∇ f (x) +
L
2
∥z∥2.

The result follows by choosing z = y − x . □

Theorem 13. Let {xk} be a sequence generated by a gradient method xk+1 = xk +αkdk, where
{dk} is gradient related. Assume f (x) is L-smooth, dk ̸= 0,∀k, and ε≤ αk ≤ (2− ε)ᾱk, where
ᾱk = |∇ f (xk)′dk|

L∥dk∥2 and ε ∈ (0, 1) is a fixed scalar. Then every limit point of {xk} is a stationary
point of minx∈Rn f (x).

Proof: Using the descent lemma 12, we have:

f (xk)− f (xk +αkdk)≥ −αk f (xk)′dk −
L
2
(αk)2∥dk∥2

= αk(|∇ f (xk)′dk| −
L
2
αk∥dK∥2)

≥ αk ε

2
|∇ f (xk)′dk|

≥
ε2

2
|∇ f (xk)′dk|

Now, if a subsequence of {xk}k∈K converges to a nonstationary point x̄ , we have f (xk)− f (xk+1)→
0, which implies |∇ f (xk)′dk| → 0. This contradicts the assumption that {dk} is gradient related.
Hence every limit point of {xk} is stationary. □

Remark 2. In the case of steepest descent dk = −∇ f (xk), the condition on the stepsize becomes
ε ≤ αk ≤ 2−ε

L . Thus, a constant stepsize in the middle of the interval (0, 2
L ) guarantees

convergence.
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4 Optimization Over a Convex Set

In this part, we consider constrained optimization problems of the form

min
x∈X

f (x),

where X ⊆ Rn is a closed convex set and f is continuously differentiable over an open set
containing X .

Proposition 14 (Necessary Optimality Condition). If x∗ is a local minimum of f over X , then

∇ f (x∗)′(x − x∗)≥ 0, ∀x ∈ X .

If f is convex over X , then the above condition is also sufficient for x∗ to minimize f over X .

Proof: Fix x ∈ X and define g(α) = f (x∗ +α(x − x∗)) over α ∈ [0, 1]. Note that by convexity
of X , x∗ +α(x − x∗) ∈ X , so g(·) is well-defined. By using the chain rule, we have

0≤ lim
α→0+

f (x∗ +α(x − x∗))− f (x∗)
α

=
d g(0)

dα
=∇ f (x∗)′(x − x∗).

If f is convex, then f (x)≥ f (x∗) +∇ f (x∗)′(x − x∗)∀x ∈ X ⇒ f (x)≥ f (x∗),∀x ∈ X . □

Definition 15. x∗ is called a stationary point for minx∈X f (x) if ∇ f (x∗)′(x − x∗)≥ 0, ∀x ∈ X .

4.1 Feasible Direction Methods

Given a feasible vector x ∈ X , a feasible direction at x is a vector d such that x + αd ∈ X for
all sufficiently small α > 0. A feasible direction method starts with a feasible vector x0 and
generates a sequence of feasible vectors {xk} according to xk+1 = xk +αkdk, where if xk is not a
stationary point for minx∈X f (x), dk is a feasible direction at xk, which is also a descent direction,
i.e., ∇ f (xk)′dk < 0, and αk > 0 is chosen such that xk+1 = xk +αkdk ∈ X . If xk is a stationary
point, the method stops, i.e., xk+1 = xk.

Remark 3. When X is a convex set, every feasible direction at xk is of the form dk = x̄k − xk,
where x̄k is some feasible vector in X . Thus, for a nonstationary point xk, the feasible direction
method can be written as xk+1 = xk + αk( x̄k − xk) ∈ X , where αk ∈ (0, 1], x̄k ∈ X , and
∇ f (xk)′( x̄k − xk)< 0.

As before, there could be many ways for choosing the stepsize, such as:

• Limited minimization rule: αk is chosen such that f (xk +αkdk) =minα∈[0,1] f (xk +αdk).

• Constant Stepsize: We set αk = α,∀k.

Proposition 16. Consider minx∈X f (x), where X is a closed convex set. Let {xk} be a sequence
generated by the feasible direction method xk+1 = xk + αkdk. Assume that {dk} is gradient
related1 and that αk is chosen by the minimization rule or the limited minimization rule. Then
every limit point of {xk} is a stationary point.

Remark 4. To apply a feasible direction method, it is necessary to have an initial feasible point.
Finding such a point could be difficult if X is characterized by a set of nonlinear inequalities.
However, if set X is a polyhedron, one can find a feasible point by solving a linear program.

1Recall that {dk} is gradient related to {x k} if for any subsequence {x k}k∈K that converges to a nonstationary point,
the corresponding subsequence {dk}k∈K is bounded and satisfies lim supk∈K ,k→∞∇ f (x k)′dk < 0.
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4.2 The Frank-Wolfe Method (a.k.a. Conditional Gradient Method)

A natural way to find a feasible direction dk = x̄k − xk that satisfies the descent condition
∇ f (xk)′( x̄k − xk)< 0 is to solve the optimization problem

min{∇ f (xk)′(x − xk) : x ∈ X },

and use its optimal solution as x̄k in the feasible direction method. The corresponding feasible
direction method is called Frank-Wolfe method, also know as conditional gradient method.

Proposition 17. Every limit point of the conditional gradient method with the minimization
rule or limited minimization rule over the convex compact set X is stationary.

Proof: Using Proposition 16, we only need to show that the direction sequence of the conditional
gradient method is gradient related. Indeed, suppose that {xk}k∈K converges to a nonstationary
point x̃ . Since x̄k, xk ∈ X , and X is compact, the direction dk = x̄k − xk is bounded. Moreover,
by the definition of x̄k, we can write ∇ f (xk)′( x̄k − xk)≤∇ f (xk)′(x − xk) ∀x ∈ X . Therefore,

lim sup
k→∞, k∈K

f (xk)′( x̄k − xk)≤∇ f ( x̃)′(x − x̃)< 0,

where the last inequality is obtained by taking minimum over x ∈ X and noting that x̃ is a
nonstationary point. □

4.2.1 Application of the Frank-Wolfe Method for Multicommodity Flows

We are given a directed graph with a set of directed arcs A and a set W of ordered origin-
destination pairs w = (i, j). For each w, we are given a scalar input traffic rw. The goal is to
divide each rw among the many paths from origin to destination in a way that the total arc flow
minimizes a suitable cost function.

Let Pw be a given set of paths that start at the origin and end at the destination of w, and xp
be the portion of rw assigned to path p, also called the path flow on p. Let fa denote the total
flow on arc a ∈ A, which is the sum of path flows traversing arc a, i.e., fa =

∑

p:a∈p xp and Da( fa)
is a convex cost function of the flow on arc a ∈ A. The total flow cost is given by

∑

a∈A Da( fa),
where Da(·) is a convex function associated to the arc a. Therefore, the optimal routing problem
can be formulated as:

min
f ∈F

G( f ) :=
∑

a∈A

Da( fa),

where the constraint set F is given by

F =
¦

fa =
∑

p:a∈p

xp,
∑

p∈pw

xp = rw ∀w ∈W, xp ≥ 0 ∀p ∈ Pw, w ∈W
©

.

Note that the constraint set F is a polyhedron. Given the current flow vector f k, the Frank-Wolfe
method finds f̄ k such that f̄ k = arg min f ∈F ∇G( f k)′( f − f k), and updates f k+1 = f k+αk( f̄ k− f k),
where αk is obtained by the line minimization as

αk ∈ argmin
α∈[0,1]

G
�

f k +α( f̄ k − f k)
�

.

Note that solving for f̄ k can be done using a shortest path problem, while the length of each
arc a is ∂ G( f k)

∂ fa
(due to linearity of the objective cost ∇ f (xk)′( f − f k), the optimal solution for

f̄ k is obtained by solving multiple shortest path problems, one for each w, to get the shortest
paths x̄pw

, and set f̄ k
a =
∑

pw:a∈pw
x̄pw

). Thus, the subproblems for finding a feasible direction
f̄ k − f k can be solved efficiently using |W | shortest path problems.
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4.3 Gradient Projection Methods:

The conditional gradient method uses a feasible direction obtained by solving a subproblem with
linear cost. Gradient projection methods use instead a subproblem with quadratic cost. While
this subproblem may be more difficult to solve, the resulting convergence rate is typically better.

x̄k =
�

xk − sk∇ f (xk)
�+
= argmin

x∈X

§

∇ f (xk′)(x − xk) +
1

2sk
∥x − xk∥2
ª

xk+1 = xk +αk
�

x̄k − xk
�

. (2)

i) Take a step −sk∇ f (xk) along the negative gradient,

ii) Project the result xk − sk∇ f (xk) on X to obtain a feasible vector x̄k,

iii) Take a step along the feasible direction x̄k − xk using the stepsize αk.

Remark 5. For s > 0, we have x∗ = [x∗ + s∇ f (x∗)]+ if and only if x∗ is a stationary point
of minx∈X f (x). The reason is that using the projection property (x∗ − s∇ f (x∗) − x∗)′(x −
x∗) ≤ 0 ∀x ∈ X , if and only if x∗ is the projection of x∗ − s∇ f (x∗) on X . That means
∇ f (x∗)′(x − x∗) ≥ 0, ∀x ∈ X , which implies that x∗ is a stationary point. Thus, the gradient
projection method stops if and only if it encounters a stationary point.

Proposition 18. Let {xk} be a sequence generated by the gradient projection method (2) with
choices of αk by the minimization rule or the limited minimization rule, and sk = s > 0 ∀k.
Then, every limit point of {xk} is stationary.

Proof: Using Proposition 16, we only need to show that the direction sequence { x̄k − xk} is
gradient related. Suppose {xk} converges to a nonstationary point x̃ . Then, by continuity of the
projection, we have lim supk→∞,k∈K ∥ x̄k − xk∥= ∥ [ x̃ − s∇ f ( x̃)]+ − x̃∥<∞.

Next, by the characteristic property of the projection, we have

(xk − sk∇ f (xk)− x̄k)′(x − x̄k)≤ 0, ∀x ∈ X .

Choosing x = xk in the above relation, we get ∇ f (xk)′( x̄k − xk) ≤ −1
s ∥x

k − x̄k∥2. Finally, by
taking limit from the last expression, and because s > 0, we get:

lim sup
k→∞, k∈K

∇ f (xk)′( x̄k − xk)≤ −
1
s
∥ [ x̃ − s∇ f ( x̃)]+ − x̃∥2 < 0,

where the last inequality follows from Remark 5 and the fact that x̃ is a nonstationary point. □

4.4 Proximal Algorithms
The proximal algorithm for minimizing a convex function f over a closed convex set X is given by

xk+1 = arg min
x∈X

¦

f (x) +
1

2ck
∥x − xk∥2
©

,

where x0 is an arbitrary starting point and ck is a positive scalar parameter. Note that compared
to the gradient projection method that only a linear approximation ∇ f (xk)′(x − xk) is used in
the optimization, here the entire function f (x) is used in the proximal iteration. This makes the
algorithm applicable even to nondifferentiable convex cost functions f .
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Proposition 19. For the proximal algorithm, the following properties hold:

i) f (xk+1)≤ f (xk)− 1
2ck ∥xk+1 − xk∥2.

ii) f (y)≥ f (xk+1) + 1
ck (xk − xk+1)′(y − xk+1), ∀y ∈ X .

iii) ∥xk+1 − y∥2 ≤ ∥xk − y∥2 − 2ck( f (xk+1)− f (y)), ∀y ∈ X .

Proof: (i) Using the proximal iteration xk+1 = arg minx∈X

�

f (x) + 1
2ck ∥x − xk∥2
	

, the cost is
reduced at each iteration, because by selecting x = xk in the above optimization, we obtain

f (xk+1)≤ f (xk)−
1

2ck
∥xk+1 − xk∥2.

(ii) Consider the following two convex sets: C1 = {(x , w) : f (x) < w, x ∈ X } and C2 =
�

(x , w) : w≤ γk − 1
2Ck ∥x − xk∥2, x ∈ Rn

	

, where γk = f (xk+1) + 1
2ck ∥xk+1 − xk∥. From the

definition of xk+1 via the proximal iteration, these two sets are convex and disjoint, and their
closures touch each other at the unique single point (xk+1, f (xk+1)). So there exists a separating
hyperplane H passing through (xk+1, f (xk+1)), where we have the normal vector of H is given
by the gradient of γk − 1

2ck ∥x − xk∥2 at x = xk+1, which is
�

xk−xk+1

ck , 1
�

. Since C1 must lie on

the opposite side of H, we have (y, f (y))′
�

xk−xk+1

ck , 1
�

≥ (xk+1, f (xk+1))′
�

xk−xk+1

ck , 1
�

, for every
y ∈ X , which after simplification gives us the desired inequality in (ii).
(iii) This part can be shown by expanding

∥xk − y∥2 = ∥xk − xk+1 + xk+1 − y∥2 = ∥xk − xk+1∥2 + ∥xk+1 − y∥2 − 2(xk − xk+1)′(y − xk+1)

≥ ∥xk+1 − y∥2 − 2(xk − xk+1)′(y − xk+1),

and using the result of part (ii) to bound the last crossover term. □

Theorem 20. Let f ∗ = infx∈X f (x) (which may be −∞) and X ∗ be the set of minima of f
(which may be empty). Moreover, let {xk} be a sequence generated by the proximal algorithm.
Then, if
∑∞

k=0 ck =∞, we have f (xk)→ f ∗, and if X ∗ ̸= ;, {xk} converges to some point in X ∗.

Proof: Using Proposition 19 (part i), { f (xk)} is monotonically nonincreasing. Thus f (xk)→
f∞ ≥ f ∗. Moreover, by Proposition 19 (part iii), we have

∥xk+1 − y∥2 ≤ ∥xk − y∥2 − 2ck( f (xk+1)− f (y)) ∀k,∀y ∈ X . (3)

By summing this inequality over k = 0,1, ..., N , we get

2
N
∑

k=0

ck( f (xk+1)− f (y))≤ ∥x0 − y∥2 − ∥xN+1 − y∥2, ∀y ∈ X , N ≥ 0.

Taking the limit as N →∞, we have
∑∞

k=0 ck( f (xk+1)− f (y)) ≤ 1
2∥x

0 − y∥2 ∀y ∈ X , N ≥ 0.
To derive a contradiction, assume f∞ > f ∗ and let ŷ ∈ X be such that f∞ > f ( ŷ)> f ∗. Since
{ f (xk)} is monotonically nonincreasing, f (xk+1)− f ( ŷ)≥ f∞ − f ( ŷ)> 0, and we can write

∞=
�

f∞ − f ( ŷ)
�

∞
∑

k=0

ck ≤
∞
∑

k=0

ck( f (xk+1)− f (y))≤
1
2
∥x0 − y∥2.
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This contradiction shows that f∞ = f ∗.
Consider now the case where X ∗ ̸= ; and let x∗ be any point in X ∗. Using (3) with y = x∗,

∥xk+1 − x∗∥ ≤ ∥xk − x∗∥2 − 2ck( f (xk+1)− f (x∗)),

which shows that {∥xk − x∗∥2} is monotonically nonincreasing and so {xk} is bounded. If x̄ is a
limit point of {xk}, we have x̄ ∈ X (as X is closed) and f ( x̄) = limk→∞, k∈K f (xk) = f∞ = f ∗

for any subsequence {xk
k∈K} → x̄ . Hence x̄ minimizes f over X and must belong to X ∗. Finally,

since the distance of {xk} to any x∗ ∈ X ∗ is monotonically nonincreasing, {xk} must converge to
a unique point x̄ ∈ X ∗. □

The role of convergence of the proximal method depends on the choice of ck, (larger ck

results in wider parabola and typically faster convergence) as well as on the order of growth of f
near the optimal solution set (sharper minima can be achieved faster).

Theorem 21. Assume X ∗ ̸= ; and for some scalars β ,δ,γ > 0, we have f ∗ + βdγ(x)≤ f (x) for
all x such that d(x) ≤ δ, where d(x) = in f x∗∈X ∗∥x − x∗∥. Let

∑∞
k=0 ck =∞, so the proximal

sequence converges to some point in X ∗. Then, for all k sufficiently large and xk+1 /∈ X ∗, we
have d(xk+1) + β ckd(xk+1)γ−1 ≤ d(xk).

5 General Constrained Optimization

5.1 Necessary and Sufficient Optimality Conditions for Equality Constraints

In this section, we consider the general equality constrained optimization of the form

min
�

f (x) : hi(x) = 0, i = 1, . . . , m
	

,

where f : Rn → R, hi : Rn → R, and are continuously differentiable functions. All the results
presented here related to a local minima also hold if f and hi are continuously differentiable
within just an open set containing the local minimum.

Definition 22. A feasible vector x is called regular if the constraint gradients∇h1(x), . . . ,∇hm(x)
are linearly independent. For a feasible vector x , we let V (x) = {y :∇hi(x)′y= 0, ∀i = 1, . . . , m}
be the subspace of first order feasible variations.

Theorem 23. Let x∗ be a local minimum of f subject to h(x) := (h1(x), . . . , hm(x)) = 0 and
assume that x∗ is regular. Then there exists a unique Lagrange multiplier vector λ∗ = (λ∗1, . . . ,λ∗m)
such that

∇ f (x∗) +
m
∑

i=1

λ∗i∇hi(x
∗) = 0.

If in addition f and h are twice continuously differentiable, then we have the second order
necessary condition y ′(∇2 f (x∗) +

∑m
i=1λ

∗
i∇

2hi(x∗))y ≥ 0 ∀y ∈ V (x∗).

Proof: The main idea is to approximate the original constrained problem by an unconstrained
one that involves a penalty for violation of the constraints and then applying the unconstraint
optimality conditions. More precisely, for k = 1, 2, . . ., let

Fk(x) = f (x) +
k
2
∥h(x)∥2 +

α

2
∥x − x∗∥2,
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where x∗ is the local minimum of the constrained problem and α > 0. The term k
2∥h(x)∥

2

imposes a penalty for violation of the constraint hi(x) = 0 and α2∥x− x∗∥22 is introduced to ensure
x∗ is a strict local minima. Since x∗ is a local minimum ∃ε > 0 such that f (x∗) ≤ f (x) for all
x ∈ B̄(x∗) := {x : ∥x − x∗∥ ≤ ε}. Let xk be an optimal solution of the problem minx∈B̄(x∗) Fk(x).
Then limk→∞ xk = x∗. The reason is that F k(xk) = f (xk)+ k

2∥h(x
k)∥2+ α2∥x

k−x∗∥2 ≤ F k(x∗) =
f (x∗) =⇒ limk→∞ ∥h(xk)∥= 0, which implies that every limit point x̄ of {xk} satisfies h( x̄) = 0.
Moreover, using the above relation as k →∞, we have f ( x̄) + α2∥ x̄ − x∗∥2 ≤ f (x∗) ≤ f ( x̄),
where the last inequality holds because x̄ ∈ B̄(x∗). Since α > 0 =⇒ x̄ = x∗. This shows that
limk→∞ xk = x∗ and in particular, for k sufficiently large, xk is an interior point of B̄(x∗). This
means that for sufficiently large k, xk is an unconstrained local minimum of F k(x).

For sufficiently large k, using the first order unconstrained necessary conditions, we have:

0=∇F k(xk) =∇ f (xk) + k∇h(xk)h(xk) +α(xk − x∗). (4)

Since by regularity assumption, ∇h(x∗) has rank m, the same is true for ∇h(xk), for sufficiently
large k because xk→ x∗. Therefore, ∇h(xk)′∇h(xk) is invertible, and by multiplying (4) with
(∇h(xk)′∇h(xk))−1∇h(xk)′, we get:

kh(xk) = −(∇h(xk)′∇h(xk))−1∇h(xk)′(∇ f (xk) +α(xk − x∗)) =⇒ lim
k→∞

kh(x) = λ∗

where λ∗ = −(∇ f (x∗)′∇h(x∗))−1∇h(x∗)′∇ f (x∗). This in view of (4) as k→∞ also implies
∇ f (x∗) + h(x∗)λ∗ = 0, completing the first part of the theorem.

The proof of the second part follows using the second order necessary condition for the
unconstrained optimization min{F k(x) : x ∈ B̄(x∗)} when k is sufficiently large, i.e., ∇2F(xk)≥
0. For the sake of brievity we omit the technical details here. □

Remark 6. The existence of a Lagrange multiplier vector is not always guaranteed (e.g., in the
absence of regularity of x∗). However, one can obtain some conditions under which λ∗ exists.
For instance, for linear constraints, it is known that a Lagrange multiplier vector always exists.

5.2 The Lagrangian Function

Sometimes, it is easier to write the necessary conditions in terms of the Lagrangian function:

L(x ,λ) = f (x) +
m
∑

i=1

λihi(x).

Then, if x∗ is a regular local minimum, the conditions of the previous theorem can be written as:

∇x L(x∗,λ∗) = 0, ∇λL(x∗,λ∗) = 0, y ′∇2
x x L(x∗,λ∗)y ≥ 0 ∀y ∈ V (x∗).

The first two conditions represent a system of n+m equations with n+m unknowns (x∗,λ∗).
Every local minimum that is regular together with its associated λ∗ will be a solution of this
system. However, a solution of this system need not correspond to a local minimum.

Example: Consider the optimization problem

min
¦1

2
(x2

1 + x2
2 + x2

3) : x1 + x2 + x3 = 3
©

.

The first order necessary conditions yield x∗1+λ
∗ = 0, x∗2+λ

∗ = 0, x∗3+λ
∗ = 0, x∗1+ x∗2+ x∗3 = 3,

=⇒ x∗1 = x∗2 = x∗3 = 1, λ∗ = −1. Thus, x∗ = (1,1, 1) is the unique candidate for a local
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minimum. Note that as the constraint gradient is (1, 1,1), all feasible vectors (and in particular
x∗) are regular. Since ∇2

x x L(x∗,λ∗) = I ≥ 0. This implies the second order necessary condition
is also satisfied. In fact, by using the convexity of the objective function and the constraint set,
we can use sufficiency conditions to argue that x∗ = (1,1, 1) is a global minimum.

5.3 Extensions to Inequality Constraints (ICP)

Here we consider a more general problem involving both equality and inequality constraints:

min f (x)

s.t. hi(x) = 0, i = 1, . . . , m,

g j(x)≤ 0, j = 1, . . . , r,

where f , hi , g j are continuously differentiable functions from Rn to R. The main idea for
generalizing earlier results to ICP is to look at the set of active inequality constraints defined by
A(x) = { j : g j(x) = 0} and treat them as equality constraints. The inactive constraints j /∈ A(x)
don’t matter at a local minimum. In other words, if x∗ is a local minimum of ICP, then x∗ is also
a local minimum for a problem identical to ICP except that the inactive constraints j /∈ A(x∗)
have been discarded. On the other hand, if x∗ is a local minimum of ICP, then x∗ is also a local
minimum for the equality constrained problem:

min f (x)

s.t. hi(x) = 0, i = 1, . . . , m,

g j(x) = 0, ∀ j ∈ A(x∗).

Thus, if x∗ is a regular local minimum for this equality constrained problem, there exist Lagrange
multipliers λ∗,µ∗j , j ∈ A(x∗) such that

∇ f (x∗) +
m
∑

i=1

λ∗i∇hi(x
∗) +
∑

j∈A(x∗)

µ∗j∇g j(x
∗) = 0.

Assigning µ∗j = 0 for j /∈ A(x∗) we obtain an analog of the first-order optimality condition for the
equality constrained problems.

Definition 24. For any feasible point x, the set of active inequality constraints is denoted by
A(x) = { j : g j(x) = 0}. A feasible vector x is called regular if {{∇hi(x)}mi=1, {∇g j(x)} j∈A(x)} are
linearly independent. Finally, we define the Lagrangian function as

L(x,λ,µ) = f (x) +
m
∑

i=1

λihi(x) +
r
∑

j=1

µ j g j(x).

Theorem 25 (Karush-Kuhn-Tucker (KKT) Conditions). Let x∗ be a local minimum of ICP and
assume that x∗ is a regular local minimum. Then there exist unique Lagrange multiplier vectors
λ∗ and µ∗ such that

∇x L(x∗,λ∗,µ∗) = 0, µ∗j ≥ 0,∀ j, µ∗j = 0 ∀ j /∈ A(x∗).

If in addition f , h, and g are twice continuously differentiable, we have

y ′∇2
x x L(x∗,λ∗,µ∗)y ≥ 0,

∀y ∈ V (x∗), where V (x∗) =
�

y ∈ Rn :∇hi(x∗)′ y = 0 ∀i, ∇g j(x∗)′ y = 0, ∀ j ∈ A(x∗)
	

.
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Remark 7. The condition µ∗j = 0, ∀ j /∈ A(x∗) can also compactly be written as µ∗j g j(x∗) = 0,
and is called complementary slackness condition (CS).

Example Consider the optimization problem

min
§

1
2
(x2

1 + x2
2 + x2

3) : x1 + x2 + x3 ≥ −3
ª

.

Then, for a local minimum x∗, the first order necessary condition yields x∗1 +µ
∗ = 0, x∗2 +µ

∗ =
0, x∗3 +µ

∗ = 0. One approach for solving this system is to consider separately all the possible
combinations of constraints being active or inactive. Here, there are two possibilities:

1. The constraint is inactive =⇒ µ∗ = 0 =⇒ x∗1 = x∗2 = x∗3 = 0, which contradicts
x∗1 + x∗2 + x∗3 > −3

2. The constraint is active x∗1 + x∗2 + x∗3 = −3 =⇒ x∗1 = x∗2 = x∗3 = −1, µ∗ = 1. Using the
sufficiency condition (where positive semi-definiteness is replaced by positive definiteness
in the above theorem), one can see that x∗ satisfies the second-order sufficient condition,
and is indeed a local minimum.
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