
KT: Two dimensional melting

• In two dimension, no long range order

• What is the order parameter?

• Zero shear modulus, fluid

• Dislocation unbinding. Dislocations are topological

defects. One has to remove a whole line of atoms

to get back to the perfect solid and cannot get

back to the perfect solid by continuous

deformation of the system.

• Kosterlitz Thouless transition, part of their Nobel

prize

© 2017 Pearson Education, Inc.





Other systems with the same physics

• For thin Helium films, there cannot be long range

order in the coherence of the system due to large

thermal fluctuation in low dimension,  the same

reason as the lack of positional order in 2D solids.

• However there can be a superfluid transition.

• Dissipation of fluid flow can be caused by

vorticies. If there are no free vorticies, then the

system is a superfluid.

• The superfluid transition is associated with

unbound vorticies.
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What is a renormaliation group  (RG) 

transformation?

• The statistical averages such as the calculation of

the partition function involves summing over all

possible configurations for the variables of interest.

• We do a partial sum over configurations of a certain

length scale in the (grand) partition function, usually

with some approximations.

• We then redefine parameters so that the result of

the partial sum involves an energy of the same

functional form as the original energy.

• The relationship between the new and original

parameters is called a RG transformation.
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KT RG

• We consider a collection of dislocations  so the energy of
two dislocations is (for a pair of opposute charge, q = −q′)

𝐻0 = 2𝑞′𝑞 ln
𝑟

𝑟0
+ 2𝜇′, for r>𝑟0 fthe size of a dislocation.

• Assume low density with , 𝑦0 = 𝑒−𝛽𝜇′ small, 𝛽 = 1/𝑘𝑇

• Do RG transformation by integrating out in the grand

partition function configurations with the pairs of opposite

charges that are close by with 𝑟0<r<𝑟0+dr. The length 

scale of the problem, 𝑟0, is increased but the free energy 

is of the same form . 

• We have renormalized pairs with renormalized 𝑟0, 𝑦0 and

a renormalized coupling K = 𝛽𝑞2, 𝛽 =
1

𝑘𝑇
.
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RG eqn

© 2017 Pearson Education, Inc.

• 𝑑𝐾−1 = (𝑏 − 1)𝜋𝑦0
2

• 𝑑𝑦0
2 = 𝑦0

2 (𝑏−2𝐾+4−1)

• Let b=1+dl,

• 𝑑𝐾−1/𝑑𝑙 = 𝜋𝑦0
2

• 𝑑𝑦0 /dl = 𝑦0 (2 − 𝐾)

• At K=2, y=0, the parameters do not change. This is called

a fixed point of the transformation.



Fixed point analysis for general 

systems

•
𝑑𝐾−1

𝑑 ln 𝑙
= 𝑓 𝐾−1 . At a fixed point 𝐾𝑐

−1, f=0.

• Let 𝜖 = 𝐾𝑐 (𝐾−1 − 𝐾𝑐
−1), 𝜖 is just (T−𝑇𝑐)/𝑇𝑐, then

•
𝑑𝜖

𝑑 ln 𝑙
= 𝑔 𝜖 , g(0)=0

• Close to the fixed point

•
𝑑𝑙𝑛 𝜖

𝑑 ln 𝑙
= 𝑦, 𝑦 = 𝑔′ 0 . 𝜖 = 𝜖0𝑙

𝑦,

• We also have, for the free energy,

• 𝐹(𝜖 𝑙𝑦) = 𝑙𝑑𝐹(𝜖 ) for spatial dimension d. This is 
the scaling hypothesis.
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Magnetic systems
Atoms in magnets are charged particles with angular momenta S called 

spins  that, in some units, are interger or half integer.  

Their magnetic moments M =  𝑔𝜇𝐵S where 𝑔𝜇𝐵 is some constant. 

In a magnetic field B, the energy  is -H.M = -𝑔𝜇𝐵𝐻.S.

Including heat change, we get the total energy change of a magnetic 
system is

dE=TdS+other terms-H.dM

One can define a quantity G=F+BM so that dF’=-SdT+MdH+other
terms

Thus 
𝜕𝐺

𝜕𝐻
= 𝑀

For processes under a constant magnetic field and at fixed 
temperature, G is minimized.



Critical exponents from the 
scaling hypothesis 

• For the magnetic system, we have the 

dimensionless coupling kT/J and H=magnetic 

field /kT, the coupling close to Tc, 𝜖 = (T−𝑇𝑐)/𝑇𝑐

• 𝐺(𝜖 𝐿𝑦 , 𝐻 𝐿𝑥) = 𝐿𝑑𝐺(𝜖,𝐻)

• This can be written as (𝜆 = 𝐿𝑑 , 𝑎𝜖 =
𝑦

𝑑
, 𝑎𝐻 = 𝑥/𝑑)

• 𝐺(𝜖 𝜆𝑎𝜖 , 𝐻 𝜆𝑎𝐻) = 𝜆𝐺(𝜖,𝐻)

• This is called the static scaling hypothesis.

• From this, we can obtain different the critical

exponents and the relationships between them.
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• Derivation of critical exponents

from the static scaling hypothesis.
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Critical exponents

• 𝐺(𝜖 𝜆𝑎𝜖 , 𝐻 𝜆𝑎𝐻) = 𝜆𝐺(𝜖,𝐻)

• Differentiate both sides with respect to H

• 𝜆𝑎𝐻𝜕𝐺(𝜖 𝜆𝑎𝜖 , 𝐻 𝜆𝑎𝐻)/𝜕(𝐻 𝜆𝑎𝐻) = 𝜆𝜕𝐺(𝜖,𝐻)/𝜕𝐻
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𝑀 𝜖, 0 ∝ (−𝜖)𝛽, 𝜖 = (T−𝑇𝑐)/𝑇𝑐

• 𝜆𝑎𝐻𝑀(𝜖0𝜆
𝑎𝜖 , 𝐻 𝜆𝑎𝐻) = 𝜆𝑀(𝜖0,𝐻)

• Consider H=0

• 𝜆𝑎𝐻−1𝑀(𝜖 𝜆𝑎𝜖 , 0) = 𝑀(𝜖, 0)

• Take 𝜆 =(-1/𝜖 }1/𝑎𝜖

• 𝑀 𝜖, 0 = −𝜖 (1−𝑎𝐻)/𝑎𝜖𝑀(−1,0) ∝ (−𝜖)𝛽

• 𝛽 = (1 − 𝑎𝐻)/𝑎𝜖
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𝑀 0,𝐻 ∝ (𝐻)1/𝛿, 

• 𝜆𝑎𝐻𝑀(𝜖 𝜆𝑎𝜖 , 𝐻 𝜆𝑎𝐻) = 𝜆𝑀(𝜖,𝐻)

• Consider 𝜖 =0, H small

• 𝜆𝑎𝐻−1𝑀(0,𝐻 𝜆𝑎𝐻) = 𝑀(0,𝐻)

• Take 𝜆 =(H}−1/𝑎𝐻

• 𝑀 0,𝐻 = 𝐻(1−𝑎𝐻)/𝑎𝐻𝑀(0,1) ∝ (𝐻)𝛿

• 𝛿 = 𝑎𝐻/(1 − 𝑎𝐻)
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𝜒𝑇 𝜖, 0 ∝ (−𝜖)−𝛾, 

• 𝜆𝑎𝐻𝑀(𝜖 𝜆𝑎𝜖 , 𝐻 𝜆𝑎𝐻) = 𝜆𝑀(𝜖,𝐻)

• Magnetic susceptibility at constant T: 𝜒𝑇 = 𝜕𝑀/𝜕𝐻

• 𝜆2𝑎𝐻𝜒𝑇(𝜖 𝜆𝑎𝜖 , 𝐻 𝜆𝑎𝐻) = 𝜆𝜒𝑇(𝜖,𝐻)

• Take 𝜆 =(-1/𝜖 }1/𝑎𝜖, H=0

• 𝜒𝑇 𝜖, 0 = −𝜖 (1−2𝑎𝐻)/𝑎𝜖𝜒𝑇(−1,0) ∝ (−𝜖)−𝛾′

• 𝛾′ = (2𝑎𝐻 − 1)/𝑎𝜖

• Recall that  𝛿 = 𝑎𝐻/(1 − 𝑎𝐻), 𝛽 = (1 − 𝑎𝐻)/𝑎𝜖

• 𝛾′ = 𝛽(𝛿 − 1)
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𝑀 𝜖, 0 ∝ (−𝜖)𝛽, 𝜖 = (T−𝑇𝑐)/𝑇𝑐

• Take 𝜆 =(1/|𝜖 |)1

• 𝑀 𝜖,𝐻 = 𝜖 (1−𝑎𝐻)/𝑎𝜖𝑀(𝜖 /|𝜖 |, 𝐻 /|𝜖 |𝑎𝐻/𝑎𝜖)

• 𝜆𝑎𝐻−1𝑀(𝜖 𝜆𝑎𝜖 , 𝐻 𝜆𝑎𝐻) = 𝑀(𝜖,𝐻)

• 𝛽 = (1 − 𝑎𝐻)/𝑎𝜖, 𝛿 = 𝑎𝐻/(1 − 𝑎𝐻)

• 𝑀 𝜖,𝐻 / 𝜖 𝛽 = 𝑀(𝜖 /|𝜖 |, 𝐻 /|𝜖 |𝛽𝛿)

Define  

𝑚 = 𝑀 𝜖,𝐻 / 𝜖 𝛽, h=𝐻 /|𝜖 |𝛽𝛿,𝐹± = 𝑀(±1, ℎ),
𝑚 = 𝐹±(h)
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■ We can also apply scaling considerations to correlation functions such as
the correlation function

Γij ≡ 〈σiσj〉 − 〈σi〉〈σj〉.
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■ We can also apply scaling considerations to correlation functions such as
the covariance

Γij ≡ 〈σiσj〉 − 〈σi〉〈σj〉.

■ If the system has translational and rotational symmetry,2 we can write
this as a function of the relative displacement of spins i and j:

Γij = Γ(~rij) ≈ Γ(rij), ~rij ≡ ~ri − ~rj .
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■ We can also apply scaling considerations to correlation functions such as
the covariance

Γij ≡ 〈σiσj〉 − 〈σi〉〈σj〉.

■ If the system has translational and rotational symmetry,2 we can write
this as a function of the relative displacement of spins i and j:

Γij = Γ(~rij) ≈ Γ(rij), ~rij ≡ ~ri − ~rj .

■ The spin-spin correlation function Γ(~r) is analogous to the total
correlation function h(~r) ≡ g(~r) − 1 that we studied in fluids.
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■ We can also apply scaling considerations to correlation functions such as
the covariance

Γij ≡ 〈σiσj〉 − 〈σi〉〈σj〉.

■ If the system has translational and rotational symmetry,2 we can write
this as a function of the relative displacement of spins i and j:

Γij = Γ(~rij) ≈ Γ(rij), ~rij ≡ ~ri − ~rj .

■ The spin-spin correlation function Γ(~r) is analogous to the total
correlation function h(~r) ≡ g(~r) − 1 that we studied in fluids.

■ The Ornstein–Zernike theory we used there is also applicable here,
leading to the same result (in 3D)

Γ(r) ∼
1

r
exp(−r/ξ) (r ≫ ξ),

where ξ(t, h) is called the correlation length.

2For spins on a lattice, these are discrete symmetries, but we approximate them as continuous.
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■ In d dimensions, this relationship generalizes to

Γ(r) ∼
1

r(d−1)/2
exp(−r/ξ) (r ≫ ξ).
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■ In d dimensions, this relationship generalizes to

Γ(r) ∼
1

r(d−1)/2
exp(−r/ξ) (r ≫ ξ).

■ Experimentally, the correlation length is found to diverge near the critical
point as

ξ(t, 0) ∼ |t|−ν ,

where ν is another critical exponent.
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■ In d dimensions, this relationship generalizes to

Γ(r) ∼
1

r(d−1)/2
exp(−r/ξ) (r ≫ ξ).

■ Experimentally, the correlation length is found to diverge near the critical
point as

ξ(t, 0) ∼ |t|−ν ,

where ν is another critical exponent.
■ In our study of fluids, we showed that ξ could be written as

ξ = R(nkBTKT )1/2 = R

„

nkBT

BT

«1/2

(R = constant),

where KT is the isothermal compressibility.
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■ In d dimensions, this relationship generalizes to

Γ(r) ∼
1

r(d−1)/2
exp(−r/ξ) (r ≫ ξ).

■ Experimentally, the correlation length is found to diverge near the critical
point as

ξ(t, 0) ∼ |t|−ν ,

where ν is another critical exponent.
■ In our study of fluids, we showed that ξ could be written as

ξ = R(nkBTKT )1/2 = R

„

nkBT

BT

«1/2

(R = constant),

where KT is the isothermal compressibility.
■ Assuming that the bulk modulus BT = 1/KT vanishes linearly with T at

the critical point, we get

ξ(t, 0) ∼ |t|−1/2.

■ The “classical” (i.e., mean field) value of ν is therefore ν = 1/2.
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■ Is there any way to use scaling arguments to find the exponent ν?
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■ Is there any way to use scaling arguments to find the exponent ν?
■ Note first that ξ has units of length.
■ If we increase the units of length by a factor λ, we would expect ξ to

have the value ξ/λ in the new system of units.
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■ Is there any way to use scaling arguments to find the exponent ν?
■ Note first that ξ has units of length.
■ If we increase the units of length by a factor λ, we would expect ξ to

have the value ξ/λ in the new system of units.
■ This leads to the scaling relation

ξ(λyt, λxh) = λ−1ξ(t, h).
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■ Is there any way to use scaling arguments to find the exponent ν?
■ Note first that ξ has units of length.
■ If we increase the units of length by a factor λ, we would expect ξ to

have the value ξ/λ in the new system of units.
■ This leads to the scaling relation

ξ(λyt, λxh) = λ−1ξ(t, h).

■ If we now insert the special values h = 0 and λ = |t|−1/y into

ξ(t, 0) = |t|−1/yξ(sgn t, 0).
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■ Is there any way to use scaling arguments to find the exponent ν?
■ Note first that ξ has units of length.
■ If we increase the units of length by a factor λ, we would expect ξ to

have the value ξ/λ in the new system of units.
■ This leads to the scaling relation

ξ(λyt, λxh) = λ−1ξ(t, h).

■ If we now insert the special values h = 0 and λ = |t|−1/y into

ξ(t, h) = λξ(λyt, λxh),

we obtain
ξ(t, 0) = |t|−1/yξ(sgn t, 0).

■ We can therefore identify ν = 1/y, where y can be obtained from our
previous relation

α =
2y − d

y
.
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■ We see that the correlation exponent ν is related to the heat capacity
exponent α by

ν =
2 − α

d
,

which is known as the Josephson scaling law.
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■ We see that the correlation exponent ν is related to the heat capacity
exponent α by

ν =
2 − α

d
,

which is known as the Josephson scaling law.
■ Unlike the Rushbrooke and Widom scaling laws, the Josephson relation

depends explicitly on the spatial dimension d.
■ For this reason, it is sometimes called a hyperscaling relation.
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■ Another critical exponent η is defined by writing the correlation function
in the form3

Γ(r) =
f(r/ξ)

rd−2+η
,

where the function f(x) varies asymptotically as exp(−x) times some
power of x in the limit x → ∞.

■ This is another type of scaling hypothesis, since Γ(r) is assumed not to
depend on any length parameter other than ξ.
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■ Another critical exponent η is defined by writing the correlation function
in the form3

Γ(r) =
f(r/ξ)

rd−2+η
,

where the function f(x) varies asymptotically as exp(−x) times some
power of x in the limit x → ∞.

■ This is another type of scaling hypothesis, since Γ(r) is assumed not to
depend on any length parameter other than ξ.

■ To find a scaling relation for the exponent η, we start by establishing the
following connection between the correlation function Γij = Γ(rij) and
the susceptibility χ = ∂m/∂h:

χ =
1

NkBT

X

i,j

Γij .

3In the mean-field approximation, η = 0.
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■ To do this, let us return to the original definition of the free energy:

Ã(t, h) = −kBT log ZC ,

ZC =
X

σ

exp

„

β
X

i<j

Jijσiσj + βh
X

i

σi

«

.
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■ To do this, let us return to the original definition of the free energy:

Ã(t, h) = −kBT log ZC ,

ZC =
X

σ

exp

„

β
X

i<j

Jijσiσj + βh
X

i

σi

«

.

■ By differentiating with respect to h, we find

∂

∂h
log ZC = β

X

i

〈σi〉 = βNm,

where m ≡ (1/N)
P

i〈σi〉 is the order parameter.
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■ To do this, let us return to the original definition of the free energy:

Ã(t, h) = −kBT log ZC ,

ZC =
X

σ

exp

„

β
X

i<j

Jijσiσj + βh
X

i

σi

«

.

■ By differentiating with respect to h, we find

∂

∂h
log ZC = β

X

i

〈σi〉 = βNm,

where m ≡ (1/N)
P

i〈σi〉 is the order parameter.
■ A second derivative then yields

∂2

∂h2
log ZC = β2

X

i,j

(〈σiσj〉 − 〈σi〉〈σj〉)

= β2
X

i,j

Γij .
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■ Comparing these two expressions, we obtain the desired relationship
between susceptibility and correlations:

χ =
∂m

∂h
=

1

βN

∂2

∂h2
log ZC =

β

N

X

i,j

Γij .

■ This is an example of what is called the fluctuation-dissipation theorem.
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■ Comparing these two expressions, we obtain the desired relationship
between susceptibility and correlations:

χ =
∂m

∂h
=

1

βN

∂2

∂h2
log ZC =

β

N

X

i,j

Γij .

■ This is an example of what is called the fluctuation-dissipation theorem.
■ If the system is translationally invariant, the sum on i does not depend

on the value of j, hence

χ = β
X

i

Γi0.
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■ Comparing these two expressions, we obtain the desired relationship
between susceptibility and correlations:

χ =
∂m

∂h
=

1

βN

∂2

∂h2
log ZC =

β

N

X

i,j

Γij .

■ This is an example of what is called the fluctuation-dissipation theorem.
■ If the system is translationally invariant, the sum on i does not depend

on the value of j, hence

χ = β
X

i

Γi0.

■ This result can be expressed as a d-dimensional volume integral:

χ ≈
β

v0

Z

Γ(~r) ddr

∝
β

v0

Z

Γ(r)rd−1 dr,

where v0 is the volume occupied by each spin in the lattice.
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■ At this point, we can write the correlation function as

Γ(r) = r−(d−2+η)f(r/ξ),

where f(x) ∼ exp(−x) as x → ∞.
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■ At this point, we can write the correlation function as

Γ(r) = r−(d−2+η)f(r/ξ),

where f(x) ∼ exp(−x) as x → ∞.
■ The susceptibility is thus of the form

χ ∝

Z

∞

0

r−(d−2+η)f(r/ξ)rd−1 dr

= ξ−(d−2+η)ξd

Z

∞

0

x−(d−2+η)f(x)xd−1 dx,

or
χ ∝ ξ2−η.
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■ At this point, we can write the correlation function as

Γ(r) = r−(d−2+η)f(r/ξ),

where f(x) ∼ exp(−x) as x → ∞.
■ The susceptibility is thus of the form

χ ∝

Z

∞

0

r−(d−2+η)f(r/ξ)rd−1 dr

= ξ−(d−2+η)ξd

Z

∞

0

x−(d−2+η)f(x)xd−1 dx,

or
χ ∝ ξ2−η.

■ If we now set h = 0, we can use the relations

χ(t, 0) ∝ |t|−γ , ξ(t, 0) ∝ |t|−ν ,

to write
χ(t, 0) ∝ |t|−γ ∝ |t|−ν(2−η).
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■ Upon matching the exponents, we see that

γ = ν(2 − η),

which is known as the Fisher scaling law.
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■ Upon matching the exponents, we see that

γ = ν(2 − η),

which is known as the Fisher scaling law.
■ Putting everything together, we have now derived the four scaling laws

α + 2β + γ = 2 (Rushbrooke)

γ = β(δ − 1) (Widom)

γ = ν(2 − η) (Fisher)

νd = 2 − α (Josephson).

■ These laws show that only two of the six critical exponents α, β, γ, δ, ν,
η are independent variables.
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■ We can test these scaling laws using the exact critical exponents for the
2D Ising model:4

α = 0, β = 1/8, γ = 7/4, δ
?
= 15, ν = 1, η = 1/4.

■ All of the scaling laws are indeed satisfied, which provides support (but
not proof) for the hypotheses used to derive them.
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■ We can test these scaling laws using the exact critical exponents for the
2D Ising model:4

α = 0, β = 1/8, γ = 7/4, δ
?
= 15, ν = 1, η = 1/4.

■ All of the scaling laws are indeed satisfied, which provides support (but
not proof) for the hypotheses used to derive them.

■ The corresponding critical exponents for the mean-field theory are

α = 0, β = 1/2, γ = 1, δ = 3, ν = 1/2, η = 0.

■ These values satisfy all of the scaling laws except the Josephson
(hyperscaling) relation,5 which depends explicitly on the dimension d.
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■ We can test these scaling laws using the exact critical exponents for the
2D Ising model:4

α = 0, β = 1/8, γ = 7/4, δ
?
= 15, ν = 1, η = 1/4.

■ All of the scaling laws are indeed satisfied, which provides support (but
not proof) for the hypotheses used to derive them.

■ The corresponding critical exponents for the mean-field theory are

α = 0, β = 1/2, γ = 1, δ = 3, ν = 1/2, η = 0.

■ These values satisfy all of the scaling laws except the Josephson
(hyperscaling) relation,5 which depends explicitly on the dimension d.

■ The scaling laws are also in good agreement with numerical calculations
(e.g., for the 3D Ising and Heisenberg models) and experimental data,
where available.

4Here the value δ = 15 is taken from the Widom relation, since it has not yet been derived
exactly in the 2D Ising model.

5The Josephson relation is satisfied in the special case d = 4, but not in general. It fails in
the Landau theory because the Landau theory contains another length parameter in addition to
ξ, thus violating the given hyperscaling hypothesis.



The idea of functions on different 
length scale is related to what is 
called “machine learning”



Machine Learning is very simple conceptually

• Machine learning = interpolation and extrapolation by fitting data
with some functions and determining the parameters of the function.

• Possible functions:
• polynomials

• Fourier series

• Neural network

• Learning= determining the parameters

• Deep learning=More parameters



Success depends on a good choice of 
functions
• Kolmogorov and Arnold

• It is possible to represent a function of several variables as a sum of
functions of single variables.

• They show how to construct such functions by looking at sums of
classes of functions representing different scale of magnitude.

• Kolmogorov is an expert on turbulence. In turbulence, one also has
eddies (fluid flow) of different scales.

• No one has looked if ideas in critical phenomena can be of any use
here.



Real life problem?

• Real life variables are logical variables

• There is no a priori mapping to real variables.

• A  first step maybe is to find a metric.
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