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What is Gromov’s random monster group?

It is a finitely generated infinitely presented random group Γα, where α
belongs to a probability space. It is constructed as follows:
Let Fk be the free group of rank k with a symmetric generating set
T = {T1, · · · ,T2k} and Ω be a graph. A symmetric Fk -labelling α of Ω
is a map from the edge set of Ω to Fk so that α(e−1) = α(e)−1 for every
edge e.
Consider Ω = tn∈NΩn, where {Ωn}∞n=1 is a sequence of finite connected
graphs and denote by A(Ω,T j) the set of symmetric T j -labellings of Ω,
where T j is the collection of j-length words consisting of letters from T .

If Ωn = (Vn,En), A(Ω,T j) can be written as
∏∞

n=1 (En)T
j

.
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What is Gromov’s random monster group?

We then define the group Γα as the quotient of Fk by the normal closure
of the set of words corresponding to closed loops of Ωn. We endow
A(Ω,T j) with the product measure coming from the uniform measure on
A(Ωn,T

j).
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The properties of the sequence {Ωn}∞n=1:

The sequence of finite connected graphs {Ωn}∞n=1 should have the
following properties:

(a) the maximum degree of the vertices of Ωn is less than equal to d
and |Ωn| → ∞ as n→∞;

(b) {Ωn}∞n=1 is dg-bounded, i.e., there exists C > 0 so that
diam(Ωn) ≤ Cgirth(Ωn) for all n ∈ N;

(c) {Ωn}∞n=1 is of logarithmic girth, i.e., girth(Ωn) ≥ Clog |Ωn| for all n
and for some C > 0;

(d) {Ωn}∞n=1 is a sequence of expander graphs (or sometimes {Ωn}∞n=1 is
a p-expander with respect to the metric space lp, where
p ∈ (1,∞),i.e., |Vn| → ∞ as n→∞ and there exists C > 0 such
that

1
|Vn|2

∑
u,v∈Vn

dY
(
f (u), f (v)

)p ≤ C

|En|
∑
uv∈En

dY (f (u), f (v))p,

for every f : Vn → Y ).
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Examples of such sequence {Ωn}∞n=1:

(1) The first construction is due to Margulis. We consider the Cayley
graphs {Ωp = Cay

(
SL2(Z/pZ), {Ap,Bp}

)
}, where p runs over all

odd primes and Ap and Bp are the following two matrices,
respectively: [

1̄ 2̄
0̄ 1̄

]
,

[
1̄ 0̄
2̄ 1̄

]
(2) The second construction is the famous Ramanujan graphs,

constructed by Lubotzky-Phillips-Sarnak .
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What Gromov’s random monster group is good for?

(a) If one chooses {Ωn}∞n=1 to be a sequence of expander graphs, the
group Γα does not coarsely embed into a Hilbert space, because the
sequence {Ωn}∞n=1 “weakly” embeds in the Cayley graph of Γα;

(b) It provides a counter-example for the Baum-Connes conjecture with
coefficients in commutative C*-algebra (due to N. Higson, V.
Lafforgue, and G. Skandalis).
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Known rigidity properties of Gromov’s monster: Property
(T)

Definition

A discrete countable group Λ has Property (T) if any affine isometric
action of Λ on a Hilbert space has a fixed point.

Theorem

(Gromov’03, Silberman’03) Let {Ωn}∞n=1 be a sequence of connected
finite graphs, of vertex-degree between 3 and d for some fixed d ≥ 3
satisfying girth(Ωn)→∞ as n→∞ and {Ωn}∞n=1 is a sequence of
expander graphs. Then Γα has Property (T) for almost every
α ∈ A(Ω,T j).
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Known rigidity properties of Gromov’s monster: Property
FLp

Definition
A discrete countable group Λ has Property FLp if any affine isometric
action of Λ on any Lp-space has a fixed point.

Theorem

(Naor-Silberman’11) Let {Ωn}∞n=1 be a sequence of logarithmic girth
p-expanders with respect to lp-spaces. Then, Γα has Property FLp for
almost every α ∈ A(Ω,T j).
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Known rigidity properties of Gromov’s monster:
hyperbolically rigid

Theorem

(Gruber-Sisto-Tessera’20) Let {Ωn}∞n=1 be a sequence of connected finite
graphs, of vertex-degree between 3 and d for some fixed d ≥ 3. Assume,
|Ωn| → ∞ and that there exists C > 0 so that diam(Ωn) ≤ Cgirth(Ωn)
for all n ∈ N. Then, for every j ≥ 1 and almost every α ∈ A(Ω,T j), we
have that Γα cannot act non-elementarily on any geodesic Gromov
hyperbolic space.
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Some digression: Gromov hyperbolic space

Definition
We say a geodesic metric space X is Gromov hyperbolic, or δ-hyperbolic,
if there is a number δ ≥ 0 for which every geodesic triangle in X satisfies
the δ-slim triangle condition, i.e. any side is contained in a
δ-neighbourhood of the other two sides.
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Some digression: elementary and non-elementary action

Let G be a group acting isometrically on a Gromov hyperbolic space X .
By Λ(G ) we denote the set of limit points of G on ∂X , the Gromov
boundary of X . That is, Λ(G ) is the set of accumulation points of any
orbit of G on ∂X . The possible actions of groups on hyperbolic spaces
break into the following 4 classes according to |Λ(G )| :
(1) |Λ(G )| = 0. Equivalently, G has bounded orbits. In this case the

action of G is called elliptic.
(2) |Λ(G )| = 1. Equivalently, G has unbounded orbits and contains no

‘loxodromic’ elements. In this case the action of G is called
parabolic.

(3) |Λ(G )| = 2. Equivalently, G contains a ‘loxodromic’ element and
any two ‘loxodromic’ elements have the same limit points on ∂X . In
this case the action of G is called lineal.

(4) |Λ(G )| =∞.

The action of G is called elementary in cases (1)-(3) and non-elementary
in case (4).
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What is super-rigidity and hereditary super-rigidity?

Definition
For a countable discrete group G , if for any collection of homomorphisms
φα : Γα → G , φα has finite image in G for a.e. α ∈ A(Ω,T j), we say
that Γα is super-rigid with respect to G for a.e. α ∈ A(Ω,T j).

Definition
For a countable discrete group G , if for any collection of homomorphisms
φα : Γ′α → G , φα has finite image in G for all finite index subgroup Γ′α of
Γα and for a.e. α ∈ A(Ω,T j) , we say that Γα has hereditary
super-rigidity with respect to G for a.e. α ∈ A(Ω,T j).
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Known super-rigidity properties of Gromov’s monster group

Γα has super-rigidity with respect to following groups:

(a) linear groups (due to Naor-Silberman);
(b) groups with a-FLp -menability;
(c) K-amenable groups.
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Groups with a-FLp-menability

Definition
A discrete group G has Property a-FLp -menability if there a proper affine
isometric action of G on an Lp space for some p ∈ (1,∞).

Example

Groups with Haagerup Property, Hyperbolic groups etc.

The proof follows directly from the following three facts:
(a) the image of a group with Property FLp has Property FLp ;
(b) the subgroup of an a-FLp -menable group is a-FLp -menable;
(c) a discrete group with Property FLp and Property a-FLp -menability is

finite.
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K-amenable groups

Definition

(A rough definition) Let us consider a discrete countable group G and the
epimorphism λG : C∗G → C∗r G induced by the left-regular representation
of G , where C∗G is the maximal C∗-algebra of G and C∗r G is the
reduced C∗-algebra of G . A characterization of amenability is that G is
amenable if and only if λG is an isomorphism. Roughly speaking we say
that G is K-amenable if λG induces isomorphisms in K-theory, i.e.,

(λG )∗ : Ki (C
∗G )→ Ki (C

∗
r )

is an isomorphism for i = 0, 1.

The proof follows directly from the following three facts:
(a) the image of a group with Property (T) has Property (T);
(b) the subgroup of an K-menable group is K-menable;
(c) a discrete group with Property (T) and K-menability is finite.
( J. Cuntz. K-theoretic amenability for discrete groups. J. reine angew.
Math., 344:180-195, 1983. )
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Main Theorem

Theorem

(D.’23)
Let {Γα}α∈A(Ω,T j ) be the Gromov’s random monster group as defined
before. Then, for any collection of homomorphisms φα from Γα to a
discrete countable group G , φα has finite image for almost all
α ∈ A(Ω,T j) if G is any of the following types of groups:
(a) mapping class group MCG (Sg ,b);
(b) braid group Bn;
(c) outer automorphism group of a free group FN , Out(Fn);
(d) automorphism group of a free group FN , Aut(FN);
(e) hierarchically hyperbolic group.
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Proof of (a)

Step 1: We will prove by induction on the complexity τ(S) of a surface
S . We define complexity of a surface S = Sg ,b, denoted by τ(S), by the
quantity (3g − 3 + b). τ(S) ≤ 0 if and only if S is one of the following
surfaces: annulus, sphere, pair of pants, disc or torus. If S is a annulus,
sphere, pair of pants or disc, MCG (S) is trivial; if S is a torus, MCG (S)
is SL2(Z). In first case, the theorem is trivially true. Since SL2(Z) has
Haagerup property, we obtain that the theorem is true for second case.

Step 2: We assume that Sg ,b is any surface with τ(Sg ,b) > 0 and the
theorem is true for all surfaces T with τ(T ) < τ(Sg ,b). Let
φα : Γα → MCG (Sg ,b) be a group homomorphism and Hα = φα(Γα) for
all α ∈ A(Ω,T j). Let Hα be infinite. We will prove the theorem by
contradiction.

Step 3: Consider the ‘curve complex’ C (Sg ,b) of Sg ,b. Its 1-skeleton is
given by the following data: Vertices - There is one vertex of C (Sg ,b) for
each isotopy class of essential simple closed curves in Sg ,b. Edges- There
is an edge between any two vertices of C (Sg ,b) corresponding to isotopy
classes a and b with geometric intersection number of a and b being zero.

Kajal Das On super-rigidity of Gromov’s random monster group



Proof of (c)

Step 4: By Masur-Minsky (in 1999) The curve complex C (Sg ,b) is a
δ-hyperbolic metric space, where δ depends on Sg ,b.

Step 5 By Ivanov (in 1992), every subgroup H ≤ MCG (Sg ,b) either
contains two ‘pseudo-Anosov diffeomorphisms’ of Sg ,b that generate
a rank two free subgroup of H, or
is virtually cyclic and virtually generated by a ‘pseudo-Anosov
diffeomorphism’, or
H is reducible.

Step 6 An element φ of the mapping class group MCG (Sg ,b) acts
loxodromically on C (Sg ,b) if and only if φ is ‘pseudo-Anosov’.
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Proof of (c)

Step 7: Using Property (T) and hyperbolic rigidity of Γα, we obtain that
Hα is reducible, which implies that Hα fixes a finite, non-empty,
collection C of disjoint, non-peripheral, simple closed curves on Sg ,b.
Since Hα leaves C invariant, it induces a permutation on the connected
components {S1, · · · ,Sn} (n > 0) of Sg ,b \ C . Then, there exists a finite
index subgroup H0

α of Hα which leaves each subsurface Si invariant (here
each Si is a compact surface with boundary), and there is a
homomorphism

ψα : H0
α → MCG (S1)× · · ·MCG (Sn).

Step 8: Let pi : MCG (S1)× · · ·MCG (Sn)→ MCG (Si ) be the natural
projection for all i = 1, · · · , n. Then (pj ◦ ψα)(H0

α) is infinite for at least
one 1 ≤ j ≤ n. But, by induction, since τ(Sj) < τ(Sg ,b), (pj ◦ ψα)(H0

α)
must be finite, a contradiction.
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Some digression:stability result

Theorem

(D.’23) Let 1→ N
i−→ G

q−→ G/N → 1 be a short exact sequence. If Γα
has hereditary super-rigidity with respect to N and super-rigidity with
respect to G/N, then it has super-rigidity with respect to G .
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Proof of (b)

Proof of (d) follows from the stability theorem and the following short
exact sequence

1→ Z→ Bn → MCGx(Sn+1)→ 1

where Sn+1 is the sphere with (n + 1) punctures, MCG (Sn+1) is the
mapping class group of Sn+1 and MCGx(Sn+1) denotes the subgroup of
MCG (Sn+1) which fixes a fixed puncture x .
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Proof of (c)

Step 1: Let φα : Γα → Out(FN) be a group homomorphism and
Hα = φα(Γα) for all α ∈ A(Ω,T j).

Step 2: Consider the free factor complex FFN of Out(FN). The free
factor complex FFN is an abstract simplicial complex associated to a free
group FN . The set of vertices V (FFN) of FFN is defined as the set of all
FN -conjugacy classes [A] of proper free factors A of FN . Two distinct
vertices [A] and [B] of FFN are joined by an edge whenever there exist
proper free factors A, B of FN representing [A] and [B] respectively, such
that either A ≤ B or B ≤ A.

Step 3: By Bestvina-Feign (in 2014), the free factor complex FFN is
hyperbolic. Out(FN) acts isometrically on FFN .
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Proof of (c)

Step 5: By Handel-Mosher (in 2009), every subgroup of Out(FN)
(finitely generated or not) either

contains two ‘fully irreducible’ automorphisms that generate a rank
two free subgroup, or
is virtually cyclic and virtually generated by a ‘fully irreducible’
automorphism, or
virtually fixes the conjugacy class of a proper free factor of FN .

Step 6: An automorphism ψ ∈ Out(FN) acts loxodromically on FFN if
and only if ψ is fully irreducible.

Step 7: By using Property (T) and hyperbolic rigidity of Γα, we obtain
that Hα virtually fixes the conjugacy class of a proper free factor of FN .
Let FN = L ∗ L′, where L is a proper free factor of FN and there exist a
finite index subgroup H0

α of Hα fixing the conjugacy class of L.

Step 8: This situation is similar to the situation of mapping class group.
We apply a similar kind of argument to conclude this theorem.
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Proof of (d)

Proof of (f) follows from the stability theorem and the following short
exact sequence

1→ FN → Aut(FN)→ Out(FN)→ 1
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Thank you!
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