On super-rigidity of Gromov's random monster group

Kajal Das

Indian Statistical Institute, Kolkata

Differential Geometry Seminar Yau Mathematical Sciences Center, China 19th September, 2023

It is a *finitely generated infinitely presented random group* Γ_{α} , where α belongs to a probability space. It is constructed as follows:

Let F_k be the free group of rank k with a symmetric generating set $T = \{T_1, \dots, T_{2k}\}$ and Ω be a graph. A symmetric F_k -labelling α of Ω is a map from the edge set of Ω to F_k so that $\alpha(e^{-1}) = \alpha(e)^{-1}$ for every edge e.

Consider $\Omega = \bigsqcup_{n \in \mathbb{N}} \Omega_n$, where $\{\Omega_n\}_{n=1}^{\infty}$ is a sequence of finite connected graphs and denote by $\mathcal{A}(\Omega, T^j)$ the set of symmetric T^j -labellings of Ω , where T^j is the collection of *j*-length words consisting of letters from *T*. If $\Omega_n = (V_n, E_n)$, $\mathcal{A}(\Omega, T^j)$ can be written as $\prod_{n=1}^{\infty} (E_n)^{T^j}$.

What is Gromov's random monster group?

We then define the group Γ_{α} as the quotient of F_k by the normal closure of the set of words corresponding to closed loops of Ω_n . We endow $\mathcal{A}(\Omega, T^j)$ with the product measure coming from the uniform measure on $\mathcal{A}(\Omega_n, T^j)$.

The properties of the sequence $\{\Omega_n\}_{n=1}^{\infty}$:

The sequence of finite connected graphs $\{\Omega_n\}_{n=1}^{\infty}$ should have the following properties:

- (a) the maximum degree of the vertices of Ω_n is less than equal to d and $|\Omega_n| \to \infty$ as $n \to \infty$;
- (b) $\{\Omega_n\}_{n=1}^{\infty}$ is dg-bounded, i.e., there exists C > 0 so that $diam(\Omega_n) \leq Cgirth(\Omega_n)$ for all $n \in \mathbb{N}$;
- (c) $\{\Omega_n\}_{n=1}^{\infty}$ is of logarithmic girth, i.e., $girth(\Omega_n) \ge Clog |\Omega_n|$ for all n and for some C > 0;
- (d) $\{\Omega_n\}_{n=1}^{\infty}$ is a sequence of expander graphs (or sometimes $\{\Omega_n\}_{n=1}^{\infty}$ is a *p*-expander with respect to the metric space l^p , where $p \in (1, \infty)$, i.e., $|V_n| \to \infty$ as $n \to \infty$ and there exists C > 0 such that

$$\frac{1}{|V_n|^2}\sum_{u,v\in V_n}d_Y(f(u),f(v))^p\leq \frac{C}{|E_n|}\sum_{\overline{uv}\in E_n}d_Y(f(u),f(v))^p,$$

for every $f:V_n o Y$).

(1) The first construction is due to Margulis. We consider the Cayley graphs $\{\Omega_p = Cay(SL_2(\mathbb{Z}/p\mathbb{Z}), \{A_p, B_p\})\}$, where p runs over all odd primes and A_p and B_p are the following two matrices, respectively:

$$\begin{bmatrix} \overline{1} & \overline{2} \\ \overline{0} & \overline{1} \end{bmatrix}, \begin{bmatrix} \overline{1} & \overline{0} \\ \overline{2} & \overline{1} \end{bmatrix}$$

(2) The second construction is the famous Ramanujan graphs, constructed by Lubotzky-Phillips-Sarnak .

- (a) If one chooses $\{\Omega_n\}_{n=1}^{\infty}$ to be a sequence of expander graphs, the group Γ_{α} does not coarsely embed into a Hilbert space, because the sequence $\{\Omega_n\}_{n=1}^{\infty}$ "weakly" embeds in the Cayley graph of Γ_{α} ;
- (b) It provides a counter-example for the Baum-Connes conjecture with coefficients in commutative C*-algebra (due to N. Higson, V. Lafforgue, and G. Skandalis).

Known rigidity properties of Gromov's monster: Property (T)

Definition

A discrete countable group Λ has Property (T) if any affine isometric action of Λ on a Hilbert space has a fixed point.

Theorem

(Gromov'03, Silberman'03) Let $\{\Omega_n\}_{n=1}^{\infty}$ be a sequence of connected finite graphs, of vertex-degree between 3 and d for some fixed $d \geq 3$ satisfying girth $(\Omega_n) \to \infty$ as $n \to \infty$ and $\{\Omega_n\}_{n=1}^{\infty}$ is a sequence of expander graphs. Then Γ_{α} has Property (T) for almost every $\alpha \in \mathcal{A}(\Omega, T^j)$. Known rigidity properties of Gromov's monster: Property F_{L^p}

Definition

A discrete countable group Λ has Property F_{L^p} if any affine isometric action of Λ on any L^p -space has a fixed point.

Theorem

(Naor-Silberman'11) Let $\{\Omega_n\}_{n=1}^{\infty}$ be a sequence of logarithmic girth *p*-expanders with respect to l^p -spaces. Then, Γ_{α} has Property F_{L^p} for almost every $\alpha \in \mathcal{A}(\Omega, T^j)$.

Known rigidity properties of Gromov's monster: hyperbolically rigid

Theorem

(Gruber-Sisto-Tessera'20) Let $\{\Omega_n\}_{n=1}^{\infty}$ be a sequence of connected finite graphs, of vertex-degree between 3 and d for some fixed $d \geq 3$. Assume, $|\Omega_n| \to \infty$ and that there exists C > 0 so that $diam(\Omega_n) \leq Cgirth(\Omega_n)$ for all $n \in \mathbb{N}$. Then, for every $j \geq 1$ and almost every $\alpha \in \mathcal{A}(\Omega, T^j)$, we have that Γ_{α} cannot act non-elementarily on any geodesic Gromov hyperbolic space.

Definition

We say a geodesic metric space X is *Gromov hyperbolic*, or δ -hyperbolic, if there is a number $\delta \geq 0$ for which every geodesic triangle in X satisfies the δ -slim triangle condition, i.e. any side is contained in a δ -neighbourhood of the other two sides.

Let G be a group acting isometrically on a Gromov hyperbolic space X. By $\Lambda(G)$ we denote the set of limit points of G on ∂X , the Gromov boundary of X. That is, $\Lambda(G)$ is the set of accumulation points of any orbit of G on ∂X . The possible actions of groups on hyperbolic spaces break into the following 4 classes according to $|\Lambda(G)|$:

- (1) $|\Lambda(G)| = 0$. Equivalently, G has bounded orbits. In this case the action of G is called *elliptic*.
- (2) $|\Lambda(G)| = 1$. Equivalently, G has unbounded orbits and contains no 'loxodromic' elements. In this case the action of G is called *parabolic*.
- (3) $|\Lambda(G)| = 2$. Equivalently, G contains a 'loxodromic' element and any two 'loxodromic' elements have the same limit points on ∂X . In this case the action of G is called *lineal*.

(4) $|\Lambda(G)| = \infty$.

The action of G is called *elementary* in cases (1)-(3) and *non-elementary* in case (4).

What is super-rigidity and hereditary super-rigidity?

Definition

For a countable discrete group G, if for any collection of homomorphisms $\phi_{\alpha} : \Gamma_{\alpha} \to G$, ϕ_{α} has finite image in G for a.e. $\alpha \in \mathcal{A}(\Omega, T^{j})$, we say that Γ_{α} is *super-rigid* with respect to G for a.e. $\alpha \in \mathcal{A}(\Omega, T^{j})$.

Definition

For a countable discrete group G, if for any collection of homomorphisms $\phi_{\alpha}: \Gamma'_{\alpha} \to G$, ϕ_{α} has finite image in G for all finite index subgroup Γ'_{α} of Γ_{α} and for a.e. $\alpha \in \mathcal{A}(\Omega, T^{j})$, we say that Γ_{α} has *hereditary* super-rigidity with respect to G for a.e. $\alpha \in \mathcal{A}(\Omega, T^{j})$.

- Γ_{α} has super-rigidity with respect to following groups:
- (a) linear groups (due to Naor-Silberman);
- (b) groups with $a-F_{L^p}$ -menability;
- (c) K-amenable groups.

Definition

A discrete group G has Property a- F_{L^p} -menability if there a proper affine isometric action of G on an L^p space for some $p \in (1, \infty)$.

Example

Groups with Haagerup Property, Hyperbolic groups etc.

The proof follows directly from the following three facts:

- (a) the image of a group with Property F_{L^p} has Property F_{L^p} ;
- (b) the subgroup of an $a-F_{L^p}$ -menable group is $a-F_{L^p}$ -menable;
- (c) a discrete group with Property F_{L^p} and Property a- F_{L^p} -menability is finite.

K-amenable groups

Definition

(A rough definition) Let us consider a discrete countable group G and the epimorphism $\lambda_G : C^*G \to C_r^*G$ induced by the left-regular representation of G, where C^*G is the maximal C*-algebra of G and C_r^*G is the reduced C*-algebra of G. A characterization of amenability is that G is amenable if and only if λ_G is an isomorphism. Roughly speaking we say that G is K-amenable if λ_G induces isomorphisms in K-theory, i.e.,

$$(\lambda_G)_*: K_i(C^*G) \to K_i(C_r^*)$$

is an isomorphism for i = 0, 1.

The proof follows directly from the following three facts:

- (a) the image of a group with Property (T) has Property (T);
- (b) the subgroup of an K-menable group is K-menable;
- (c) a discrete group with Property (T) and K-menability is finite.

(J. Cuntz. K-theoretic amenability for discrete groups. J. reine angew. Math., 344:180-195, 1983.)

Theorem

(D.'23)

Let $\{\Gamma_{\alpha}\}_{\alpha \in \mathcal{A}(\Omega, T^{j})}$ be the Gromov's random monster group as defined before. Then, for any collection of homomorphisms ϕ_{α} from Γ_{α} to a discrete countable group G, ϕ_{α} has finite image for almost all $\alpha \in \mathcal{A}(\Omega, T^{j})$ if G is any of the following types of groups:

- (a) mapping class group $MCG(S_{g,b})$;
- (b) braid group B_n ;
- (c) outer automorphism group of a free group F_N , $Out(F_n)$;
- (d) automorphism group of a free group F_N , $Aut(F_N)$;
- (e) hierarchically hyperbolic group.

Proof of (a)

Step 1: We will prove by induction on the complexity $\tau(S)$ of a surface S. We define complexity of a surface $S = S_{g,b}$, denoted by $\tau(S)$, by the quantity (3g - 3 + b). $\tau(S) \le 0$ if and only if S is one of the following surfaces: annulus, sphere, pair of pants, disc or torus. If S is a annulus, sphere, pair of pants or disc, MCG(S) is trivial; if S is a torus, MCG(S) is $SL_2(\mathbb{Z})$. In first case, the theorem is trivially true. Since $SL_2(\mathbb{Z})$ has Haagerup property, we obtain that the theorem is true for second case.

Step 2: We assume that $S_{g,b}$ is any surface with $\tau(S_{g,b}) > 0$ and the theorem is true for all surfaces T with $\tau(T) < \tau(S_{g,b})$. Let $\phi_{\alpha} : \Gamma_{\alpha} \to MCG(S_{g,b})$ be a group homomorphism and $H_{\alpha} = \phi_{\alpha}(\Gamma_{\alpha})$ for all $\alpha \in \mathcal{A}(\Omega, T^{j})$. Let H_{α} be infinite. We will prove the theorem by contradiction.

Step 3: Consider the 'curve complex' $C(S_{g,b})$ of $S_{g,b}$. Its 1-skeleton is given by the following data: Vertices - There is one vertex of $C(S_{g,b})$ for each isotopy class of essential simple closed curves in $S_{g,b}$. Edges- There is an edge between any two vertices of $C(S_{g,b})$ corresponding to isotopy classes *a* and *b* with geometric intersection number of *a* and *b* being zero.

Step 4: By Masur-Minsky (in 1999) The curve complex $C(S_{g,b})$ is a δ -hyperbolic metric space, where δ depends on $S_{g,b}$.

Step 5 By Ivanov (in 1992), every subgroup $H \leq MCG(S_{g,b})$ either

- contains two 'pseudo-Anosov diffeomorphisms' of $S_{g,b}$ that generate a rank two free subgroup of H, or
- is virtually cyclic and virtually generated by a 'pseudo-Anosov diffeomorphism', or
- *H* is reducible.

Step 6 An element ϕ of the mapping class group $MCG(S_{g,b})$ acts loxodromically on $C(S_{g,b})$ if and only if ϕ is 'pseudo-Anosov'.

Proof of (c)

Step 7: Using Property (T) and hyperbolic rigidity of Γ_{α} , we obtain that H_{α} is reducible, which implies that H_{α} fixes a finite, non-empty, collection *C* of disjoint, non-peripheral, simple closed curves on $S_{g,b}$. Since H_{α} leaves *C* invariant, it induces a permutation on the connected components $\{S_1, \dots, S_n\}$ (n > 0) of $S_{g,b} \setminus C$. Then, there exists a finite index subgroup H_{α}^0 of H_{α} which leaves each subsurface S_i invariant (here each S_i is a compact surface with boundary), and there is a homomorphism

$$\psi_{\alpha}: H^0_{\alpha} \to MCG(S_1) \times \cdots MCG(S_n).$$

Step 8: Let $p_i : MCG(S_1) \times \cdots MCG(S_n) \to MCG(S_i)$ be the natural projection for all $i = 1, \cdots, n$. Then $(p_j \circ \psi_\alpha)(H^0_\alpha)$ is infinite for at least one $1 \le j \le n$. But, by induction, since $\tau(S_j) < \tau(S_{g,b})$, $(p_j \circ \psi_\alpha)(H^0_\alpha)$ must be finite, a contradiction.

Theorem

(D.'23) Let $1 \to N \xrightarrow{i} G \xrightarrow{q} G/N \to 1$ be a short exact sequence. If Γ_{α} has hereditary super-rigidity with respect to N and super-rigidity with respect to G/N, then it has super-rigidity with respect to G.

Proof of (d) follows from the stability theorem and the following short exact sequence $% \left({{\left[{{{\mathbf{x}}_{i}} \right]}_{i}}} \right)$

$$1 \rightarrow \mathbb{Z} \rightarrow B_n \rightarrow MCG_x(S_{n+1}) \rightarrow 1$$

where S_{n+1} is the sphere with (n + 1) punctures, $MCG(S_{n+1})$ is the mapping class group of S_{n+1} and $MCG_x(S_{n+1})$ denotes the subgroup of $MCG(S_{n+1})$ which fixes a fixed puncture x.

Step 1: Let $\phi_{\alpha} : \Gamma_{\alpha} \to Out(F_N)$ be a group homomorphism and $H_{\alpha} = \phi_{\alpha}(\Gamma_{\alpha})$ for all $\alpha \in \mathcal{A}(\Omega, T^j)$.

Step 2: Consider the free factor complex FF_N of $Out(F_N)$. The free factor complex FF_N is an abstract simplicial complex associated to a free group F_N . The set of vertices $V(FF_N)$ of FF_N is defined as the set of all F_N -conjugacy classes [A] of proper free factors A of F_N . Two distinct vertices [A] and [B] of FF_N are joined by an edge whenever there exist proper free factors A, B of F_N representing [A] and [B] respectively, such that either $A \leq B$ or $B \leq A$.

Step 3: By Bestvina-Feign (in 2014), the free factor complex FF_N is hyperbolic. $Out(F_N)$ acts isometrically on FF_N .

Proof of (c)

Step 5: By Handel-Mosher (in 2009), every subgroup of $Out(F_N)$ (finitely generated or not) either

- contains two 'fully irreducible' automorphisms that generate a rank two free subgroup, or
- is virtually cyclic and virtually generated by a 'fully irreducible' automorphism, or
- virtually fixes the conjugacy class of a proper free factor of F_N .

Step 6: An automorphism $\psi \in Out(F_N)$ acts loxodromically on FF_N if and only if ψ is fully irreducible.

Step 7: By using Property (T) and hyperbolic rigidity of Γ_{α} , we obtain that H_{α} virtually fixes the conjugacy class of a proper free factor of F_N . Let $F_N = L * L'$, where L is a proper free factor of F_N and there exist a finite index subgroup H_{α}^0 of H_{α} fixing the conjugacy class of L.

Step 8: This situation is similar to the situation of mapping class group. We apply a similar kind of argument to conclude this theorem.

Proof of (f) follows from the stability theorem and the following short exact sequence $% \left(f_{1}^{2}, f_{2}^{2}, f_{3}^{2}, f_{3}$

$$1 \rightarrow F_N \rightarrow Aut(F_N) \rightarrow Out(F_N) \rightarrow 1$$

- [1] K. Das, On super-rigidity of Gromov's random monster group, arXiv (2023) (https://arxiv.org/abs/2302.06255)
- [2] M. Gromov, Random walk in random groups, GAFA, Geom. func. anal. 13 (2003).
- [3] D. Gruber, A. Sisto, R. Tessera. Random Gromov's Monsters do not act non-elementarily on hyperbolic spaces, Proceedings of the American Mathematical Society, Volume 148, Number 7, July 2020, Pages 2773-2782.
- [4] A. Naor, L. Silberman. Poincaré inequalities, embeddings, and wild groups, Compositio Mathematica, Volume 147, Issue 5, September 2011, pp. 1546-1572.

Thank you!