LONGTIME BEHAVIORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS

Wai-Tong (Louis) Fan Indiana University

Nov 10, 2022

Tsinghua, Peking, Beijing Normal Probability Webinar

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

Longtime behaviors of stochastic reaction-diffusion equations on metric graphs

3

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ →

OUTLINE

1 MOTIVATION: MODEL COMPARISON

2 BIASED VOTER MODEL AND FKPP

3 STOCHASTIC PDE ON METRIC GRAPHS

4 DUALITY AND EXTINCTION PROBABILITY

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

PARTIAL DIFFERENTIAL EQUATIONS

- powerful tools that capture many **space-time organized structures**
- describe the macroscopic behavior of a certain quantity u(t, x)at time t and location x

Eg. Heat equation

$$\partial_t u(t,x) = \alpha \Delta u(t,x)$$

Suppose initial condition u_0 is "nice at infinity", then the solution on \mathbb{R}^d is

$$u(t,x) = \int_{\mathbb{R}^d} p(t,x,y) u_0(y) dy,$$

where $p(t, x, y) = (4\pi\alpha t)^{-d/2} e^{-|x-y|^2/4\alpha t}$.

Eg. Reaction-Diffusion equation

$$\partial_t u(t,x) = \alpha \Delta u(t,x) + F(u(t,x))$$

.e.g.
$$F(u) = \beta u(1-u)$$
 logistic growth

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

LONGTIME BEHAVIORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS

 $\mathcal{A} \mathcal{A} \mathcal{A}$

PARTIAL DIFFERENTIAL EQUATIONS

Eg. Fisher-Kolmogorov-Petrovskii-Piscounov (FKPP) equation

$$\partial_t u(t,x) = \alpha \Delta u(t,x) + \beta u(t,x) (1 - u(t,x))$$

• models the spatial spread of an advantageous gene type

• on \mathbb{R} , it has asymptotic speed: $2\sqrt{\alpha\beta}$

[Fisher 1937, KPP 1937, McKean 1975, Bramson 1983, Freidlin 1996, etc]

LONGTIME BEHAVIORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS

 $\mathcal{A} \mathcal{A} \mathcal{A}$

E

▲□▶ ▲□▶ ▲三▶ ▲三▶ ---

PARTIAL DIFFERENTIAL EQUATIONS

Eg. Turing patterns [Alan Turing 1952] captured by reaction-diffusion systems

$$\begin{cases} \partial_t u = \alpha_u \Delta u + F(u, v) \\ \partial_t v = \alpha_v \Delta v + G(u, v) \end{cases}$$

Figures from [Shigeru Kondo and Takashi Miura, Science 2010]

Eg. Transport equation, wave equation, Burgers equation, Navier-Stokes equation, Einstein's equation, Ginzburg-Landau equation, etc.

u(t,x) is usually interpreted as certain continuous quantity

However,

- individuals are **not infinitesimally small**
- observations are often **noisy**

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

RANDOMLY GROWING TUMOR

Duke Cancer Institute: http://sites.duke.edu/dukecancerinstitute/

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

LONGTIME BEHAVIORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS

SQ (2)

VIRUS SPREAD

[Baltes, Akpinar, Inankur, and Yin 2017]

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

LONGTIME BEHAVIORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS

8/67

590

Ξ.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ →

GROWING BACTERIAL COLONIES

[Hallatschek, Hersen, Ramanathan and Nelson 2007]

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

LONGTIME BEHAVIORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS

5900

Ξ.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

EXTINCTION VERSUS SURVIVAL

INDIVIDUAL-BASED MODEL

- cells and particles have positive size
- experimental outcomes are stochastic.

To take **discreteness** and **stochasticity** into account, **individual-based** models are often used.

However, they are often computationally and analytically intractable.

▲□▶▲□▶▲□▶▲□▶ ▲□ ♪ ④ ◇ ◇

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

FUNDAMENTAL CHALLENGE IN MODELING

Which model should we use?

- Individual-based models
- Partial differential equations (PDE)
- Stochastic PDE (SPDE)
- multi-scale models
- hybrid models
- ••••

Key: understand the connections among models.

Why do we care?

FUNDAMENTAL CHALLENGE IN MODELING

Which model should we use?

- Individual-based models
- Partial differential equations (PDE)
- Stochastic PDE (SPDE)
- multi-scale models
- hybrid models
- ••••

Key: understand the connections among models.

Why do we care?

▲□▶▲□▶▲□▶▲□▶ □ の⊙⊙

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

Why do we care about understanding the connections among models ?

The parable of the blind men and an elephant, figures from cvi teacher - WordPress.com

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

LONGTIME BEHAVIORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS

590

OUTLINE

1 MOTIVATION: MODEL COMPARISON

2 BIASED VOTER MODEL AND FKPP

3 STOCHASTIC PDE ON METRIC GRAPHS

4 DUALITY AND EXTINCTION PROBABILITY

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

BIASED VOTER MODEL (BVM)

 $\mathsf{BVM}\xspace$ on

$$(L^{-1}\mathbb{Z}) \times \{1,\ldots,M\}.$$

[Hallatschek and Nelson 2007], [Durrett and Fan 2016]

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

BIASED VOTER MODEL (BVM)

Each type-0 reproduces at rate $2\alpha L^2$ Each type-1 reproduces at rate $2(\alpha L^2 + \beta)$

Offspring replaces a randomly chosen neighbor

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

SIMULATION FOR BVM

Each type-0 reproduces at rate 200 Each type-1 reproduces at rate 204,

```
L = 10, M = 1000.
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Comparison of the evolution of the fraction of type 1 with FKPP

$$\partial_t u = \alpha \Delta u + \beta u (1-u)$$

LONGTIME BEHAVIORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS

臣

BIASED VOTER MODEL (BVM)

Is deterministic FKPP a good approximation?

NOT NECESSARILY. This is annoying.

How to remedy?

▲ロ▶▲□▶▲□▶▲□▶▲□ シ へ □ ▼

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

BIASED VOTER MODEL (BVM)

Is deterministic FKPP a good approximation?

NOT NECESSARILY. This is annoying.

How to remedy?

▲□▶▲□▶▲□▶▲□▶▲□ シ へ □ ▶

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

LONGTIME BEHAVIORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS

18/67

STOCHASTIC FKPP

$$\partial_t u(t,x) = \alpha \Delta u + \beta u(1-u) + |\gamma u(1-u)|^{1/2} \dot{W},$$

where W(t,x) is the space-time Gaussian white noise, $x \in \mathbb{R}^d$, $t \in [0,\infty)$.

Roughly speaking, stochastic PDE (SPDE) are

- PDE with random terms
- macroscopic models for systems with randomness

What does it mean by a "solution" ?

STOCHASTIC PDE

How to make sense of parabolic SPDE

$$\partial_t u(t,x) = \alpha \Delta u(t,x) + b(u(t,x)) + \sigma(u(t,x)) \dot{W}(t,x)$$

• Mild solution

$$u_t(x) = P_t u_0(x) + \int_0^t P_{t-s}(b(u_s))(x) ds$$

+
$$\int_{[0,t] \times \mathbb{R}^d} p(t-s,x,y) \sigma(u_s(y)) dW(s,y),$$

where
$$p(t, x, y) = (4\pi\alpha t)^{-d/2} e^{-|x-y|^2/4\alpha t}$$
.

[Gihman and Skorohod 1979, Métivier and Pellaumeil 1980, Walsh 1986]

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

STOCHASTIC PDE

How to make sense of parabolic SPDE

$$\partial_t u(t,x) = \alpha \Delta u(t,x) + b(u(t,x)) + \sigma(u(t,x)) \dot{W}(t,x) |?$$

• Mild solution

$$u_t(x) = P_t u_0(x) + \int_0^t P_{t-s}(b(u_s))(x) ds$$

+
$$\int_{[0,t]\times\mathbb{R}^d} p(t-s,x,y)\sigma(u_s(y)) dW(s,y),$$

where
$$p(t, x, y) = (4\pi\alpha t)^{-d/2} e^{-|x-y|^2/4\alpha t}$$
.

[Gihman and Skorohod 1979, Métivier and Pellaumeil 1980, Walsh 1986]

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

STOCHASTIC FKPP ON \mathbb{R} $\partial_t u = \alpha \Delta u + \beta u(1-u) + |\gamma u(1-u)|^{1/2} \dot{W}$

Figure from [Doering, Mueller and Smereka 2003]

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

LONGTIME BEHAVIORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS

 \mathcal{A}

Ξ.

▲□▶▲□▶▲≡▶▲≡▶

Stochastic FKPP on \mathbb{R}

$$\partial_t u = \alpha \Delta u + \beta u(1-u) + |\gamma u(1-u)|^{1/2} \dot{W} \qquad (t,x) \in \mathbb{R}_+ \times \mathbb{R}$$

- Arise as scaling limits of various discrete models [Muller and Tribe 1995, Durrett and Fan 2016, Fan 2021]
- Backward-in-time lineage dynamics [Hallatschek and Nelson 1997, Durrett and Fan 2016]
- Wavefront is formed, compact containment holds [Mueller and Sowers 1995]
- Conditioned on non-extinction, asymptotic speed is

$$2\sqrt{lpha eta} - O(|\log^{-2} oldsymbol{\gamma}|)$$

for small $\gamma > 0$. [Brunet and Derrida 1997, Mueller, Mytnik and Quastel 2011]

Probability of extinction is

$$\exp\left\{\frac{-2\beta}{\gamma}\int_{\mathbb{R}}u_0(x)dx\right\}$$

[Doering, Mueller and Smereka 2003]

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

LONGTIME BEHAVIORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS

<ロト < 団 > < 団 > < 豆 > < 豆 > 三 三

FKPP or Stochastic FKPP ?

Define the **approximate density of type 1**

$$u^{(M,L)}(t,x) = rac{\text{number of type 1 at } x}{M}$$

Want:
$$u^{(M,L)}(t,\cdot) \rightarrow u(t,\cdot) \in \mathcal{C}_{[0,1]}(\mathbb{R})$$

▲□▶▲@▶▲≧▶▲≧▶ ≧ めんの

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

FKPP or Stochastic FKPP ?

Define the approximate density of type 1

$$u^{(M,L)}(t,x) = rac{\text{number of type 1 at } x}{M}$$

Want: $u^{(M,L)}(t,\cdot) \rightarrow u(t,\cdot) \in \mathcal{C}_{[0,1]}(\mathbb{R}).$

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

LONGTIME BEHAVIORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS

 \mathcal{A}

E.

BVM on
$$(L^{-1}\mathbb{Z}) \times \{1, \dots, M\}$$
.

$$\begin{cases} \text{Each type-0 reproduces at rate } 2\alpha L^2 \\ \text{Each type-1 reproduces at rate } 2(\alpha L^2 + \beta) \end{cases}$$

THEOREM (DURRETT AND FAN, 2016)

Suppose $L/M \to \gamma/(4\alpha) \in [0, \infty)$ and the initial approximate density converges. Then $u^{(M,L)}(t, \cdot) \to u(t, \cdot) \in C_{[0,1]}(\mathbb{R})$ where

$$\partial_t u = \alpha \Delta u + 2\beta u(1-u) + |\gamma u(1-u)|^{1/2} W$$

where $\alpha > 0$, $\beta \ge 0$ and $\gamma \ge 0$.

 $\gamma = 0$ (deterministic FKPP) $L = n^{1/b}$, $M = \alpha n^{2/b-1/a}$, 2a > b > a > 0 $\gamma > 0$ (stochastic FKPP) $M = n^a$, $L = \gamma M/(4\alpha)$

▲□▶▲□▶▲□▶▲□▶ □ のへで

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

BVM WITH NEUTRAL LABELS

▲□▶▲□▶▲□▶▲□▶ = 少�?

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

Theorem (Durrett and Fan, 2016)

Suppose $L/M \rightarrow \gamma/(4\alpha)$ and initial densities converge. The **pair** of densities of type 1 and labeled type 1 converges weakly to the coupled SPDE

$$\partial_t u = \alpha \Delta u + 2\beta u (1-u) + |\gamma \ell (1-u)|^{1/2} \dot{W}^0 + |\gamma (u-\ell)(1-u)|^{1/2} \dot{W}^1$$
$$\partial_t \ell = \alpha \Delta \ell + 2\beta \ell (1-u) + |\gamma \ell (1-u)|^{1/2} \dot{W}^0 + |\gamma \ell (u-\ell)|^{1/2} \dot{W}^2$$

Applications: lineage dynamics, extinction probability, probability of gene surfing

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

OUTLINE

- **1** MOTIVATION: MODEL COMPARISON
- **2** BIASED VOTER MODEL AND FKPP
- **3** STOCHASTIC PDE ON METRIC GRAPHS
- **4** DUALITY AND EXTINCTION PROBABILITY

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

Stochastic FKPP on \mathbb{R}

Wellposedness for

$$\partial_t u = \alpha \Delta u + \beta u(1-u) + |\gamma u(1-u)|^{1/2} \dot{W} \qquad (t,x) \in \mathbb{R}_+ \times \mathbb{R}$$

- Stochastic FKPP has a unique weak solution for d = 1.
- Solution theory for $d \ge 2$ not available (!!).

Usual approach: Discretize space New approach: Model space as a metric graph

SPDE on metric graphs

with suitable boundary conditions on the vertices.

- Wellposed in the weak sense if $\mathbb X$ is "nice"
- Gaussian heat kernels and Holder continuity holds for the underlying diffusion [Fan 2021]

 $\mathcal{A} \mathcal{A} \mathcal{A}$

3

<ロ > < 国 > < 国 > < 国 > < 国 > <

SPDE on metric graphs

$$\begin{cases} \partial_t u = \mathcal{L}u(t, x) + b(x, u(t, x)) + \sigma(x, u(t, x))\dot{W} & \text{for } x \in \overset{\circ}{G} \\ \nabla_{out} u \cdot \vec{\alpha} = -\hat{\beta}(v, u(t, v)) & \text{for } v \in V \end{cases}$$

is the shorthand of

$$u_t(x) = P_t u_0(x) + \int_0^t P_{t-s}(b(\cdot, u_s))(x) ds$$

+
$$\int_{[0,t]\times G} p(t-s, x, y) \sigma(y, u_s(y)) dW(s, y)$$

+
$$\int_0^t \sum_{v \in V} p(t-s, x, v) \hat{\beta}(v, u_s(v)) ds,$$

where p(t, x, y) the transition density for the \mathcal{L} -diffusion on G. [Cerrai and Freidlin 2019, Fan 2021]

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

LONGTIME BEHAVIORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS

 \mathcal{A}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SPDE on metric graphs

(I) Our SPDE are more general (well-posedness not known apriori)

$$\begin{aligned} \partial_t u &= \mathcal{L}u + b(u) + \sigma(u) \dot{W} & \text{on } \mathring{G} \\ \nabla_{out} u &= -\hat{\beta}(u) & \text{on } V. \end{aligned}$$

- More general metric graphs G and operators \mathcal{L}
- Nontrivial boundary conditions

(III) We obtain the first scaling limit results which connect individual based models to both deterministic and SPDE on metric graphs.

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

Longtime behaviors of stochastic reaction-diffusion equations on metric graphs

THEOREM (FAN 2021)

Let G be a metric graph admitting suitable regularity conditions (such as volume-doubling property and Poincaré inequality). Suppose the initial approximate densities converge, then under suitable scaling, the approximate density processes converge in $\mathcal{D}([0,\infty), \mathcal{C}_{[0,1]}(G))$ to the solution of

$$\partial_t u = lpha_e \, \Delta u + eta_e \, u(1-u) + \sqrt{\gamma_e \, u(1-u)} \dot{W}$$
 on $\overset{\circ}{e}$

$$\left(
abla_{out} u \cdot \vec{\alpha} = -\hat{eta} u(1-u) \right)$$
 on V.

- We also have a numerical scheme via interacting Itô SDEs
- Same method expected to work for several other parabolic SPDE

LONGTIME BEHAVIORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS

 $\mathcal{A} \mathcal{A} \mathcal{A}$

32

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ →

EXAMPLE: FKPP ON TREES

We consider the FKPP equation on an infinite regular tree $\mathbb{T}_{\vec{d},\vec{\ell}}$

What is the wavespeed on a tree? Is it faster or slower than that on \mathbb{R} ?

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

FKPP on $\mathbb{T}_{\vec{d},\vec{\ell}}$

• FKPP equation on an infinite regular tree $\mathbb{T}_{\vec{d},\vec{\ell}}$:

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = \frac{1}{2}\frac{\partial^2 u}{\partial x^2} + \beta u(1-u) &, \quad (t,x) \in (0,\infty) \times \mathring{\mathbb{T}}_{\vec{d},\vec{\ell}} ,\\ \nabla u(t,v) = 0 &, \quad (t,v) \in (0,\infty) \times V ,\\ u(0,x) = u_0(x) &, \quad x \in \mathring{\mathbb{T}}_{\vec{d},\vec{\ell}} , \end{cases}$$

- The condition $\nabla u(t, v) = \sum_i \partial_i u(t, v) = 0$ in which ∂_i is the outward derivative along the *i*-th edge attached to the vertex v, specifies that the *flow-in equals flow-out* of mass at each vertex.
- The initial condition $u_0(x) = 1_{(-\delta,\delta)}(x)$ for some small $\delta > 0$.

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

LONGTIME BEHAVIORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 団 > < 巨 > < 巨 > 三 三

WAVESPEED FOR FKPP ON TREES

- Consider the FKPP equation on $\mathbb{T}_{\vec{d},\vec{\ell}}$
- i.i.d. branching degrees $\vec{d} = (d_i)_{i \in \mathbb{Z}_+}$
- i.i.d. branch lengths $\vec{\ell} = (\ell_i)_{i \in \mathbb{Z}_+}$

THEOREM (FAN, HU AND TERLOV 2021)

There is a **critical growth rate** $\beta_c > 0$ such that if $\beta \in (\beta_c, \infty)$, a wavefront is formed. The wavefront travels with a positive asymptotic speed $c_* \leq \sqrt{2\beta}$, with equality holds if and only if the tree $\mathbb{T}_{\vec{d},\vec{\ell}}$ is the real line \mathbb{R} .

• We obtained a variational representation for c_* .

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

LONGTIME BEHAVIORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS

SQ (~

COROLLARY: *d*-ARY TREE

THEOREM (FAN, HU AND TERLOV 2021)

Consider the d-ary tree with branch length ℓ . There is a critical growth rate $\beta_c := \frac{d-2}{\ell d} \ln(d-1)$ above which the asymptotic speed is

$$\inf_{\lambda \ge 0} \frac{\lambda + \beta}{\sqrt{2\lambda} + \frac{1}{\ell} \ln\left(\frac{4p}{1 + \gamma^2 - \sqrt{(\gamma^2 - 1)^2 + 4(2p - 1)^2\gamma^2}}\right)} \in (0, \sqrt{2\beta}],$$

where p = (d-1)/d and $\gamma := e^{\ell\sqrt{2\lambda}}$.

▲□▶▲□▶▲□▶▲□▶ ▲□ シ へ ⊙ ♪

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

Idoof

FIGURE: Connection with multi-skewed Brownian motion via projection π .

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

Idoof

• If
$$y = \pi(x)$$
 then $u(t, x) = v(t, y)$, where

$$v(t, y) = E_y^{(\vec{d}, \vec{\ell})} \Big[\mathbb{1}_{(-\delta, \delta)}(Y_t) \exp \Big\{ \beta \int_0^t \Big(\mathbb{1} - v(t - s, Y_s) \Big) ds \Big\} \Big].$$

Our problem is reduced to large deviations principle (LDP) and the analysis of wavefront propagation associated with the multi-skewed Brownian motion Y_t .

OUTLINE

- **1** MOTIVATION: MODEL COMPARISON
- **2** BIASED VOTER MODEL AND FKPP
- **3** STOCHASTIC PDE ON METRIC GRAPHS
- **4** DUALITY AND EXTINCTION PROBABILITY

▲ロ▶▲□▶▲□▶▲□▶ ▲□ シ へ ()

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

PROOF OUTLINE FOR CONVERGENCE THEOREMS

The approximate density is

$$u_t^{(n)}(x) = rac{\operatorname{number of type 1 at } x}{M^e}.$$

View $u_t^{(n)} \in \mathcal{C}_{[0,1]}(G)$ for each $t \in [0,\infty)$. We want to show

$$u^{(n)} \rightarrow u \in D([0,\infty), \mathcal{C}_{[0,1]}(G)).$$

(I) Show that $\{u^{(n)}\}$ is relatively compact.

- (II) Show that all limit points u^{∞} satisfy the limiting martingale problem: $F(u_t) - F(u_0) - \int_0^t \mathcal{L}F(u_s) ds$ are martingales.
- (III) Uniqueness of solution of the limiting martingale problem.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Proof has to address **new challenges:**

- (A) Interactions near vertex singularities in relation to $\{M_n^e\}$ and $\{L_n^e\}$.
- (B) Weak uniqueness via a new duality
- (C) Uniform heat kernel estimates on G_n .

Non-uniqueness of SPDE

THEOREM (MUELLER, MYTNIK AND PERKINS 2014)

If $0 < \gamma < 3/4$, then uniqueness in law and pathwise uniqueness fail for

$$\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + |u(t,x)|^{\gamma} \dot{W}(t,x), \qquad u(0,x) = 0$$

on the space of $\mathcal{C}(\mathbb{R})$ -valued adapted processes.

Open problems:

- strong uniqueness for case $\gamma = 3/4$.
- strong uniqueness for stochastic FKPP on $\mathcal{C}_+(\mathbb{R})$ -valued processes

▲□▶▲□▶▲□▶▲□▶ □ のへで

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

DUALITY AND WEAK UNIQUENESS The stochastic FKPP

$$\partial_t u = \alpha \Delta u + \beta u (1 - u) + \sqrt{\gamma u (1 - u)} \dot{W}.$$

is dual to the Branching Coalescing Brownian motions

$$X_t := (x_1(t), x_2(t), \cdots, x_{n(t)}(t)).$$

Precisely, the following **duality** exists between u and X

$$\mathbb{E}\prod_{i=1}^{n(0)}\left(1-u(t,x_{i}(0))\right)=\mathbb{E}\prod_{i=1}^{n(t)}\left(1-u(0,x_{i}(t))\right).$$

[Shiga and Uchiyama 1986, Athreya and Tribe 2000]

This duality implies weak uniqueness of stochastic FKPP on $C_{[0,1]}(\mathbb{R})$, and is useful in obtaining the probability of extinction.

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

DUALITY AND EXTINCTION PROBABILITY

Recall the duality

$$\mathbb{E}\prod_{i=1}^{n(0)}\left(1-u(t,x_i(0))\right)=\mathbb{E}\prod_{i=1}^{n(t)}\left(1-u(0,x_i(t))\right).$$
(4.1)

Suppose $\int u_0(x)dx < \infty$. The LHS of (4.1) tends to the **extinction probability** $\mathbb{P}(u_{\infty} = 0)$ as $t \to \infty$. The RHS of (4.1) tends to

$$\exp\left\{\frac{-2\beta}{\gamma}\int u_0(x)\,dx\right\}$$

since the BCBM converges to a Poisson point process with intensity $\frac{2\beta}{\gamma}$ as $t \to \infty$. [Doering, Mueller and Smereka 2003], [Fan and Yang 2022+]

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

LONGTIME BEHAVIORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ONGOING/FUTURE WORK

[Inankur and Yin 2017, Fan and Yin 2022+]

How do spatial structures affect the dynamics, competition outcome and genealogies of interacting populations?

Longtime behaviors of stochastic reaction-diffusion equations on metric graphs

 $\mathcal{A} \mathcal{A} \mathcal{A}$

E.

▲□▶ ▲□▶ ▲□▶ ▲□▶ →

ONGOING/FUTURE WORK

Understand the general principles governing the dynamics and the genealogies of expanding populations

WAI-TONG (LOUIS) FAN INDIANA UNIVERSITY

LONGTIME BEHAVIORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS

æ

500

ONGOING/FUTURE WORK

- Develop duality and field-theoretic techniques in the analysis of co-existence, fixation probabilities, quasi-stationary and quasi-ergodic behaviors
- One general reaction terms (e.g. pushed waves) and metric graphs

$$\partial_t u = \underbrace{\mathcal{L}u}_{\text{spatial motion}} + \underbrace{F(u)}_{\text{reactions}} + \underbrace{\sigma(u) \, \mathbb{W}}_{\text{noise}}, \quad \underbrace{x \in \mathbb{X}}_{\text{metric graph}}$$

- Coupled SPDE on graphs, fractals, and other metric spaces
 - Coexistence, competition outcome
 - Propagating speeds and spatial patterns of stochastic waves
 - Lineage dynamics and genealogies

Thank you for your attention!

- Reversibility and convergence of Branching-coalescing Brownian motions.
 With Yifan (Johnny) Yang.
- *Quasi-stationary behavior for the stochastic FKPP on compact spaces.* With Oliver Tough.
- Stochastic PDEs on graphs as scaling limits of discrete interacting systems. Bernoulli. 27(3), 2021.
- Wave propagation for reaction-diffusion equations on infinite trees. With W. Hu and G. Terlov. Communications in Mathematical Physics. 384, 2021.
- Genealogies in expanding populations. With R. Durrett. Annals of Applied Probability. 26(6), 2016.

Research partially supported by NSF awards (DMS-1804492, DMS 2152103) and ONR grant (TCRI N00014-19-S-B001).

