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Partial differential equations
powerful tools that capture many space-time organized structures

describe the macroscopic behavior of a certain quantity u(t, x)
at time t and location x

Eg. Heat equation
∂tu(t, x) = α∆u(t, x)

Suppose initial condition u0 is “nice at infinity”, then the solution on Rd is

u(t, x) =

∫
Rd

p(t, x , y) u0(y)dy ,

where p(t, x , y) = (4παt)−d/2e−|x−y |
2/4αt .

Eg. Reaction-Diffusion equation

∂tu(t, x) = α∆u(t, x) + F (u(t, x))

.e.g. F (u) = βu(1− u) logistic growth
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Partial differential equations

Eg. Fisher-Kolmogorov-Petrovskii-Piscounov (FKPP) equation

∂tu(t, x) = α∆u(t, x) + β u(t, x)
(
1− u(t, x)

)
models the spatial spread of an advantageous gene type

on R, it has asymptotic speed: 2
√
αβ

[Fisher 1937, KPP 1937, McKean 1975, Bramson 1983, Freidlin 1996, etc]
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Partial differential equations

Eg. Turing patterns [Alan Turing 1952] captured by reaction-diffusion systems{
∂tu = αu∆u + F (u, v)

∂tv = αv∆v + G (u, v)

Figures from [Shigeru Kondo and Takashi Miura, Science 2010]

Eg. Transport equation, wave equation, Burgers equation, Navier-Stokes
equation, Einstein’s equation, Ginzburg-Landau equation, etc.
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u(t, x) is usually interpreted as certain continuous quantity

However,

individuals are not infinitesimally small

observations are often noisy
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Randomly growing tumor

Duke Cancer Institute: http://sites.duke.edu/dukecancerinstitute/
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Virus spread

[Baltes, Akpinar, Inankur, and Yin 2017]
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Growing bacterial colonies

[Hallatschek, Hersen, Ramanathan and Nelson 2007]
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Extinction versus survival

[Lavrentovich and Nelson 2015]
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Individual-based model

cells and particles have positive size

experimental outcomes are stochastic.

To take discreteness and stochasticity into account, individual-based models are
often used.

However, they are often computationally and analytically intractable.
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Fundamental challenge in modeling

Which model should we use?

Individual-based models

Partial differential equations (PDE)

Stochastic PDE (SPDE)

multi-scale models

hybrid models

· · ·

Key: understand the connections among models.

Why do we care?
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Why do we care about understanding the connections among models ?

The parable of the blind men and an elephant, figures from cvi teacher - WordPress.com

Wai-Tong (Louis) Fan Indiana University

Longtime behaviors of stochastic reaction-diffusion equations on metric graphs 13 / 67



Motivation: model comparison Biased voter model and FKPP Stochastic PDE on metric graphs Duality and extinction probability

Outline

1 Motivation: model comparison

2 Biased voter model and FKPP

3 Stochastic PDE on metric graphs

4 Duality and extinction probability

Wai-Tong (Louis) Fan Indiana University

Longtime behaviors of stochastic reaction-diffusion equations on metric graphs 14 / 67



Motivation: model comparison Biased voter model and FKPP Stochastic PDE on metric graphs Duality and extinction probability

Biased Voter Model (BVM)

BVM on
(L−1Z)× {1, . . . ,M}.

L−1Z

[Hallatschek and Nelson 2007], [Durrett and Fan 2016]
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Biased Voter Model (BVM)

{
Each type-0 reproduces at rate 2αL2

Each type-1 reproduces at rate 2(α L2 + β)

Offspring replaces a randomly chosen neighbor

L−1Z

αL2

M

αL2 + β

M
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Simulation for BVM{
Each type-0 reproduces at rate 200

Each type-1 reproduces at rate 204,
L = 10, M = 1000.

Comparison of the evolution of the fraction of type 1 with FKPP

∂tu = α∆u + β u
(
1− u

)
Wai-Tong (Louis) Fan Indiana University
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Biased Voter Model (BVM)

1 Is deterministic FKPP a good approximation?

NOT NECESSARILY. This is annoying.

How to remedy?
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Stochastic FKPP

∂tu(t, x) = α∆u + β u(1− u) +|γ u(1− u)|1/2 Ẇ ,

where Ẇ (t, x) is the space-time Gaussian white noise, x ∈ Rd , t ∈ [0,∞).

Roughly speaking, stochastic PDE (SPDE) are

PDE with random terms

macroscopic models for systems with randomness

What does it mean by a “solution” ?
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Stochastic PDE

How to make sense of parabolic SPDE

∂tu(t, x) = α∆u(t, x) + b
(
u(t, x)

)
+ σ

(
u(t, x)

)
Ẇ (t, x) ?

Mild solution

ut(x) = Ptu0(x) +

∫ t

0

Pt−s
(
b(us)

)
(x) ds

+

∫
[0,t]×Rd

p(t − s, x , y)σ(us(y)) dW (s, y),

where p(t, x , y) = (4παt)−d/2e−|x−y |
2/4αt .

[Gihman and Skorohod 1979, Métivier and Pellaumeil 1980, Walsh 1986]
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Stochastic FKPP on R
∂tu = α∆u + β u(1− u) +|γ u(1− u)|1/2 Ẇ

Figure from [Doering, Mueller and Smereka 2003]
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Stochastic FKPP on R

∂tu = α∆u + β u(1− u) + |γ u(1− u)|1/2 Ẇ (t, x) ∈ R+ × R

Arise as scaling limits of various discrete models [Muller and Tribe 1995, Durrett and

Fan 2016, Fan 2021]

Backward-in-time lineage dynamics [Hallatschek and Nelson 1997, Durrett and Fan 2016]

Wavefront is formed, compact containment holds [Mueller and Sowers 1995]

Conditioned on non-extinction, asymptotic speed is

2
√
αβ − O(| log−2 γ|)

for small γ > 0. [Brunet and Derrida 1997, Mueller, Mytnik and Quastel 2011]

Probability of extinction is

exp

{
−2β

γ

∫
R
u0(x)dx

}
[Doering, Mueller and Smereka 2003]
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FKPP or Stochastic FKPP ?

L−1Z

Define the approximate density of type 1

u(M,L)(t, x) =
number of type 1 at x

M

Want: u(M,L)(t, ·)→ u(t, ·) ∈ C[0,1](R).
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BVM on (L−1Z)× {1, . . . ,M}.{
Each type-0 reproduces at rate 2αL2

Each type-1 reproduces at rate 2(α L2 + β)

Theorem (Durrett and Fan, 2016)

Suppose L/M → γ/(4α) ∈ [0,∞) and the initial approximate density converges.
Then u(M,L)(t, ·)→ u(t, ·) ∈ C[0,1](R) where

∂tu = α∆u + 2β u(1− u) + |γ u(1− u)|1/2 Ẇ

where α > 0, β ≥ 0 and γ ≥ 0.

γ = 0 (deterministic FKPP) L = n1/b, M = αn 2/b−1/a, 2a > b > a > 0
γ > 0 (stochastic FKPP) M = na, L = γM/(4α)

Wai-Tong (Louis) Fan Indiana University
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BVM with neutral labels

Neutral mutation: Same rate
αL2 + β

M

Wai-Tong (Louis) Fan Indiana University
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Theorem (Durrett and Fan, 2016)

Suppose L/M → γ/(4α) and initial densities converge. The pair of densities of
type 1 and labeled type 1 converges weakly to the coupled SPDE

∂tu = α∆u + 2βu(1− u) + |γ`(1− u)|1/2 Ẇ 0 + |γ(u − `)(1− u)|1/2 Ẇ 1

∂t` = α∆`+ 2β` (1− u) + |γ`(1− u)|1/2 Ẇ 0 + |γ` (u − `)|1/2 Ẇ 2

Applications: lineage dynamics, extinction probability, probability of gene surfing
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Stochastic FKPP on R

Wellposedness for

∂tu = α∆u + β u(1− u) + |γ u(1− u)|1/2 Ẇ (t, x) ∈ R+ × R

Stochastic FKPP has a unique weak solution for d = 1.

Solution theory for d ≥ 2 not available (!!).

Usual approach: Discretize space
New approach: Model space as a metric graph
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SPDE on metric graphs

∂tu(t, x) = Lu︸︷︷︸
spatial motion

+ b(u)︸︷︷︸
reactions

+σ(u) Ẇ︸ ︷︷ ︸
noise

, x ∈ X︸ ︷︷ ︸
metric graph

with suitable boundary conditions on the vertices.

Wellposed in the weak sense if X is “nice”

Gaussian heat kernels and Holder continuity holds for the underlying diffusion
[Fan 2021]
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SPDE on metric graphs

 ∂tu = Lu(t, x) + b
(
x , u(t, x)

)
+ σ

(
x , u(t, x)

)
Ẇ for x ∈

◦
G

∇outu · ~α = −β̂(v , u(t, v)) for v ∈ V

is the shorthand of

ut(x) = Ptu0(x) +

∫ t

0

Pt−s
(
b(·, us)

)
(x) ds

+

∫
[0,t]×G

p(t − s, x , y)σ(y , us(y)) dW (s, y)

+

∫ t

0

∑
v∈V

p(t − s, x , v) β̂(v , us(v)) ds,

where p(t, x , y) the transition density for the L-diffusion on G . [Cerrai and Freidlin

2019, Fan 2021]
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SPDE on metric graphs
(i) Our SPDE are more general (well-posedness not known apriori) ∂tu = Lu + b

(
u
)

+ σ
(
u
)
Ẇ on

◦
G

∇outu = −β̂(u) on V .

More general metric graphs G and operators L
Nontrivial boundary conditions

(iii) We obtain the first scaling limit results which connect individual based
models to both deterministic and SPDE on metric graphs.
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Theorem (Fan 2021)

Let G be a metric graph admitting suitable regularity conditions (such as
volume-doubling property and Poincaré inequality). Suppose the initial
approximate densities converge, then under suitable scaling, the approximate
density processes converge in D([0,∞), C[0,1](G )) to the solution of{

∂tu = αe ∆u + βe u(1− u) +
√
γe u(1− u)Ẇ on

◦
e

∇outu · ~α = −β̂ u(1− u) on V .

We also have a numerical scheme via interacting Itô SDEs

Same method expected to work for several other parabolic SPDE
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Example: FKPP on trees

We consider the FKPP equation on an infinite regular tree T~d,~̀

What is the wavespeed on a tree? Is it faster or slower than that on R ?

Wai-Tong (Louis) Fan Indiana University
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FKPP on T~d ,~̀

FKPP equation on an infinite regular tree T~d,~̀:
∂u

∂t
(t, x) =

1

2

∂2u

∂x2
+ βu(1− u) , (t, x) ∈ (0,∞)× T̊~d,~̀ ,

∇u(t, v) = 0 , (t, v) ∈ (0,∞)× V ,

u(0, x) = u0(x) , x ∈ T̊~d,~̀ ,

The condition ∇u(t, v) =
∑

i ∂iu(t, v) = 0 in which ∂i is the outward
derivative along the i-th edge attached to the vertex v , specifies that the
flow-in equals flow-out of mass at each vertex.

The initial condition u0(x) = 1(−δ,δ)(x) for some small δ > 0.
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Wavespeed for FKPP on trees
Consider the FKPP equation on T~d,~̀

i.i.d. branching degrees ~d = (di )i∈Z+

i.i.d. branch lengths ~̀= (`i )i∈Z+

Theorem (Fan, Hu and Terlov 2021)

There is a critical growth rate βc > 0 such that if β ∈ (βc ,∞), a wavefront is
formed. The wavefront travels with a positive asymptotic speed c∗ ≤

√
2β, with

equality holds if and only if the tree T~d,~̀ is the real line R.

We obtained a variational representation for c∗.
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Corollary: d-ary tree

Theorem (Fan, Hu and Terlov 2021)

Consider the d-ary tree with branch length `. There is a critical growth rate
βc := d−2

` d ln(d − 1) above which the asymptotic speed is

inf
λ≥0

λ+ β
√

2λ+
1

`
ln
( 4p

1 + γ2 −
√

(γ2 − 1)2 + 4(2p − 1)2γ2

) ∈ (0,
√

2β ] ,

where p = (d − 1)/d and γ := e`
√

2λ.
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Idoof

Figure: Connection with multi-skewed Brownian motion via projection π.
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Idoof

If y = π(x) then u(t, x) = v(t, y), where

v(t, y) = E (~d,~̀)
y

[
1(−δ,δ)(Yt) exp

{
β

∫ t

0

(
1− v(t − s,Ys)

)
ds
}]
.

Our problem is reduced to large deviations principle (LDP) and the analysis of
wavefront propagation associated with the multi-skewed Brownian motion Yt .
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Proof outline for convergence theorems

The approximate density is

u
(n)
t (x) =

number of type 1 at x

Me
.

View u
(n)
t ∈ C[0,1](G ) for each t ∈ [0,∞). We want to show

u(n) → u ∈ D([0,∞), C[0,1](G )).

(i) Show that {u(n)} is relatively compact.

(ii) Show that all limit points u∞ satisfy the limiting martingale problem:

F (ut)− F (u0)−
∫ t

0
LF (us) ds are martingales.

(iii) Uniqueness of solution of the limiting martingale problem.

Wai-Tong (Louis) Fan Indiana University
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Proof has to address new challenges:

(a) Interactions near vertex singularities in relation to {Me
n} and {Len}.

(b) Weak uniqueness via a new duality

(c) Uniform heat kernel estimates on Gn.
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Non-uniqueness of SPDE

Theorem (Mueller, Mytnik and Perkins 2014)

If 0 < γ < 3/4, then uniqueness in law and pathwise uniqueness fail for

∂tu(t, x) =
1

2
∆u(t, x) + |u(t, x)|γ Ẇ (t, x), u(0, x) = 0

on the space of C(R)-valued adapted processes.

Open problems:

strong uniqueness for case γ = 3/4.

strong uniqueness for stochastic FKPP on C+(R)-valued processes

Wai-Tong (Louis) Fan Indiana University
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Duality and weak uniqueness
The stochastic FKPP

∂tu = α∆u + βu(1− u) +
√
γu(1− u)Ẇ .

is dual to the Branching Coalescing Brownian motions

Xt := (x1(t), x2(t), · · · , xn(t)(t)).

Precisely, the following duality exists between u and X

E
n(0)∏
i=1

(
1− u(t, xi (0))

)
= E

n(t)∏
i=1

(
1− u(0, xi (t))

)
.

[Shiga and Uchiyama 1986, Athreya and Tribe 2000]

This duality implies weak uniqueness of stochastic FKPP on C[0,1](R), and is
useful in obtaining the probability of extinction.
Wai-Tong (Louis) Fan Indiana University
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Duality and extinction probability

Recall the duality

E
n(0)∏
i=1

(
1− u(t, xi (0))

)
= E

n(t)∏
i=1

(
1− u(0, xi (t))

)
. (4.1)

Suppose
∫
u0(x)dx <∞. The LHS of (4.1) tends to the extinction probability

P(u∞ = 0) as t →∞. The RHS of (4.1) tends to

exp

{
−2β

γ

∫
u0(x) dx

}
since the BCBM converges to a Poisson point process with intensity 2β

γ as t →∞.
[Doering, Mueller and Smereka 2003], [Fan and Yang 2022+]
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Ongoing/Future work

[Inankur and Yin 2017, Fan and Yin 2022+]

How do spatial structures affect the dynamics, competition outcome and
genealogies of interacting populations?
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Ongoing/Future work
Understand the general principles governing the dynamics and the genealogies of
expanding populations
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Ongoing/Future work

1 Develop duality and field-theoretic techniques in the analysis of co-existence,
fixation probabilities, quasi-stationary and quasi-ergodic behaviors

2 More general reaction terms (e.g. pushed waves) and metric graphs

∂tu = Lu︸︷︷︸
spatial motion

+ F (u)︸︷︷︸
reactions

+σ(u) Ẇ︸ ︷︷ ︸
noise

, x ∈ X︸ ︷︷ ︸
metric graph

3 Coupled SPDE on graphs, fractals, and other metric spaces

Coexistence, competition outcome
Propagating speeds and spatial patterns of stochastic waves
Lineage dynamics and genealogies
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Thank you for your attention!
Reversibility and convergence of Branching-coalescing Brownian motions.
With Yifan (Johnny) Yang.
Quasi-stationary behavior for the stochastic FKPP on compact spaces. With
Oliver Tough.
Stochastic PDEs on graphs as scaling limits of discrete interacting systems.
Bernoulli. 27(3), 2021.
Wave propagation for reaction-diffusion equations on infinite trees. With W.
Hu and G. Terlov. Communications in Mathematical Physics. 384, 2021.
Genealogies in expanding populations. With R. Durrett. Annals of Applied
Probability. 26(6), 2016.
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