Márk Mezei (Princeton)

MM, Stanford [to appear]; MM [to appear];
Casini, Liu, MM [1509.05044]; Cotler, Hertzberg, MM, Mueller [to appear]

Strings 2016
Entanglement generation and chaos
- Two velocities
- Bounds

Data on entanglement growth
- Holographic results
- Spin chain results

Interpretation and benchmarking
- Operator growth model
- Free streaming, free scalar theory

Summary and open questions
Entanglement generation and chaos
• Two velocities
• Bounds

Data on entanglement growth
• Holographic results
• Spin chain results

Interpretation and benchmarking
• Operator growth model
• Free streaming, free scalar theory

Summary and open questions
Entanglement generation in global quenches

Global quench:
- Thermalization in a pure state $|\psi(t)\rangle$
- Start with QFT in a short-range entangled state at $t=0$. (E.g. inject uniform energy density or change the Hamiltonian)
- One-point functions reach thermal value $t_{loc} \sim 1/T$
- EE (similarly to $\langle \phi(R) \phi(0) \rangle$) take $t_s \sim R$ to saturate to thermal value
- Good diagnostic of thermalization is how close $\rho_A (|\psi(t)\rangle)$ is to $\text{Tr}_A e^{-\beta(E) H}$

$S_0 = \frac{A \Sigma}{\delta^{d-2}} + \ldots$

Typical point inside is unentangled with outside

$S_{eq} = s_{th} V_A + \ldots$

Typical point inside is entangled with outside
Entanglement generation in global quenches

Global quench:
- Thermalization in a pure state $|\psi(t)\rangle$
- Start with QFT in a short-range entangled state at $t=0$. (E.g. inject uniform energy density or change the Hamiltonian)
- One-point functions reach thermal value $t_{\text{loc}} \sim 1/T$
- EE (similarly to $\langle \phi(R) \phi(0) \rangle$) take $t_s \sim R$ to saturate to thermal value
- Good diagnostic of thermalization is how close $\rho_A (|\psi(t)\rangle)$ is to $\text{Tr}_A e^{-\beta(E)H}$

What is the time evolution of EE?
- 2d: numerics, CFT techniques [Huse, Kim; MM, Stanford; Calabrese, Cardy]
- $d>2$: holography, free field theory [Hartman, Maldacena; Liu, Suh; Cotler, Hertzberg, MM, Mueller]
Monotonicity of relative entropy combined with emergent light cones
- ν_B cone at finite temperature in chaotic systems
- Monotonicity of relative entropy for subsystems
- Tsunami bound [Afkhami-Jeddi, Hartman]

$$S[A(t)] \leq S[A'(t')] + s_{th} \left(V[A(t)] - V[A'(t')] \right)$$
Bounds on entanglement growth

Monotonicity of relative entropy combined with emergent light cones
• v_B cone at finite temperature in chaotic systems
• Monotonicity of relative entropy for subsystems
• Tsunami bound [Afkhami-Jeddi, Hartman]

$$S[A(t)] \leq S[A'(t')] + s_{th} \left(V[A(t)] - V[A'(t')]\right)$$

• Taking $t' = 0$:

$$S[A(t)] \leq s_{th} V[tsunami(t)]$$
Bounds on entanglement growth

Monotonicity of relative entropy combined with emergent light cones
- v_B cone at finite temperature in chaotic systems
- Monotonicity of relative entropy for subsystems
- Tsunami bound [Afkhami-Jeddi, Hartman]
 \[S[A(t)] \leq S[A'(t')] + s_{th} (V[A(t)] - V[A'(t')]) \]

- Taking $t' = 0$:
 \[S[A(t)] \leq s_{th} V[\text{tsunami}(t)] \]

- Consequences: $v_E \leq v_B$, $t_S \geq \frac{R_{\text{insc}}}{v_B}$
Bounds on entanglement growth

Monotonicity of relative entropy combined with emergent light cones
- v_B cone at finite temperature in chaotic systems
- Monotonicity of relative entropy for subsystems
- Tsunami bound [Afkhami-Jeddi, Hartman]

\[
S[A(t)] \leq S[A'(t')] + s_{th} (V[A(t)] - V[A'(t')])
\]

- Taking $t' = 0$:

\[
S[A(t)] \leq s_{th} V[\text{tsunami}(t)]
\]

- Consequences:

\[
v_E \leq v_B, \quad t_S \geq \frac{R_{\text{insc}}}{v_B}
\]

Proposed inequality

\[
\partial_t S[A(t)] \leq v_E s_{th} A_\Sigma
\]

- Rigorous versions exist for lattice systems
- Can be proven in holography [MM]

Combination of the two bounds captures many of the essential details of entanglement growth in chaotic systems.
Entanglement generation and chaos
 • Two velocities
 • Bounds

Data on entanglement growth
 • Holographic results
 • Spin chain results

Interpretation and benchmarking
 • Operator growth model
 • Free streaming, free scalar theory

Summary and open questions
Holographic models of quenches
- Dual of Cardy-Calabrese boundary state is eternal BH with end of world brane [Hartman, Maldacena]
- Injecting energy density is dual to a collapsing shell. Saturation happens when the HRT surface touches the shell [Liu, Suh]
Holographic models of quenches

- Dual of Cardy-Calabrese boundary state is eternal BH with end of world brane [Hartman, Maldacena]
- Injecting energy density is dual to a collapsing shell. Saturation happens when the HRT surface touches the shell [Liu, Suh]
- The two setups are equivalent for large R [MM]
- \(v_E \) is determined by behind the horizon physics
- Saturation is determined by near horizon physics, and EE saturates as fast as possible
 \[
 t_S = \frac{R}{v_B}
 \]

Conceptual argument based on entanglement wedge reconstruction.
Holographic models of quenches

• Dual of Cardy-Calabrese boundary state is eternal BH with end of world brane [Hartman, Maldacena]
• Injecting energy density is dual to a collapsing shell. Saturation happens when the HRT surface touches the shell [Liu, Suh]
• The two setups are equivalent for large R [MM]
• v_E is determined by behind the horizon physics
• Saturation is determined by near horizon physics, and EE saturates as fast as possible

\[t_S = \frac{R}{v_B} \]

Conceptual argument based on entanglement wedge reconstruction.

• Using the NEC, we can show that there are non-trivial constraints on these velocities:

\[v_E \leq v_E^{(SBH)}, \quad v_B \leq v_B^{(SBH)}, \quad v_E \leq v_B \]
Detailed understanding of how HRT surfaces are behaving

- For large R, we can understand the entropy analytically
- In both setups the minimal surfaces are close to a critical surface determined by an **algebraic equation**.
- They shoot out to the boundary exponentially fast.
Detailed understanding of how HRT surfaces are behaving

- For large R, we can understand the entropy analytically.
- In both setups the minimal surfaces are close to a critical surface determined by an algebraic equation.
- They shoot out to the boundary exponentially fast.
- Entropy and time are given by the critical surface.

Holographic results on entanglement
Spin chain results on entanglement and chaos

Chaotic spin chain Hamiltonian: \(H = - \sum_i (Z_i Z_{i+1} - 1.05 X_i + 0.5 Z_i) \)

- Entropy growth and \(v_E \):

![Graph showing N = 26 spin chain, A = first 12 sites](image)

![Graph showing dependence of \(v_E \) on Renyi index](image)
Spin chain results on entanglement and chaos

Chaotic spin chain Hamiltonian:

\[H = -\sum_i (Z_i Z_{i+1} - 1.05X_i + 0.5Z_i) \]

- Entropy growth and \(v_E \):

- Operator growth [Roberts, Susskind, Stanford]

\[v_B = 2.0 > v_E, \quad t_S > \frac{R}{v_B} \]
Comparison with bounds

Combination of the two bounds comes very close to the data from chaotic systems.

- $d=2$: linear growth until saturation
Combination of the two bounds comes very close to the data from chaotic systems.

- **d=2**: linear growth until saturation
- **d>2**: three regimes

Middle regime in good agreement with holographic theories.
Operator growth model

Operator counting model [Abanin, Ho]

- Closer in spirit to spin chains, infinite temperature
- The reduced density matrix is an operator, so it also spreads

\[
\rho(0) = |\uparrow\uparrow\ldots\uparrow\rangle\langle\uparrow\uparrow\ldots\uparrow| = \prod_i \frac{\mathbb{I}_i + Z_i}{2} = \frac{1}{2^{V/2}} \sum_{\mathcal{O}(0)} \mathcal{O}(0)
\]
Operator growth model

Operator counting model [Abanin, Ho]

- Closer in spirit to spin chains, infinite temperature
- The reduced density matrix is an operator, so it also spreads

\[
\rho(0) = |\uparrow\uparrow\ldots \uparrow\rangle \langle \uparrow\uparrow\ldots \uparrow| = \prod_i \frac{\mathbb{1}_i + Z_i}{2} = \frac{1}{2^{V/2}} \sum_{\mathcal{O}(0)} \mathcal{O}(0)
\]

\[
\rho_A(t) = \frac{1}{2^{V_A/2}} \sum_{\mathcal{O}(0)} \mathcal{O}(t)_A
\]
Operator growth model

Operator counting model [Abanin, Ho]

- Closer in spirit to spin chains, infinite temperature
- The reduced density matrix is an operator, so it also spreads

$$\rho(0) = | \uparrow \uparrow \cdots \uparrow \rangle \langle \uparrow \uparrow \cdots \uparrow | = \prod_i \frac{I_i + Z_i}{2} = \frac{1}{2^{V/2}} \sum_{\mathcal{O}(0)} \mathcal{O}(0)$$

- Second Rényi entropy:

$$\text{Tr}_A \rho_A(t)^2 \approx \frac{1}{2^{V_A}} \sum_{\mathcal{O}(0)} \text{Tr}_A \left(\mathcal{O}(t)_A^2 \right)$$

- Small operators contribution: 1
 Big operators: probability of staying inside \(\text{Tr}_A \left(\mathcal{O}(t)_A^2 \right) = 2^{-\alpha s_{th} A[\mathcal{O}(0)](t-t_{\text{delay}})} \)

- Have to sum over all operators
Operator growth model

Operator counting model [Abanin, Ho]

- Closer in spirit to spin chains, infinite temperature
- The reduced density matrix is an operator, so it also spreads

\[\rho(0) = | \uparrow \uparrow \ldots \uparrow \rangle \langle \uparrow \uparrow \ldots \uparrow | = \prod_i \frac{\mathbb{I}_i + Z_i}{2} = \frac{1}{2^{V/2}} \sum_{\mathcal{O}(0)} \mathcal{O}(0) \]

\[\rho_A(t) = \frac{1}{2^{V_A/2}} \sum_{\mathcal{O}(0)} \mathcal{O}(t)_A \]

- Second Rényi entropy:

\[\text{Tr}_A \rho_A(t)^2 \approx \frac{1}{2^{V_A}} \sum_{\mathcal{O}(0)} \text{Tr}_A \left(\mathcal{O}(t)^2_A \right) \]

- Small operators contribution: 1
 - Big operators: probability of staying inside \(\text{Tr}_A \left(\mathcal{O}(t)^2_A \right) = 2^{-\alpha s_{th} A[\mathcal{O}(0)](t-t_{delay})} \)
- Have to sum over all operators
- Saturates the combined bounds, gives microscopic picture for them

 - \(t_s \) is determined by when the last small operator gets out
 - In the spin chain we can measure \(\alpha \) independently, good agreement with the data for \(S_2(t) \)
Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs, subsequently travel freely at the speed of light isotropically. In this model v_B is not captured.

- Leads to linear growth with $v_E = 1$ in 2d.
Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs, subsequently travel freely at the speed of light isotropically. In this model v_B is not captured.

- Leads to linear growth with $v_E = 1$ in 2d

- Higher dimensions: entanglement spreading depends on entanglement pattern on the light cone $\mu[L_\Sigma]$

 Contribution from each light cone has to be added.
Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs, subsequently travel freely at the speed of light isotropically. In this model v_B is not captured.

- Leads to linear growth with $v_E = 1$ in 2d

- Higher dimensions: entanglement spreading depends on entanglement pattern on the light cone $\mu[L_\Sigma]$ Contribution from each light cone has to be added.

Bound on the entanglement velocity from SSA:

$$v_E \leq v_E^{(EPR)} = \frac{\Gamma\left(\frac{d-1}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{d}{2}\right)} < v_E^{(SBH)}$$

Slower than holography.
Free streaming model of entanglement spread

Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs, subsequently travel freely at the speed of light isotropically. In this model v_B is not captured.

- Leads to linear growth with $v_E = 1$ in 2d

- Higher dimensions: entanglement spreading depends on entanglement pattern on the light cone $\mu[L_{\Sigma}]$

 Contribution from each light cone has to be added.

Bound on the entanglement velocity from SSA:

$$v_E \leq v_E^{(EPR)} = \frac{\Gamma\left(\frac{d-1}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{d}{2}\right)} < v_E^{(SBH)}$$

Slower than holography.

- In strongly coupled systems, entanglement propagates faster than what’s possible for free particles streaming at the speed of light!

 - $t_S^{(SBH)} > t_S$ is achievable, makes free streaming look even less effective

- Consider the effect of interactions: tensor network picture emerging from scattering particles is natural [Hartman, Maldacena; Casini, Liu, MM]
In a free theory for time dependent Gaussian states the symplectic eigenvalues of the (reduced) correlation matrix determine the entanglement entropy.

- Numerical results for 3d boundary state quench for scalar field [Cotler, Hertzberg, MM, Mueller]
Entanglement generation and chaos
 • Two velocities
 • Bounds

Data on entanglement growth
 • Holographic results
 • Spin chain results

Interpretation and benchmarking
 • Operator growth model
 • Free streaming, free scalar theory

Summary and open questions
Summary

- Studied EE spread in a global quench
- Bound from chaos and thermal relative entropy:
 \[v_E \leq v_B, \quad t_S \geq R/v_B \]
- In holography: \[t_S = R/v_B \]
- Can solve for the entire \(S_A(t) \) curve analytically
- In chaotic spin chain: \(v_E < v_B \)
- Operator growth model saturates the bounds, good agreement with holography and the spin chain
- Free streaming is slower than holography, quasiparticle picture agrees with free theory
Summary

• Studied EE spread in a global quench
• Bound from chaos and thermal relative entropy:
 \(v_E \leq v_B, \ t_S \geq R/v_B \)
• In holography: \(t_S = R/v_B \)
• Can solve for the entire \(S_A(t) \) curve analytically
• In chaotic spin chain: \(v_E < v_B \)
• Operator growth model saturates the bounds, good agreement with holography and the spin chain
• Free streaming is slower than holography, quasiparticle picture agrees with free theory

Open questions

• What is an independent characterization of \(v_E \)?
• Can the bound from relative entropy be saturated in a QFT? Are the holographic bounds \(v_E \leq v_E^{(SBH)}, \ v_B \leq v_B^{(SBH)} \) universal?
• The velocities and \(t_s \) are new observables in a QFT. Are they calculable?
 - What are they in weakly coupled theories? [\(v_B: \text{Stanford} \)]
 - What are they for perturbed 2d CFTs? [\(v_E: \text{Cardy} \)]