Conformal Invariance in 2D Lattice Models

Part 0: Introduction

Hao Wu

Yau Mathematical Sciences Center, Tsinghua University, China
Ising Model

Curie temperature [Pierre Curie, 1895]
Ferromagnet exhibits a phase transition by losing its magnetization when heated above a critical temperature.
Ising Model [Lenz 1920]

A model for ferromagnet, to understand the phase transition.

Ising model is the probability measure of inverse temperature $\beta > 0$:

$$
\mu_{\beta,G}[\sigma] \propto \exp(-\beta H(\sigma))
$$

- $G = (V, E)$ a finite graph
- $\sigma \in \{\ominus, \oplus\}^V$
- $H(\sigma) = -\sum_{x \sim y} \sigma_x \sigma_y$
Ising Model [Lenz 1920]

A model for ferromagnet, to understand the phase transition.

Ising model is the probability measure of inverse temperature $\beta > 0$:

$$\mu_{\beta,G}[\sigma] \propto \exp(-\beta H(\sigma))$$

- $G = (V, E)$ a finite graph
- $\sigma \in \{\ominus, \oplus\}^V$
- $H(\sigma) = -\sum_{x \sim y} \sigma_x \sigma_y$

- $\beta > \beta_c$: ordered
- $\beta \approx \beta_c$: critical
- $\beta < \beta_c$: chaotic
Ising Model

- $\beta > \beta_c$: ordered
- $\beta \approx \beta_c$: critical
- $\beta < \beta_c$: chaotic

Question

$\beta_c = ?$
Ising Model

\[\beta > \beta_c : \text{ordered} \]
\[\beta \approx \beta_c : \text{critical} \]
\[\beta < \beta_c : \text{chaotic} \]

Question

\[\beta_c = ? \]

Answer [Kramers-Wannier, Onsager-Kaufman, 1940]

Ising model on \(\mathbb{Z}^2 \):

\[\beta_c = \frac{1}{2} \log(1 + \sqrt{2}). \]
Ising Model

- $\beta > \beta_c$: ordered
- $\beta \approx \beta_c$: critical
- $\beta < \beta_c$: chaotic

Question

$\beta_c =$?

Answer [Kramers-Wannier, Onsager-Kaufman, 1940]

Ising model on \mathbb{Z}^2: $\beta_c = \frac{1}{2} \log(1 + \sqrt{2})$.

Question

Critical phase?
Ising Model

\[\beta > \beta_c : \text{ordered} \]
\[\beta \approx \beta_c : \text{critical} \]
\[\beta < \beta_c : \text{chaotic} \]

Question
\[\beta_c = ? \]

Answer [Kramers-Wannier, Onsager-Kaufman, 1940]
Ising model on \(\mathbb{Z}^2 \):
\[\beta_c = \frac{1}{2} \log(1 + \sqrt{2}). \]

Question
Critical phase?

Answer
Conformally invariant (CI).
Ising Model

- $\beta > \beta_c$: ordered
- $\beta \approx \beta_c$: critical
- $\beta < \beta_c$: chaotic

Question

$\beta_c = ?$

Answer [Kramers-Wannier, Onsager-Kaufman, 1940]

Ising model on \mathbb{Z}^2: $\beta_c = \frac{1}{2} \log(1+\sqrt{2})$.

Question

Critical phase ?

Answer

Conformally invariant (CI). What does it mean?
Ising Model

\(T \gg T_c \) \quad \text{T} \sim T_c \quad \text{T} \ll T_c \)

- \(\beta > \beta_c \) : ordered
- \(\beta \approx \beta_c \) : critical
- \(\beta < \beta_c \) : chaotic

Question
\(\beta_c = ? \)

Answer [Kramers-Wannier, Onsager-Kaufman, 1940]
Ising model on \(\mathbb{Z}^2 \) : \(\beta_c = \frac{1}{2} \log(1 + \sqrt{2}) \).

Question
Critical phase ?

Answer
Conformally invariant (CI).
What does it mean?

Correlation function
\(\mu[\sigma_{z_1} \cdots \sigma_{z_n}] \rightarrow \phi(z_1, \ldots, z_n) \).

Schramm Loewner Evolution (SLE)
The law of interfaces is CI.
Conformal Invariance of Interfaces
Conformal Invariance of Interfaces

SLE [O. Schramm 1999]

A random fractal curve: conformal invariance, domain Markov property

Classification: SLE (κ), κ > 0.
Conformal Invariance of Interfaces
Conformal Invariance of Interfaces

SLE[O. Schramm 1999]
A random fractal curve:
- conformal invariance
- domain Markov property
Classification: SLE(κ), $\kappa > 0$.

A way to construct random conformally invariant fractal curves, introduced in 1999 by Oded Schramm (1961-2008)

Percolation \rightarrow SLE(6)
Uniform Spanning Tree \rightarrow SLE(8)
Conformal Invariance in Ising Model

[Chelkak-Smirnov, Invent.Math. ’10]

The interface in critical Ising model on \mathbb{Z}^2 with Dobrushin boundary conditions converges weakly to SLE(3).
Tentative syllabus

- Bernoulli percolation (6 lectures)
- Random cluster model (5 lectures)
- Ising model (3 lectures)

References:

- W. Werner. Random planar curves and Schramm-Loewner evolutions.
- W. Werner. Lectures on two-dimensional critical percolation.