Topics in Analysis of Many Particle Systems

Zhenfu Wang

Summer 2020

This summer course will present some mathematical tools and concepts for the rigorous derivation and study of nonlinear partial differential equations (PDE’s) arising from many-particle limits: (McKean-)Vlasov type equations, the vorticity formulation of the 2D incompressible Euler/Navier-Stokes equations, Boltzmann collision equations, nonlinear diffusion equations, quantum Hartree equations... Depending on time and interest it will include part or all of the following topics: the Liouville/Master equations of N-particle systems, the notion of empirical measures, the BBGKY hierarchy, the Hewitt-Savage theorem, the Dobrushin’s stability estimate, the coupling method, the concepts of chaos and entropic chaos, the recent progresses on the mean-field limit, in particular, the relative entropy/modulated potential energy/modulated free energy methods as introduced in [6, 7, 11, 8].

Pre-requisites: Basics in measure theory, real and functional analysis, partial differential equations and probability.

Textbook: We will not use any textbook. But most materials will be based on the notes [4, 5] and recent articles [6, 7, 11, 8].

Time: TBA.

Hao Wu from Tsinghua will host a summer course by Yilin Wang from MIT as a part of THU-PKU-BNU Probability Webinar. Dates are August 3, 5, 10, 12. It would be better for me to start after her series. But it depends on your schedule.

Location: Online.

Examination: TBA. (Presentation/Oral exam/Final project?)

References

