研究领域

变分法、椭圆偏微分方程和Painleve方程

教育背景

2004-2008 学士  清华大学

2008-2013 博士  清华大学

工作经历

2013年于清华大学取得博士学位

2018年获2017清华大学学术新人奖

现任清华大学丘成桐数学科学中心副教授

荣誉与奖励

2018年   2017清华大学学术新人奖

2018   2018 ICCM最佳论文奖 

发表论文

[1] Chen Z., Kuo, T-J. and Lin C-S., Simple zero property of some holomorphic functions on the moduli space of tori, 18 pp, Science China Mathematics, accepted for publication, a special issue to celebrate Prof. Lo Yang’s 80 birthday

[2] Chen Z., Kuo, T-J. and Lin C-S., The geometry of generalized Lame equation, I, 33 pp, J. Math. Pures Appl., published online.

[3] Chen Z. and Lin C-S., Sharp nonexistence results for curvature equations with four singular sources on rectangular tori, 28 pp, Amer. J. Math., accepted for publication

[4] Chen Z. and Lin C-S., Critical points of the classical Eisenstein series of weight two, 39 pp, J. Differ. Geom., accepted for publication

[5] Chen Z., Kuo T-J. and Lin C-S., Non-existence of solutions for a mean field equation on flat tori at critical parameter 16pi, Comm. Anal. Geom., accepted for publication

[6] Chen Z. and Lin C-S., A new type of non-topological bubbling solutions to a competitive Chern-Simons model, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze (5), accepted for publication

[7] Chen Z. and Lin C-S., Self-dual radial non-topological solutions to a competitive Chern-Simons model, Adv. Math., 331(2018), 484-541.

[8] Chen Z. and Lin C-S., On algebraic multiplicity of (anti)periodic eigenvalues of Hill’s equation, Proc. Amer. Math. Soc., 146(2018), 3039-3047.

[9] Chen Z., Kuo T-J., Lin C-S. and Takemura K., Real-root property of the spectral polynomial of the Treibich-Verdier potential and related problems, J. Differ. Equ.264(2018), 5408-5431.

[10] Chen Z., Kuo T-J., Lin C-S. and Takemura K.,, On reducible monodromy representations of some generalized Lame equation, Math. Z, 288(2018), 679-688.

[11] Chen Z., Kuo T-J., Lin C-S. and Wang C-L., Green function, Painleve VI equation and Eisenstein series of weight one, J. Differ. Geom., 108(2018), 185-241.

[12] Chen Z., Kuo T-J. and Lin C-S., Existence and non-existence of solutions of the mean field equations on flat tori, Proc. Amer. Math. Soc., 145(2017), 3989-3996.

[13] Chen Z., Kuo T-J. and Lin C-S., Unitary monodromy implies the smoothness along the real axis for some Painleve VI equation, I, J. Geom. Phys., 116(2017), 52-63.

[14] Chen Z., Kuo T-J. and Lin C-S., Hamiltonian system for the elliptic form of Painleve VI equation, J. Math. Pures Appl., 106(2016), 546-581.

[15] Chen Z., Lin C-S. and Zou W., Infinitely many sign-changing and semi-nodal solutions for a nonlinear Schrodinger system, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze (5), Vol. XV (2016), 859-897.

[16] Chen Z. and Lin C-S., Asymptotic behavior of least energy solutions for a critical elliptic system, Inter. Math. Res. Not., 2015, 11045-11082.

[17] Chen Z. and Lin C-S., Removable singularity of positive solutions for a critical elliptic system with isolated singularity, Math. Ann., 363(2015), 501-523. 

[18] Chen Z. and Zou W., Existence and symmetry of positive ground states for a doubly critical Schrodinger system, Trans. Amer. Math. Soc., 367(2015), 3599-3646.

[19] Chen Z. and Zou W., Standing waves for a coupled system of nonlinear Schrodinger equations, Ann. Mat. Pura Appl., 194(2015), 183-220.

[20] Chen Z. and Zou W., Positive least energy solutions and phase separation for coupled Schrodinger equations with critical exponent: Higher dimensional case, Calc. Var. PDEs., 52(2015), 423-467.

[21] Chen Z., Lin C-S. and Zou W., Sign-changing solutions and phase separation for an elliptic system with critical exponent, Comm. Partial Differ. Equ., 39(2014), 1827-1859.

[22] Chen Z. and Zou W., A remark on doubly critical elliptic systems, Calc. Var. PDEs., 50(2014), 939-965.

[23] Chen Z. and Zou W., Standing waves for linearly coupled Schrodinger equations with critical exponent. Ann. l. Henri Poincare-Anal. Non Lineaire, 31(2014), 429-447.

[24] Chen Z., Lin C-S. and Zou W., Monotonicity and nonexistence results to cooperative systems in the half space, J. Func. Anal., 266(2014), 1088-1105.

[25] Chen Z. and Zou W., On linearly coupled Schrodinger systems. Proc. Amer. Math. Soc., 142(2014), 323-333.

[26] Zhang J., Chen Z. and Zou W., Standing waves for nonlinear Schrodinger equations involving critical growth, J. Lond. Math. Soc., 90(2014), 827-844.

[27] Chen Z. and Zou W., Standing waves for coupled nonlinear Schrodinger equations with decaying potentials, J. Math. Phys., 54(2013), 111505.

[28] Chen Z., Lin C-S. and Zou W., Multiple sign-changing and semi-nodal solutions for coupled Schrodinger equations, J. Differ. Equ., 255(2013), 4289-4311.

[29] Chen Z. and Zou W., An optimal constant for the existence of least energy solutions of a coupled Schrodinger system. Calc. Var. PDEs., 48(2013), 695-711.

[30] Chen Z. and Zou W., Positive least energy solutions and phase separation for coupled Schrodinger equations with critical exponent, Arch. Ration. Mech. Anal., 205(2012), 515-551.

[31] Chen Z. and Zou W., Ground states for a system of Schrodinger equations with critical exponent. J. Funct. Anal., 262(2012), 3091-3107.

[32] Chen Z. and Zou W., On an elliptic problem with critical exponent and Hardy potential. J. Differ. Equ., 252(2012), 969-987.

[33] Chen Z. and Zou W., On the Brezis-Nirenberg problem in a ball. Differ. Integ. Equ., 25(2012), 527-542.

[34] Chen Z., Shioji N. and Zou W., Ground state and multiple solutions for a critical exponent problem. Nonl. Differ. Equ. Appl., 19(2012), 253-277.

[35] Chen Z. and Zou W., A note on the Ambrosetti-Rabinowitz condition for an elliptic system, Appl. Math. Lett., 25(2012), 1931-1935.

[36] Chen Z. and Zou W., On coupled systems of Schrodinger equations. Adv. Differ. Equ., 16(2011), 775-800.

 

  • 联系我们
  • 北京市海淀区清华大学静斋
    丘成桐数学科学中心100084
  • +86-10-62773561 
  • +86-10-62789445 
  • ymsc@tsinghua.edu.cn
版权所有© 2018 丘成桐数学科学中心