研究领域

偏微分方程

教育背景

1999-2003   学士   四川大学
2004-2009   博士   香港中文大学

工作经历

2019 至今    教授       清华大学丘成桐数学科学中心 
2015-2019  副教授    清华大学丘成桐数学科学中心及数学科学系
2012-2015  副教授    清华大学丘成桐数学科学中心
2009-2012  博士后    美国乔治城大学

荣誉与奖励

2018年 国家自然科学基金优秀青年基金
2015年 清华大学学术新人奖
2010年 香港数学学会最佳论文奖

发表论文

[1] T. Luo and H. Zeng, On the free surface motion of highly subsonic heat-conducting inviscid flows, arXiv:1709.06925.

[2] H. Zeng, Global Resolution of the Physical Vacuum Singularity for 3-D Isentropic Inviscid Flows with Damping in Spherically Symmetric Motions, Arch. Ration. Mech. Anal. 226 (2017), 33-82.

[3] T. Luo and H. Zeng, Global existence of smooth solutions and convergence to Barenblatt solutions for the physical vacuum free boundary problem of compressible Euler equations with damping, Comm. Pure Appl. Math. 69 (2016), 1354-1396.

[4] T. Luo, Z. Xin and H. Zeng, Nonlinear asymptotic stability of the Lane-Emden solutions for the viscous gaseous star problem with degenerate density dependent viscosities, Comm. Math. Phy. 347 (2016), 657-702.

[5] T. Luo, Z. Xin and H. Zeng, On nonlinear asymptotic stability of the Lane-Emden solutions for the viscous gaseous star problem, Adv. Math. 291 (2016), 90-182.

[6] B. Yang and H. Zeng, Zero relaxation limit to rarefaction waves for general 2*2 hyperbolic systems with relaxation, Comm. Math. Sci. 14 (2016), 443-462.

[7] Y. Ou and H. Zeng, Global strong solutions to the vacuum free boundary problem for compressible Navier-Stokes equations with degenerate viscosity and gravity force, J. Differential Equations 259 (2015), 6803-6829.

[8] H. Zeng, Global smooth solutions of the vacuum free boundary problem for compressible isentropic Navier-Stokes equations, Nonlinearity 28 (2015), 331-345.

[9] T. Luo, Z. Xin and H. Zeng, Well-posedness for the motion of physical vacuum of the three-dimensional compressible Euler equations with or without self-gravitation, Arch. Ration. Mech. Anal. 213 (2014), 763-831.

[10] J. Miller and H. Zeng, Range limits in spatially explicit models of quantitative traits, J. Math. Biol., 68 (2014), 207-234.

[11] H. Zeng, Stability of planar traveling waves for bistable reaction-diffusion equations in multiple dimensions, Appl. Anal. 93 (2014), 653-664.

[12] H. Zeng, Multidimensional stability of traveling fronts in monostable reaction-diffusion equations with complex perturbations, Sci. China Math. 57 (2014), 353-366.

[13] J. Miller and H. Zeng, Multidimensional stability of planar traveling waves for an integrodifference model, Discrete Contin. Dyn. Syst. Ser. B 18 (2013), 741-751.

[14] J. Miller and H. Zeng, Stability of travelling waves for systems of nonlinear integral recursions in spatial population biology, Discrete Contin. Dyn. Syst. Ser. B 16 (2011), 895-925.

[15] H. Zeng, A class of initial value problems for 2*2 hyperbolic systems with relaxation, J. Differential Equations 251 (2011), 1254-1275.

[16] Z. Xin and H. Zeng, Pointwise stability of contact discontinuity for viscous conservation laws with general perturbation, Comm. Partial Differential Equations 35 (2010), 1326-1354.

[17] Z. Xin and H. Zeng, Convergence to rarefaction waves for Boltzmann equation and Compressible Navier-Stokes equations, J. Differential Equations 249 (2010), 827-871.

[18] H. Zeng, Stability of a superposition of shock waves with contact discontinuities for systems of viscous conservation laws, J. Differential Equations 246 (2009), 2081-2102.
  • 联系我们
  • 北京市海淀区清华大学静斋
    丘成桐数学科学中心100084
  • +86-10-62773561 
  • +86-10-62789445 
  • ymsc@tsinghua.edu.cn
版权所有© 2018 丘成桐数学科学中心